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Abstract

In 1998, I hacked the OUdisseration.cls file from the USCthesis.cls file that I

grabbed from the web. As of April 21, 2009, this “dissertation” uses the OUdisseration5.cls

to define the document class. The comments inside OUdissertation5.cls describe

the changes. (You may see a bug here with the text extending past the margin.)

I put this example “dissertation” together for the benefit of the students at the

University of Oklahoma, who can use it as a template for their own work. Depending

on the demand of the users, maybe someday I will clean this up. Caveat user.
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Chapter 1

Introduction

Daley (1991) and Ghil and Malanotte-Rizzoli (1991) refer to this problem as the “data

assimilation” problem. But I can write this sentence a different way: Consequently,

this problem is referred to as the “data assimilation” problem (Daley 1991; Ghil and

Malanotte-Rizzoli 1991). I will let the text run on here a bit so that a big reference

list will be generated.

Formally, let c be a control vector of size m and S denote the feasible region for

the control vector. For any c in S, let J(c) denote the weighted sum of the squared

difference between the observation and the solution of the model corresponding to

the control vector c. Except in trivial cases the explicit form of J as a function of c

is not known. It is to be emphasized that there are other possible choices for the J

function. One may be interested only in the state of the model at a given time instant,

say t = ∆. Whatever be the nature and type of the J function, mathematically, the

data assimilation problem can be stated as follows : find a c∗ in S such that J(c∗)

is a minimum, that is, we are lead to an optimization problem under the dynamical

constraints of the model equations. Since J is a “smooth” function, one method for

finding c∗ is to use one of the many variants of the classical gradient method. This

is however, more easily said than done. The difficulty primarily stems from the fact

that J is not known explicitly. A now popular method for finding the gradient of J

is called the “adjoint” method (Ghil and Malanotte-Rizzoli 1991; Thacker and Long

1988). A summary of data assimilation using the adjoint method is shown in Fig. 3.1

and described below:
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Considerable success has been reported in the literature in the use of adjoint

method for finding c∗ (Luenberger 1973; Sun and Flicker 1991; Wolfsberg 1987). The

success of this combination is largely dependent on the properties of the J function.

This approach can succeed only if J is unimodal in S. It turns out that the modality

of J critically depends on the model dynamics. It is now known that the nonlinearity

in the model dynamics induces multimodality in the J function (Li et al. 1991; Chung

1996).

There are at least two factors affecting the rate of convergence of the iterates

leading to the optimum value of the J function. First, is the number and distribution

of the observations. There is a minimum number of observations required from an

algorithmic viewpoint, but satisfaction of this requirement is insufficient to guarantee

a solution. The distribution of these data (in space and time), in concert wtih the

dynamics, dictates the existence of a solution. Second, is the shape of the J func-

tion. Judicious choice of scaling can remove eccentricities in the J-field. It is thus

imperative to understand the role of these two factors affecting the iterates.

The effect of the number and distribution of observations on the quality of the

iterates are often examined using controlled experiments which have come to be known

as the “twin” experiments. In this, a point in the feasible region for the control

vector is first chosen and then the model solution is calculated for this value of the

control vector . Then observations (including known error) are generated from the

model solution by adding noise with known characteristics. By computing the optimal

estimate of the control vector for different sets of observations, we can develop a better

understanding of the dependence of the optimal estimate on the number, distribution

and accuracy of observations.

As for the shape of the J function, since it is not known explicitly, we must be

contented with the analysis of the properties of J around the local minima. This is
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often done by approximating J around the optimum c∗ using a quadratic form such

as

J(c) =
1

2
ctHc+ ptc+ q, (1.1)

where H is the Hessian matrix which is a symmetric matrix of the second derivatives

of J with respect to c,

p = (p1, p2, p3, p4, ..., pn)t (1.2)

is a vector and q is a constant. By analyzing the eigenvalues of H, we can draw

inferences on the shape of J in the vicinity of c∗ (Thacker 1989). For example, if one

of the eigenvalues of H is very small, then the contours or the level curves of J for the

valley around c∗ are elongated ellipses. This would imply that the iterative process

of locating the minimum would converge slowly and with difficulty.

In this dissertation, one aim is to apply the adjoint method to the mixed layer

model (Ball 1960; Lilly 1968). This model is used to predict the return flow of the

warm, humid air from the Gulf of Mexico into the coastal plains during the winter

months. The mixed layer model has a small number of unknown variables/parameters.

Athough small, the model is nonlinear and thus presents difficulties in dynamical op-

timization. With the experience gained, we wanted to analyze the computational

aspects of data assimilation. This brought us to the shallow water equations (Ped-

losky 1987), which has a larger number of variables in the discrete model. We are

interested in solving some of the computational aspects of this model that are relevant

to data assimilation. Since the solution of the forward model and the adjoint take a

good fraction of the efforts, we turned our attention to parallel methods for solving

this class of equations.

The shallow water model is discretized first using the Euler scheme. But due to

its instability, we also examined the solution using a stable leapfrog scheme. Both

types of discretization resulted in a block bi-diagonal system of equations for the

forward model and the adjoint model. We are interested in examining the comparative
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analysis of four vector/parallel algorithms in solving this system of equations. These

four vector/parallel algorithms belong to a class of direct parallel methods. The first

algorithm is also known as the “divide and conquer” method (Lakshmivarahan and

Dhall 1990). The second algorithm is a variation of the divide and conquer method

(Lakshmivarahan and Dhall 1990; Conn and Podrazik 1994; Meyer and Podrazik

1987; Van der Vorst 1988; Meyer and Podrazik 1989). The third algorithm is known

as the partition algorithm (Van der Vorst and Dekker 1989). The fourth algorithm

is the cyclic reduction method (Lakshmivarahan and Dhall 1990). A comparison of

these four vector/parallel algorithms is done on the CrayJ90 in scalar mode and using

1,2,4 and 8 vector processors.

This dissertation is organized as follows. A description of the use of encapsulated

postscript files is presented in Chapter 2. One way to present bargraphs is shown

in model equations are described in Section 3.1. Some example tables are shown in

Section 3.2.
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Chapter 2

Mostly .eps and .pdf examples

This chapter shows how encapsulated postscript figures can be included in the doc-

ument. In particular, we wish to show how raw .eps and .pdf files can annotated

and labeled to make them of “publication quality”.

2.1 A few easy equations and a picture

?

S0

4

6

S0

4
αp

6

σT 4
s

6(1− ε)σT 4
s

6

εσT 4
a

?

εσT 4
a

Figure 2.1: Radiative equilibrium with a “greenhouse effect”. This picture was drawn

using LATEX epic commands in the so-called picture environment. With pdflatex,

the horizontal lines will be missing. pdfprob.tar.gz shows the more complicated

procedure to include epic figures with pdflatex.

A radiative balance at the surface requires that:

S0

4
(1− αp) + εσT 4

A = σT 4
s . (2.1)
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Radiative equilibrium of the putative “atmosphere” in Figure 2.1 requires that:

εσT 4
s = 2εσT 4

s . (2.2)

We use (2.2) to eliminate TA from (2.1), which gives:

S0

4
(1− αp) +

1

2
εσT 4

s = σT 4
s . (2.3)

or

Ts = 4

√
S0(1− αp)
4σ(1− ε

2
)

(2.4)

2.2 Simple inclusion of .eps or .pdf graphics

Figure 2.2: This is what happens when you leave your figure in a hot car during July.
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Figure 2.3: Raw .eps from Mathematica.

2.3 .eps or .pdf, annotated

-�
∫
xdx

6

?

y
x

E = mc2

Figure 2.4: The melted figure with annotations. Wonderful! All of the epic commands

here work in both latex and pdflatex, in Fig. 2.1 some did did not in latex. This

is may favorite way to put labels on my figures.
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2.4 Using the psfrag system with .eps

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1
z

ψ̂r

ψ̂i

Figure 2.5: This looks ugly until rendered in postscript. At that time, the z (which

has now vanished) is turned into a ζ. This will not work with pdflatex.

8



Chapter 3

Other examples

Note that LATEX will place Figure 3.1 after the list, because I did not use the [H]

option after the \begin{figure}.

Step 1: Make a first estimate of the initial condition (I.C.).

Step 2: Run the forward model to generate a forecast over the assimilation interval.

Step 3: Compute the cost function, J, using the observations and the model output.

Step 4: Compute the gradient of the cost function with respect to the control vari-

able, ∇J(c), by integrating the adjoint model (which is a combination of the

forward model and cost functional) backwards using the Lagrangian multiplier

method.

Step 5: Generate a new estimate of the initial condition (I.C.) for another forecast

using a minimization procedure (e.g., Steepest Descent or Conjugate Gradient

Method). This is done iteratively toward the minimum of the cost function

using the calculated cost function and its gradient.

Step 6: The process is repeated until some convergence criteria are met, i.e., the

cost functional, J, is near its local minimum. In practice, this is determined by

an insignificant change in the gradient from one iteration to the next. If not,

the process will be terminated when some maximum number of iterations have

been achieved.
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control variables

?
first estimate of I.C.

Make forecast using
forward model

	
model output I new estimate of I.C.

compute
cost function J

?

-observations
Minimization

procedure

6

compute
Lagrangian
multipliers

-

compute gradient
∇J(c)

using adjoint model

Figure 3.1: Flowchart of data assimilation using the adjoint method.
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Best dense, row-wise algorithms

Algorithm 1, p=2, gaxpy

0

100

200

300

400

500

.903

s

116.

1

116.

1

117.

2

58.

2

233.

4

58.

4

465.

8

58.

8

secs

Figure 3.2: CPU time (hatched) and wall clock time (white) for srowdg (s) and

a1rowdg with various numbers of processors. m=128 N=64

3.1 A Bargraph

Hey, where did that bargraph go? I thought I put it in this section!

3.2 Some tables

I will put some text here just to see what happens to it.
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time (hours) T (C)

0 17.0

1.5 18.8

3.0 19.8

4.5 20.5

6.0 21.0

7.5 21.3

9.0 21.5

10.5 21.8

12.0 22.2

13.5 22.8

15.0 23.5

16.5 24.1

18.0 24.3

Table 3.1: T(t) for the initial 18 hours
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Step 1 Step 2

Stage 1 Stage 2 Stage 3

x1

x1:2

x1:3

x1:4

x5 x1:5

x5:6, A5:6 x1:6

x5:7, A5:7 x1:7

x5:8, A5:8 x1:8

x9 x1:9

x9:10, A9:10 x1:10

x9:11, A9:11 x1:11

x9:12, A9:12 x1:12

x13 x1:13

x13:14, A13:14 x1:14

x13:15, A13:15 x1:15

x13:16, A13:16 x1:16

Table 3.2: Algorithm # 3 example
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3.3 Some complicated equations

To this end, the Lagrangian is introduced (see Lanczos (1970) for the theoretical

foundations of minimizing functions subject to a constraint).

L(c, λ, µ, η) = J(c)

+
n∑
i=1

λi

[
θi − θi−1 −

τ

hi−1
CTV (1 +K) (Ti−1 − θi−1)

]
+

n∑
i=1

µi

[
hi − hi−1 − τKCTV

(Ti−1 − θi−1)
σi−1

− τW
]

+
n∑
i=1

ηi

[
σi − σi−1 +

τ

hi−1
CTV (1 +K) (Ti−1 − θi−1)

−τγKCTV
(Ti−1 − θi−1)

σi−1
− τγW

]
(3.1)

where λ = (λ1, . . . , λn)t, µ = (µ1, . . . , µn)t, η = (η1, . . . , ηn)t are the undetermined

Lagrangian multipliers in (3.1).

E =



−I3 0 0 0 . . . 0 0 0

D1 −I3 0 0 . . . 0 0 0

0 D2 −I3 0 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . . . . . Dn−1 −I3


, (3.2)

By definition,

εθi = θi − θi, (3.3)

εhi = hi − hi, (3.4)

εσi = σi − σi. (3.5)

Now we can still refer to (3.2) or (3.3)-(3.5).
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Appendix A

A Long Proof

The buoyancy production term requires a closure for w′θ′v. In saturated conditions

ql = qs and we have 3 linear relations between 5 flux densities:

w′θ′ = w′θ′l +Bw′q′t −Bw′q′s (A.1)

w′θ′v = Cw′θ′ +Dw′q′s − Ew′q′t (A.2)

w′q′s = Fw′θ′ (A.3)

where

B ≡ χ
L

cp
(A.4)

C ≡ 1 + 1.61qs − qt (A.5)

D ≡ 1.61θ (A.6)

E ≡ −θ (A.7)

F ≡ 0.622
Lqs

RdTθ
(A.8)

We will eliminate w′q′s and w′θ′ from (A.1)-(A.3) and thus derive a linear relation

between w′θ′v and w′θ′l and w′q′t:

w′θ′v =
C +DF

1 +BF
w′θ′ +

(
C +DF

1 +BF
B − E

)
w′q′t (A.9)

Eq. (A.3) has been derived from the Clausius-Clapyron equation

des
dT

= es
L

RdT 2
(A.10)

and

qs ≡ 0.622
es
p

(A.11)
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followed by assumptions that p′

p
is small compared with both 1

es
des
dT
T ′ and T ′

T
. Here is

how we calculate λ:

e(z) =

∫ z+λup(z)

z

g

θv(z′)

[
θv(z)− θ∗v(z′)

]
dz′ (A.12)

e(z) =

∫ z−λdown(z)

z

g

θv(z′)

[
θv(z)− θ∗v(z′)

]
dz′ (A.13)

λ(z) = [λdown(z)λup(z)]1/2 (A.14)
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