Back propagation algorithm

Brian Fiedler
November 18, 2001

Abstract

The backpropagation algorithm coded in nn.f is briefly summarized. The notation
follows that of Chapter 11 in Neural Network Design by Hagan, Demuth and Beale.

1 The neural network (the forward model)

A vector of predictors p serves as the input vector to the forward model. The forward
model progresses through M layers, from layer m = 1 to m = M. The output from
layer m will be a vector a”. This output vector either serves as either the input vector
to a subsequent layer, or, if it is a, it is the predictand of the model. The length of
a™ is denoted as N™.

To aid with the notation of the algorithm, the input vector is also denoted as a’. The
action of layer m can be described in two steps. First, there is a linear transformation of
the input vector a™~! with the multiplication by a weight matrix W™ and the addition
of a bias vector b™. Second, each element of the resultant vector n” is operated on by a
transfer function f”*, which produces the elements of the output vector a™. Therefore,

fori=1to N™,
Nm—l
n = wital ! 4 b} (1)
=1

a' = " (") 2)

7

A neural network will usually have at least one nonlinear transfer function, with the
logsig function being a common choice:

1

f(x):m7

(3)
where c is a value to be chosen. Common advice in the use of neural networks is to
scale the predictors to have zero mean and a variance near unity. With such scaling,
¢ =1 is a workable choice in (3).

One of the most popular neural networks is a two-layer model, with a nonlinear transfer
function in only the first layer. For the second layer, f2(z) = .

Optimal values for the weight matrices and bias vectors are achieved with the use of
the use of training data, which consists of many pairs of input vectors p and target
vectors t. For each of the pairs, the error in the prediction is calculated as

F=(a"—t). (4)

The sensitivity of this error to changes in each element of every W™ and b™ is then
calculated using the chain rule of differential calculus. Based on the sensitivity anal-
ysis, small adjustments are then made to the weight matrices and bias vectors. The
most error reduction with the least “disruption” of the existing element occurs if the
adjustments are proportional to the sensitivity.

The goal of training is to reduce the average error over all the pairs of input and target
vectors. There is little purpose in dwelling on the optimal adjustment of the weight
matrices and bias vectors for a given pair of input vector and target vector; the same
weight matrices and bias vectors will eventually have to be used for all input vectors.
The adjustment process is kept simple: a small nudge is given with the use of each
data pair. With many passes through the training data set, which consists of many
pairs of input and target vectors, the accumulation of nudges to the weight matrices
and bias vectors will also tend to reduce the average error. This iterative procedure
is the essence of training a neural network. The craft of training usually consists of
calculating an average error for the entire training data set each after epoch of training
(an epoch is a pass through the entire data set). A portion of data pairs is often set
aside as a verification data set, with which no training is done, but for which an average
error is also calculated. Monitoring the average error of both the training data set and
the verification data set will may provide a stopping critereon for the training, which is
often when the error with verification data set either begins to rise, or rise substantially
relative to the training data. Such a rise is often indicative of “overfitting” or “fitting
to noise”, meaning fitting to relations that are not universal, but exist only in the
training data set.

2 Reducing the error

Here is shown the method to adjust w;; and b7 in the effort to reduce F. “Minimiza-
tion” is attempted with a simple method of steepest descent. For each set of (p,t),
adjustment is done with:

w om OF
Wiy = W5 — 04672? (5)
F

« is sometimes referred to as the learning rate. Small values of « cause slow conver-
gence and increase the computational expense. Large values of @ may overemphasize
adjustment with the current data pair, and global minimization may suffer. Large
values of @ may also cause instability and lack of convergence. An acceptable value of

« may be determined experimentally. A common practice is to reduce « during the
training, which allows for initial speed of convergence, but ultimately a training of a

neural network that is optimized over all the training data.

Note that with the use of unscaled, dimensional data, the mthod of steepest descent is
not dimensionally homogeneous. Unscaled data, with very different numerical ranges,
is known to cause difficulty in the convergence of the minimization using the method
of steepest descent. However, the method of steepest descent will work satisfactorily

with scaled variables.

The gradient in the error F is found with

m
K3

In (5) and (6) we need

OF OF onm

ow™ on 8w§-§i

v

and

OF OF ony

b onl" b

But how do we find s}"?

3 Backpropagating the sensitivities

— aiﬁ
% = onl"

~

w

But,

So,

m
S

Back propagation is started with sZM

M _
s, =

N
m m
8f § 8 m+1 m+1

, obtained with:

3a
2(t —a;)ani
ofM (nM)
M i
2(tl a) ﬁnZM

(22)

(23)

