Welcome to CRM online
Version crm-2.1.2-ccm-3.6

Using mls_clr.in for input,
and having added 0 to the tropospheric temperature
and 0 to the stratospheric temperature
while holding specific humidity invariant,
and having multiplied CO2 by 1,
the CRM gave this output file
(but scroll to the bottom of this page to see a filter
of just the important features from this output file)
:

Begin CCM3 Column Radiation Model
 CCM3 CRM Results:
 Conventions:
  Shortwave fluxes are positive downward
  Longwave fluxes are positive upward
  Net Radiative fluxes are positive downward (into the system)
  Fluxes defined to be zero are not reported (e.g., LW down flx TOA)
 Abbreviations, Acronyms and Definitions:
  LW   = Longwave
  LWCF = Longwave Cloud Forcing
  NCF  = Net Cloud Forcing = SWCF+LWCF
  NIR  = Near Infrared (0.7 < lambda < 5.0 microns)
  N7   = NOAA7 satellite NIR instrument weighted flux
  NRF  = Net Radiative Flux: sum of SW and LW fluxes
  SW   = Shortwave
  SWCF = Shortwave Cloud Forcing
  TOA  = Top of Atmosphere
  Vis  = Visible (0.2 < lambda < 0.7 microns)
  atm  = Atmosphere
  clr  = Clear sky (diagnostic computation with no clouds)
  ctr  = Center
  dff  = Diffuse flux
  drc  = Direct flux
  dwn  = Downwelling
  frc  = Fraction
  lqd  = Liquid
  mpc  = Mass path column
  net  = Net flux = downwelling minus upwelling flux
  spc  = Spectral
  sfc  = Surface level
  vmr  = Volume mixing ratio
  wvl  = Wavelength
  um   = Microns
  up   = Upwelling
  
 Sun-Earth Geometry:
  Year AD                        =         1950
  Day of year (Greenwich)        =    83.33334    
  Local solar hour               =    8.000061    
  Latitude                       =    0.000000E+00  degrees
  Longitude                      =    0.000000E+00  degrees
  Solar zenith angle             =    60.00455      degrees
  Cosine solar zenith angle      =   0.4999311    
  Earth-sun distance             =    1.005933      AU
  Solar constant                 =    1367.000      W m-2
  
 Shortwave (SW) results ( < 5.0 um):
  SW albedo               =   0.1627895    
  SW albedo (clr)         =   0.1577659    
  SW down flux TOA        =    687.4602      W m-2
  SW up flux TOA          =    111.9113      W m-2
  SW up flux TOA (clr)    =    108.4578      W m-2
  SW net flux TOA         =    575.5489      W m-2
  SW net flux TOA (clr)   =    579.0024      W m-2
  SW flux abs atm         =    144.1645      W m-2
  SW flux abs atm (clr)   =    147.1037      W m-2
  SW down flux sfc        =    479.3160      W m-2
  SW up flux sfc          =    47.93164      W m-2
  SW net flux sfc         =    431.3844      W m-2
  SW net flux sfc (clr)   =    431.8987      W m-2
  SW cloud forcing TOA    =   -3.453552      W m-2
  SW cloud forcing sfc    =  -0.5143433      W m-2
  SWCF(sfc)/SWCF(TOA)     =   0.1489317    
  
 Longwave (LW) results ( > 5.0 um):
  LW up flux TOA          =    286.3929      W m-2
  LW up flux TOA (clr)    =    287.5330      W m-2
  LW up flux sfc          =    423.6161      W m-2
  LW down flux sfc        =    347.4642      W m-2
  LW net flux sfc         =    76.15182      W m-2
  LW net flux sfc (clr)   =    76.15182      W m-2
  LW cloud forcing TOA    =    1.140106      W m-2
  LW cloud forcing sfc    =    0.000000E+00  W m-2
  
 Net Radiative Flux results (NRF=SW+LW):
  NRF up flux TOA         =    398.3042      W m-2
  NRF down flux TOA       =    687.4602      W m-2
  NRF net flux TOA        =    289.1560      W m-2
  NRF net flux TOA (clr)  =    291.4695      W m-2
  NRF up flux sfc         =    471.5477      W m-2
  NRF down flux sfc       =    826.7803      W m-2
  NRF net flux sfc        =    355.2326      W m-2
  NRF net flux sfc (clr)  =    355.7469      W m-2
  NRF cloud forcing TOA   =   -2.313446      W m-2
  NRF cloud forcing sfc   =  -0.5143433      W m-2
  
 Specified atmospheric constituents:
  Visible AOD =   0.1400000    
  H2O mpc     =    29.45421      kg m-2
  O3  mpc     =    6.946753E-03  kg m-2
  O3  mpc     =    324.4084      Dobson
  CO2 vmr     =    3.550000E-04
  N2O vmr     =    3.110000E-07
  CH4 vmr     =    1.714000E-06
  F11 vmr     =    2.800000E-10
  F12 vmr     =    5.030000E-10
  
 Column extinction optical depths:
  Visible band = 0.3500--0.6400 um
  Tau total    =   0.4605472    
  Tau Ray      =   0.1551697    
  Tau aer      =   0.2884786    
  Tau lqd      =    0.000000E+00
  Tau ice      =    0.000000E+00
  Tau O3       =    1.689891E-02
  Tau H2O      =    0.000000E+00
  Tau O2       =    0.000000E+00
  Tau CO2      =    0.000000E+00
  
 Visible spectral fluxes:
  Visible band          = 0.3500--0.6400 um
  Down spc flux TOA     =    855.1507      W m-2 um-1
  Up spc flux TOA       =    216.5280      W m-2 um-1
  Down spc flux sfc     =    671.0306      W m-2 um-1
  Down spc flux dff sfc =    330.6527      W m-2 um-1
  Down spc flux drc sfc =    340.3779      W m-2 um-1
  Up spc flux sfc       =    67.10307      W m-2 um-1
  
 Solar TOA radiation budget components:
  SW alb TOA              =   0.1627896    
  Vis alb TOA             =   0.2495040    
  NIR alb TOA             =    8.740096E-02
  alb(NIR)/alb(SW) TOA    =   0.5368953    
  alb(NIR)/alb(Vis) TOA   =   0.3502989    
  SW down flux TOA        =    687.4602      W m-2
  SW up flux TOA          =    111.9113      W m-2
  SW net flux TOA         =    575.5488      W m-2
  Vis down flux TOA       =    319.7144      W m-2
  Vis up flux TOA         =    79.77000      W m-2
  Vis net flux TOA        =    239.9444      W m-2
  NIR down flux TOA       =    367.7459      W m-2
  NIR up flux TOA         =    32.14134      W m-2
  NIR net flux TOA        =    335.6046      W m-2
  NIR net flux TOA N7     =    347.5893      W m-2
  NIR net flux TOA N7 (clr) =    347.2879      W m-2
  
 Solar surface radiation budget components:
  SW alb sfc              =   0.1000000    
  Vis alb sfc             =   0.1000000    
  NIR alb sfc             =   0.1000000    
  SW down flux sfc        =    479.3160      W m-2
  SW down flux drc sfc    =    335.8216      W m-2
  SW down flux dff sfc    =    143.4945      W m-2
  SW down flux dff/drc    =   0.4272937    
  Vis down flux sfc       =    241.7702      W m-2
  Vis down flux drc sfc   =    127.5841      W m-2
  Vis down flux dff sfc   =    114.1862      W m-2
  Vis down flux dff/drc   =   0.8949880    
  NIR down flux sfc       =    237.5458      W m-2
  NIR down flux drc sfc   =    208.2376      W m-2
  NIR down flux dff sfc   =    29.30823      W m-2
  NIR down flux dff/drc   =   0.1407442    
  
  
 Cloud microphysics:
  Level  Pressure      r_e lqd      r_e ice      Ice frc
      #        mb           um           um          frc
    1       2.026    5.0000000   30.0000000    0.0000000
    2       5.470    8.7350006   30.0000000    0.7470002
    3      15.296   10.0000000   30.0000000    1.0000000
    4      33.936   10.0000000   30.0000000    1.0000000
    5      60.780   10.0000000   30.0000000    1.0000000
    6     103.225   10.0000000   30.0000000    1.0000000
    7     161.270   10.0000000   30.0000000    1.0000000
    8     234.510   10.0000000   30.0000000    1.0000000
    9     323.046   10.0000000   30.0000000    1.0000000
   10     420.091    7.2924995   29.2650051    0.4584999
   11     516.833    5.0000000   24.4899807    0.0000000
   12     613.473    5.0000000   19.7199898    0.0000000
   13     709.910    5.0000000   14.9600201    0.0000000
   14     799.156    5.0000000   10.5549850    0.0000000
   15     873.003    5.0000000   10.0000000    0.0000000
   16     931.555    5.0000000   10.0000000    0.0000000
   17     974.810    5.0000000   10.0000000    0.0000000
   18    1002.769    5.0000000   10.0000000    0.0000000
  
 SW Spectral Fluxes:
  Band Wvl Min  Wvl Max  Wvl Ctr      TOA Dwn       TOA Up      Srf Dwn       Srf
   Up
     #      um       um       um   W m-2 um-1   W m-2 um-1   W m-2 um-1   W m-2 u
  m-1
    1   0.2000   0.2450   0.2225   22.7320194   12.9030123    0.0000000    0.0000000
    2   0.2450   0.2650   0.2550   47.7441559   41.4710312    0.0000000    0.0000000
    3   0.2650   0.2750   0.2700   88.6821900   67.7171173    0.0000000    0.0000000
    4   0.2750   0.2850   0.2800  115.9059143   58.6042137    0.0000000    0.0000000
    5   0.2850   0.2950   0.2900  197.7825013   44.3629913    0.0000000    0.0000000
    6   0.2950   0.3050   0.3000  265.9778137   19.6396198    0.0000000    0.0000000
    7   0.3050   0.3500   0.3275  402.3323975  130.8340912  174.0047303   17.4004746
    8   0.3500   0.6400   0.4950  855.1506958  216.5279541  671.0305786   67.1030655
    9   0.6400   0.7000   0.6700  749.2399292  129.6011963  655.6858521   65.5685959
   10   0.7000   5.0000   2.8500   42.5369682    6.0111108   38.9018440    3.8901844
   11   0.7010   5.0000   2.8505   17.6927567    1.4094516   14.7318392    1.4731839
   12   0.7010   5.0000   2.8505   10.1101456    0.0401879    1.5730014    0.1573001
   13   0.7010   5.0000   2.8505    5.8975854    0.0003648    0.0000000    0.0000000
   14   0.7010   5.0000   2.8505    4.0440588    0.0003432    0.0000000    0.0000000
   15   0.7020   5.0000   2.8510    2.4438536    0.0006096    0.0000000    0.0000000
   16   0.7020   5.0000   2.8510    1.5168747    0.0014612    0.0000000    0.0000000
   17   2.6300   2.8600   2.7450   18.6481209    0.0653994    0.7492699    0.0749270
   18   4.1600   4.5500   4.3550    2.0690067    0.0137221    0.0026180    0.0002618
   19   4.1600   4.5500   4.3550    1.1638163    0.0749435    0.0000000    0.0000000
  
 SW Scattering:
  Interface  Pressure      SW down    SW direct   SW diffuse   SW dff/drc
          #        mb        W m-2        W m-2        W m-2          frc
    1           1.013  683.8997803  683.8272095    0.0725730    0.0001061
    2           3.748  680.7832031  680.5321655    0.2510543    0.0003689
    3          10.383  677.0302124  676.3738403    0.6563793    0.0009704
    4          24.616  672.2927246  670.7885742    1.5041453    0.0022424
    5          47.358  667.4581299  664.5998535    2.8583031    0.0043008
    6          82.002  662.5642090  657.6411743    4.9230447    0.0074859
    7         132.247  657.8395996  649.9364624    7.9031315    0.0121599
    8         197.890  652.8136597  641.1394043   11.6742516    0.0182086
    9         278.778  643.9379883  627.8247681   16.1131992    0.0256651
   10         371.569  627.4974976  606.5817871   20.9156799    0.0344812
   11         468.462  610.0813599  584.4613037   25.6200371    0.0438353
   12         565.153  592.9201660  562.9000854   30.0200672    0.0533311
   13         661.691  574.6226807  540.4823608   34.1402931    0.0631663
   14         754.533  555.7424316  517.8819580   37.8604431    0.0731063
   15         836.080  539.4887695  498.5452576   40.9435196    0.0821260
   16         902.279  526.9763184  483.6519165   43.3244209    0.0895777
   17         953.182  504.3955994  407.1760559   97.2195282    0.2387653
   18         988.789  489.2639771  362.6019897  126.6620026    0.3493142
   19        1013.000  479.3160400  335.8215942  143.4944611    0.4272937
  
 SW Fluxes:
  Interface  Pressure      SW down        SW up       SW Net
          #        mb        W m-2        W m-2        W m-2
    1           1.013  683.8997803  108.3508072  575.5489502
    2           3.748  680.7832031  108.3239288  572.4592896
    3          10.383  677.0302124  108.3480759  568.6821289
    4          24.616  672.2927246  108.3703232  563.9224243
    5          47.358  667.4581299  108.1308289  559.3272705
    6          82.002  662.5642090  107.3470307  555.2171631
    7         132.247  657.8395996  105.7305832  552.1090088
    8         197.890  652.8136597  103.4167633  549.3969116
    9         278.778  643.9379883  100.4717178  543.4662476
   10         371.569  627.4974976   97.0918503  530.4056396
   11         468.462  610.0813599   93.5923309  516.4890137
   12         565.153  592.9201660   90.1462021  502.7739563
   13         661.691  574.6226807   86.7768021  487.8458862
   14         754.533  555.7424316   83.6491089  472.0933228
   15         836.080  539.4887695   81.0376358  458.4511414
   16         902.279  526.9763184   79.0547562  447.9215698
   17         953.182  504.3955994   64.3070374  440.0885620
   18         988.789  489.2639771   54.4383316  434.8256531
   19        1013.000  479.3160400   47.9316063  431.3844299
  
 LW Fluxes:
  Interface  Pressure      LW down        LW up       LW Net
          #        mb        W m-2        W m-2        W m-2
    1           1.013    1.1400793  287.5329895  286.3929138
    2           3.748    3.1372857  286.8310242  283.6937256
    3          10.383    5.5952296  285.8203125  280.2250977
    4          24.616    8.6439619  285.2369080  276.5929565
    5          47.358   11.6921558  285.6866150  273.9944458
    6          82.002   15.0054398  287.4395752  272.4341431
    7         132.247   18.8056030  290.0491943  271.2435913
    8         197.890   24.4675999  294.6146851  270.1470947
    9         278.778   45.4378319  303.3063354  257.8684998
   10         371.569   79.5549622  317.2322388  237.6772766
   11         468.462  115.3526306  333.4089966  218.0563660
   12         565.153  151.7930146  349.8869019  198.0938874
   13         661.691  191.7238312  367.1726379  175.4488068
   14         754.533  234.1117859  384.8811035  150.7693177
   15         836.080  272.3028564  399.9328003  127.6299439
   16         902.279  301.8014221  410.3822632  108.5808411
   17         953.182  323.1600342  417.2138062   94.0537720
   18         988.789  337.7299194  421.4178467   83.6879273
   19        1013.000  347.4642334  423.6160583   76.1518250
  
 Total SW+LW Fluxes:
  Interface  Pressure         Down           Up          Net
          #        mb        W m-2        W m-2        W m-2
    1           1.013  685.0398560  395.8837891  289.1560669
    2           3.748  683.9204712  395.1549683  288.7655334
    3          10.383  682.6254272  394.1683960  288.4570618
    4          24.616  680.9367065  393.6072388  287.3294678
    5          47.358  679.1502686  393.8174438  285.3328552
    6          82.002  677.5696411  394.7866211  282.7830505
    7         132.247  676.6452026  395.7797852  280.8654175
    8         197.890  677.2812500  398.0314331  279.2498169
    9         278.778  689.3757935  403.7780457  285.5977783
   10         371.569  707.0524902  414.3240967  292.7283630
   11         468.462  725.4339600  427.0013428  298.4326782
   12         565.153  744.7131958  440.0331116  304.6800842
   13         661.691  766.3464966  453.9494324  312.3970642
   14         754.533  789.8542480  468.5302124  321.3240051
   15         836.080  811.7916260  480.9704285  330.8211975
   16         902.279  828.7777100  489.4370117  339.3407288
   17         953.182  827.5556641  481.5208435  346.0347900
   18         988.789  826.9938965  475.8561707  351.1377258
   19        1013.000  826.7802734  471.5476685  355.2326050
  
 Heating rates:
  Level  Pressure           SW           LW          Net
      #        mb      K day-1      K day-1      K day-1
    1       2.026    9.5267220   -8.3229246    1.2037975
    2       5.470    4.8008847   -4.4087901    0.3920945
    3      15.296    2.8202660   -2.1521285    0.6681376
    4      33.936    1.7039667   -0.9636011    0.7403657
    5      60.780    1.0005264   -0.3798222    0.6207043
    6     103.225    0.5217029   -0.1998262    0.3218768
    7     161.270    0.3484374   -0.1408761    0.2075613
    8     234.510    0.6183283   -1.2801652   -0.6618368
    9     323.046    1.1870308   -1.8351072   -0.6480764
   10     420.091    1.2112707   -1.7077594   -0.4964888
   11     516.833    1.1962310   -1.7411274   -0.5448964
   12     613.473    1.3040839   -1.9782243   -0.6741403
   13     709.910    1.4309096   -2.2417965   -0.8108867
   14     799.156    1.4108471   -2.3930321   -0.9821851
   15     873.003    1.3413934   -2.4267321   -1.0853388
   16     931.555    1.2977316   -2.4067631   -1.1090313
   17     974.810    1.2465074   -2.4551132   -1.2086058
   18    1002.769    1.1986870   -2.6250935   -1.4264065
 End CCM3 CRM

...that was the end of the output file


The CRM model that was used for the computations was: standard CRM

Here is the input file that produced the above output file:

Using mls_clr.in for input,
and having added 0 to the tropospheric temperature
and 0 to the stratospheric temperature
while holding specific humidity invariant,
and having multiplied CO2 by 1,
with the above input file, the standard CRM calculated these important values (as found in the above output file):

 LW up flux TOA          =    286.3929      W m-2
 SW net flux TOA         =    575.5489      W m-2
 
      #        mb      K day-1      K day-1      K day-1
    1       2.026    9.5267220   -8.3229246    1.2037975
    6     103.225    0.5217029   -0.1998262    0.3218768

If you need them, here are your easy-to-grab input and output files.


You may now run the CRM again.

Using for input:

but adding C to tropospheric temperatures and C to stratospheric temperatures
while holding humidity invariant and multiplying CO2 by ,

Run .

(Or optionally run a that does not have the peculiar numerics
of skin temperature affecting the downwards IR calculation.
See radtpl.F.revised and radtpl.F.orig. )


Experiments for you to try:
Experiment 1:
  1. Using for input mls_clr.in and holding temperatures constant, run the CRM. Write down the LW up flux TOA and the LW heating rate at 33.9 mb. (286.39, -0.96)
  2. Using for input mls_clr.in, multiply CO2 by 2, and holding temperatures constant, run the CRM. Note the change in LW up flux TOA. (283.50)
  3. Using for input mls_clr.in multiply CO2 by 2, hold specific humidity constant, and find a temperature increment that can be added uniformly to both the tropospheric and stratospheric temperatures that restores the LW up flux TOA to the one you wrote down. (0.69)
You have solved the global warming problem! Note: you should not expect LW up flux TOA to be in balance with the instantaneous, strong daytime value of SW net flux TOA.
Experiment 2:
A more complete model would show that the stratosphere would cool in response to an increase of CO2. We can include that effect here in the prediction of tropospheric warming.
  1. Using for input mls_clr.in multiply CO2 by 2, hold specific humidity constant, find a tropospheric temperature increase and stratospheric temperature decrease that restores both the outward LW flux and the stratospheric LW heating rate to the values with the original CO2 concentration. (0.924, -1.935).
Experiment 3:
Repeat Experiment 2, but allow for water vapor feedback in global warming by holding relative humidity invariant when multiplying CO2 by 2, and applying the temperature changes. (1.4,-1.25)
Experiment 4:
  1. Using for input mls_clr.in and holding temperatures constant, run CRM. Write down the LW up flux TOA (286.39) .
  2. Using for input mls_clr.in and adding 1 C to both tropospheric and stratospheric temperatures, keeping specific humidity invariant, run CRM. Write down the LW up flux TOA (290.61). Also using the Edit Copy feature of your browser, carefully copy the input file lines from Level 01 to 14.
  3. Using for input mls_clr.in and adding 1 C to both tropospheric and stratospheric temperatures, keeping relative humidity invariant, run CRM. Write down the LW up flux TOA (289.11) .
  4. Using for input the above form and adding 0 C to both tropospheric and stratospheric temperatures, keeping specific humidity invariant, and also using the Edit Paste feature of your browser to replace the input file lines from Level 01 to 14 with what you have stored, Run CRM. Write down the LW up flux TOA (290.45). In this run, temperatures have been increased by 1 C from mls_clr_in, and relative humidity has been held invariant in levels 15-18 and specific humidity has been held invariant in levels 01-14.
  5. Calculate three climate sensitivities for the three different hypotheses (or scenarios) for water vapor feedback. What do you conclude? What contributes more to water vapor feedback, upper or lower tropospheric increase in water vapor? See vapor rub. (You should find that if water vapor feedback is confined to the boundary layer, then it is not a significant feedback).
Experiment 5:
Demonstrate that low clouds cool and high clouds warm. In all of these model runs, the temperatures and CO2 concentration will not be modified.
  1. Using for input mls_cld.in run CRM. Notice the cloud fraction of 1.0 and cloud LWP of 100 at level 14. Write down the LW up flux TOA and SW net flux TOA.
  2. Then repeatedly using for input the above form, run the CRM after carefully editting the cloud LWP to 010.0, 001.0, 000.1, and 000.0. Write down the LW up flux TOA and SW net flux TOA.
  3. Calculate the difference in the fluxes from that for the model run with LWP=000.0.
  4. The SW net flux is for daytime conditions, at night it would be zero. An average over 24 hours might be 1/2 of the SW values calculated. So now calculate 0.5*(SW net flux TOA difference)- (LW up flux TOA difference) to find the net inward flux (heating) caused by the presence of the cloud.
  5. Repeat the above calculations, but with level 14 cloud frac set to 0.0 and cloud LWP set to 000.0, and at level 8 cloud frac set to 1.0 and using the various LWP at level 8.
  6. What principle do you deduce from the results?
Experiment 6:
Here we investigate how clouds affect the radiative heat budget of the surface, as in a nocturnal boundary layer. The solar radiation is ignored in this experiment, as if it is a night time calculation.
  1. Using for input mls_cld.in run CRM. Notice the cloud fraction of 1.0 and cloud LWP of 100 at level 14. Write down the LW down flux sfc.
  2. Using for input the above form, edit the form to have cloud fraction of 0.0 and cloud LWP of 000.0 at level 14. Run CRM. Write down the LW down flux sfc.
  3. Repeat the above two steps, but starting with cool_cld.in, which is an atmosphere 20 C cooler than mls_cld.in.
  4. What principles do you deduce from the results?
Experiment 7:New in 2011!
We save the best for last. Here we experiment with radconeq.in, the significance of which is explained in radiative convective equilibrium. Note: for most accurate results in Experiment 7 you should click the revised CRM button, because that is what was used in the radiative convective equilibrium experiments. First, note the change in LW up flux TOA for a uniform temperature increase of 1 K everywhere. This provides a simple estimate of climate sensitivity, for the case of no feedbacks: the climate sensitivity λo would be 1 K divided by the change in LW up flux TOA. Next reset the temperature change back to zero, and calculate the radiative forcing at the top of the atmosphere for double CO2 ΔF. How well do these two numbers combine to predict the ΔT occuring in the radiative convective model here, in a double CO2 experiment? You will find your sensitivity analysis prediction ΔT=λoΔF comes up a bit short in the prediction of what happens in the radiative convective model, even when applied to a case with no feedback (stn2xw). Finally, investigate how well the TOA sensitivity analysis predicts what happens in the simulation with solar radiative forcing stnsolw (it should work much better in that case).
Experiment 8:New in 2011!
The no feedback case stn2xw is misnamed, because stratospheric cooling provides a positive feedback. But we do not need to run the radiative convective model to anticipate the result in the model. Again select radconeq.in. Then with double CO2, find the tropospheric temperature change and stratospheric temperature change that together are able to both restore flux balance at the top of the atmosphere and restore 0 net heating at Level 4. (Hint: add approximately -4 to stratospheric temperature).