A Regular Perturbation Expansion
for
regulart_pert_1.gif

Solution of regulart_pert_2.gif with
y(0)=1.
We seek a solution of form
regulart_pert_3.gif
Logan 1.4 on page 50 (1st edition).

Here is the proposed series solution:

In[1]:=

regulart_pert_4.gif

Out[1]=

regulart_pert_5.gif

In[2]:=

regulart_pert_6.gif

Out[2]=

regulart_pert_7.gif

Here is the equation with the proposed perturbation solution:

In[3]:=

regulart_pert_8.gif

Out[3]=

regulart_pert_9.gif

With the O[ε] symbol, the LogicalExpand does a powerful step:

In[4]:=

regulart_pert_10.gif

Out[4]=

regulart_pert_11.gif

Here is another way to look at it:

In[5]:=

regulart_pert_12.gif

Out[5]//TableForm=

regulart_pert_13.gif
regulart_pert_14.gif
regulart_pert_15.gif

Here is the ODE for regulart_pert_16.gif:

In[6]:=

regulart_pert_17.gif

Out[6]=

regulart_pert_18.gif

...and it's solution:

In[7]:=

regulart_pert_19.gif

regulart_pert_20.gif

Out[7]=

regulart_pert_21.gif

Here is the ODE for regulart_pert_22.gif, making use of the known solution for regulart_pert_23.gif:

In[8]:=

regulart_pert_24.gif

Out[8]=

regulart_pert_25.gif

Here is the solution for regulart_pert_26.gif:

In[9]:=

regulart_pert_27.gif

Out[9]=

regulart_pert_28.gif

In[10]:=

regulart_pert_29.gif

Out[10]=

regulart_pert_30.gif

In[11]:=

regulart_pert_31.gif

Out[11]=

regulart_pert_32.gif

In[12]:=

regulart_pert_33.gif

Out[12]=

regulart_pert_34.gif

In[13]:=

regulart_pert_35.gif

Out[13]=

regulart_pert_36.gif

Now convert these replacement rules into approximate solutions, of increasing O[ε],
that we can plot:

In[14]:=

regulart_pert_37.gif

Out[14]=

regulart_pert_38.gif

In[15]:=

regulart_pert_39.gif

Out[15]=

regulart_pert_40.gif

In[16]:=

regulart_pert_41.gif

Out[16]=

regulart_pert_42.gif

In[17]:=

regulart_pert_43.gif

Out[17]=

regulart_pert_44.gif

In[18]:=

regulart_pert_45.gif

Out[18]=

regulart_pert_46.gif

In[19]:=

regulart_pert_47.gif

Out[19]=

regulart_pert_48.gif

Test these functions:

In[20]:=

regulart_pert_49.gif

Out[20]=

regulart_pert_50.gif

Lucky for us, we can find the exact solution:

In[21]:=

regulart_pert_51.gif

regulart_pert_52.gif

Out[21]=

regulart_pert_53.gif

and here it is as a convenient function:

In[22]:=

regulart_pert_54.gif

Out[22]=

regulart_pert_55.gif

Let's test it:

In[23]:=

regulart_pert_56.gif

Out[23]=

regulart_pert_57.gif

In[24]:=

regulart_pert_58.gif

Here we plot the exact solution (green), the regulart_pert_59.gif(red), regulart_pert_60.gifregulart_pert_61.gif(blue),  and regulart_pert_62.gif (black).

In[25]:=

regulart_pert_63.gif

Out[25]=

regulart_pert_64.gif

Spikey Created with Wolfram Mathematica 8.0