Using mls_clr.in
for input,
and having added
0
to the tropospheric temperature
and 0
to the stratospheric temperature
while holding
specific humidity invariant,
and having multiplied CO2 by
1,
the CRM gave this output file
(but scroll to the bottom of this page to see a filter
of just the important features from this output file):
Begin CCM3 Column Radiation Model CCM3 CRM Results: Conventions: Shortwave fluxes are positive downward Longwave fluxes are positive upward Net Radiative fluxes are positive downward (into the system) Fluxes defined to be zero are not reported (e.g., LW down flx TOA) Abbreviations, Acronyms and Definitions: LW = Longwave LWCF = Longwave Cloud Forcing NCF = Net Cloud Forcing = SWCF+LWCF NIR = Near Infrared (0.7 < lambda < 5.0 microns) N7 = NOAA7 satellite NIR instrument weighted flux NRF = Net Radiative Flux: sum of SW and LW fluxes SW = Shortwave SWCF = Shortwave Cloud Forcing TOA = Top of Atmosphere Vis = Visible (0.2 < lambda < 0.7 microns) atm = Atmosphere clr = Clear sky (diagnostic computation with no clouds) ctr = Center dff = Diffuse flux drc = Direct flux dwn = Downwelling frc = Fraction lqd = Liquid mpc = Mass path column net = Net flux = downwelling minus upwelling flux spc = Spectral sfc = Surface level vmr = Volume mixing ratio wvl = Wavelength um = Microns up = Upwelling Sun-Earth Geometry: Year AD = 1950 Day of year (Greenwich) = 83.33334 Local solar hour = 8.000061 Latitude = 0.000000E+00 degrees Longitude = 0.000000E+00 degrees Solar zenith angle = 60.00455 degrees Cosine solar zenith angle = 0.4999311 Earth-sun distance = 1.005933 AU Solar constant = 1367.000 W m-2 Shortwave (SW) results ( < 5.0 um): SW albedo = 0.1627895 SW albedo (clr) = 0.1577659 SW down flux TOA = 687.4602 W m-2 SW up flux TOA = 111.9113 W m-2 SW up flux TOA (clr) = 108.4578 W m-2 SW net flux TOA = 575.5489 W m-2 SW net flux TOA (clr) = 579.0024 W m-2 SW flux abs atm = 144.1645 W m-2 SW flux abs atm (clr) = 147.1037 W m-2 SW down flux sfc = 479.3160 W m-2 SW up flux sfc = 47.93164 W m-2 SW net flux sfc = 431.3844 W m-2 SW net flux sfc (clr) = 431.8987 W m-2 SW cloud forcing TOA = -3.453552 W m-2 SW cloud forcing sfc = -0.5143433 W m-2 SWCF(sfc)/SWCF(TOA) = 0.1489317 Longwave (LW) results ( > 5.0 um): LW up flux TOA = 286.3929 W m-2 LW up flux TOA (clr) = 287.5330 W m-2 LW up flux sfc = 423.6161 W m-2 LW down flux sfc = 347.4642 W m-2 LW net flux sfc = 76.15182 W m-2 LW net flux sfc (clr) = 76.15182 W m-2 LW cloud forcing TOA = 1.140106 W m-2 LW cloud forcing sfc = 0.000000E+00 W m-2 Net Radiative Flux results (NRF=SW+LW): NRF up flux TOA = 398.3042 W m-2 NRF down flux TOA = 687.4602 W m-2 NRF net flux TOA = 289.1560 W m-2 NRF net flux TOA (clr) = 291.4695 W m-2 NRF up flux sfc = 471.5477 W m-2 NRF down flux sfc = 826.7803 W m-2 NRF net flux sfc = 355.2326 W m-2 NRF net flux sfc (clr) = 355.7469 W m-2 NRF cloud forcing TOA = -2.313446 W m-2 NRF cloud forcing sfc = -0.5143433 W m-2 Specified atmospheric constituents: Visible AOD = 0.1400000 H2O mpc = 29.45421 kg m-2 O3 mpc = 6.946753E-03 kg m-2 O3 mpc = 324.4084 Dobson CO2 vmr = 3.550000E-04 N2O vmr = 3.110000E-07 CH4 vmr = 1.714000E-06 F11 vmr = 2.800000E-10 F12 vmr = 5.030000E-10 Column extinction optical depths: Visible band = 0.3500--0.6400 um Tau total = 0.4605472 Tau Ray = 0.1551697 Tau aer = 0.2884786 Tau lqd = 0.000000E+00 Tau ice = 0.000000E+00 Tau O3 = 1.689891E-02 Tau H2O = 0.000000E+00 Tau O2 = 0.000000E+00 Tau CO2 = 0.000000E+00 Visible spectral fluxes: Visible band = 0.3500--0.6400 um Down spc flux TOA = 855.1507 W m-2 um-1 Up spc flux TOA = 216.5280 W m-2 um-1 Down spc flux sfc = 671.0306 W m-2 um-1 Down spc flux dff sfc = 330.6527 W m-2 um-1 Down spc flux drc sfc = 340.3779 W m-2 um-1 Up spc flux sfc = 67.10307 W m-2 um-1 Solar TOA radiation budget components: SW alb TOA = 0.1627896 Vis alb TOA = 0.2495040 NIR alb TOA = 8.740096E-02 alb(NIR)/alb(SW) TOA = 0.5368953 alb(NIR)/alb(Vis) TOA = 0.3502989 SW down flux TOA = 687.4602 W m-2 SW up flux TOA = 111.9113 W m-2 SW net flux TOA = 575.5488 W m-2 Vis down flux TOA = 319.7144 W m-2 Vis up flux TOA = 79.77000 W m-2 Vis net flux TOA = 239.9444 W m-2 NIR down flux TOA = 367.7459 W m-2 NIR up flux TOA = 32.14134 W m-2 NIR net flux TOA = 335.6046 W m-2 NIR net flux TOA N7 = 347.5893 W m-2 NIR net flux TOA N7 (clr) = 347.2879 W m-2 Solar surface radiation budget components: SW alb sfc = 0.1000000 Vis alb sfc = 0.1000000 NIR alb sfc = 0.1000000 SW down flux sfc = 479.3160 W m-2 SW down flux drc sfc = 335.8216 W m-2 SW down flux dff sfc = 143.4945 W m-2 SW down flux dff/drc = 0.4272937 Vis down flux sfc = 241.7702 W m-2 Vis down flux drc sfc = 127.5841 W m-2 Vis down flux dff sfc = 114.1862 W m-2 Vis down flux dff/drc = 0.8949880 NIR down flux sfc = 237.5458 W m-2 NIR down flux drc sfc = 208.2376 W m-2 NIR down flux dff sfc = 29.30823 W m-2 NIR down flux dff/drc = 0.1407442 Cloud microphysics: Level Pressure r_e lqd r_e ice Ice frc # mb um um frc 1 2.026 5.0000000 30.0000000 0.0000000 2 5.470 8.7350006 30.0000000 0.7470002 3 15.296 10.0000000 30.0000000 1.0000000 4 33.936 10.0000000 30.0000000 1.0000000 5 60.780 10.0000000 30.0000000 1.0000000 6 103.225 10.0000000 30.0000000 1.0000000 7 161.270 10.0000000 30.0000000 1.0000000 8 234.510 10.0000000 30.0000000 1.0000000 9 323.046 10.0000000 30.0000000 1.0000000 10 420.091 7.2924995 29.2650051 0.4584999 11 516.833 5.0000000 24.4899807 0.0000000 12 613.473 5.0000000 19.7199898 0.0000000 13 709.910 5.0000000 14.9600201 0.0000000 14 799.156 5.0000000 10.5549850 0.0000000 15 873.003 5.0000000 10.0000000 0.0000000 16 931.555 5.0000000 10.0000000 0.0000000 17 974.810 5.0000000 10.0000000 0.0000000 18 1002.769 5.0000000 10.0000000 0.0000000 SW Spectral Fluxes: Band Wvl Min Wvl Max Wvl Ctr TOA Dwn TOA Up Srf Dwn Srf Up # um um um W m-2 um-1 W m-2 um-1 W m-2 um-1 W m-2 u m-1 1 0.2000 0.2450 0.2225 22.7320194 12.9030123 0.0000000 0.0000000 2 0.2450 0.2650 0.2550 47.7441559 41.4710312 0.0000000 0.0000000 3 0.2650 0.2750 0.2700 88.6821900 67.7171173 0.0000000 0.0000000 4 0.2750 0.2850 0.2800 115.9059143 58.6042137 0.0000000 0.0000000 5 0.2850 0.2950 0.2900 197.7825013 44.3629913 0.0000000 0.0000000 6 0.2950 0.3050 0.3000 265.9778137 19.6396198 0.0000000 0.0000000 7 0.3050 0.3500 0.3275 402.3323975 130.8340912 174.0047303 17.4004746 8 0.3500 0.6400 0.4950 855.1506958 216.5279541 671.0305786 67.1030655 9 0.6400 0.7000 0.6700 749.2399292 129.6011963 655.6858521 65.5685959 10 0.7000 5.0000 2.8500 42.5369682 6.0111108 38.9018440 3.8901844 11 0.7010 5.0000 2.8505 17.6927567 1.4094516 14.7318392 1.4731839 12 0.7010 5.0000 2.8505 10.1101456 0.0401879 1.5730014 0.1573001 13 0.7010 5.0000 2.8505 5.8975854 0.0003648 0.0000000 0.0000000 14 0.7010 5.0000 2.8505 4.0440588 0.0003432 0.0000000 0.0000000 15 0.7020 5.0000 2.8510 2.4438536 0.0006096 0.0000000 0.0000000 16 0.7020 5.0000 2.8510 1.5168747 0.0014612 0.0000000 0.0000000 17 2.6300 2.8600 2.7450 18.6481209 0.0653994 0.7492699 0.0749270 18 4.1600 4.5500 4.3550 2.0690067 0.0137221 0.0026180 0.0002618 19 4.1600 4.5500 4.3550 1.1638163 0.0749435 0.0000000 0.0000000 SW Scattering: Interface Pressure SW down SW direct SW diffuse SW dff/drc # mb W m-2 W m-2 W m-2 frc 1 1.013 683.8997803 683.8272095 0.0725730 0.0001061 2 3.748 680.7832031 680.5321655 0.2510543 0.0003689 3 10.383 677.0302124 676.3738403 0.6563793 0.0009704 4 24.616 672.2927246 670.7885742 1.5041453 0.0022424 5 47.358 667.4581299 664.5998535 2.8583031 0.0043008 6 82.002 662.5642090 657.6411743 4.9230447 0.0074859 7 132.247 657.8395996 649.9364624 7.9031315 0.0121599 8 197.890 652.8136597 641.1394043 11.6742516 0.0182086 9 278.778 643.9379883 627.8247681 16.1131992 0.0256651 10 371.569 627.4974976 606.5817871 20.9156799 0.0344812 11 468.462 610.0813599 584.4613037 25.6200371 0.0438353 12 565.153 592.9201660 562.9000854 30.0200672 0.0533311 13 661.691 574.6226807 540.4823608 34.1402931 0.0631663 14 754.533 555.7424316 517.8819580 37.8604431 0.0731063 15 836.080 539.4887695 498.5452576 40.9435196 0.0821260 16 902.279 526.9763184 483.6519165 43.3244209 0.0895777 17 953.182 504.3955994 407.1760559 97.2195282 0.2387653 18 988.789 489.2639771 362.6019897 126.6620026 0.3493142 19 1013.000 479.3160400 335.8215942 143.4944611 0.4272937 SW Fluxes: Interface Pressure SW down SW up SW Net # mb W m-2 W m-2 W m-2 1 1.013 683.8997803 108.3508072 575.5489502 2 3.748 680.7832031 108.3239288 572.4592896 3 10.383 677.0302124 108.3480759 568.6821289 4 24.616 672.2927246 108.3703232 563.9224243 5 47.358 667.4581299 108.1308289 559.3272705 6 82.002 662.5642090 107.3470307 555.2171631 7 132.247 657.8395996 105.7305832 552.1090088 8 197.890 652.8136597 103.4167633 549.3969116 9 278.778 643.9379883 100.4717178 543.4662476 10 371.569 627.4974976 97.0918503 530.4056396 11 468.462 610.0813599 93.5923309 516.4890137 12 565.153 592.9201660 90.1462021 502.7739563 13 661.691 574.6226807 86.7768021 487.8458862 14 754.533 555.7424316 83.6491089 472.0933228 15 836.080 539.4887695 81.0376358 458.4511414 16 902.279 526.9763184 79.0547562 447.9215698 17 953.182 504.3955994 64.3070374 440.0885620 18 988.789 489.2639771 54.4383316 434.8256531 19 1013.000 479.3160400 47.9316063 431.3844299 LW Fluxes: Interface Pressure LW down LW up LW Net # mb W m-2 W m-2 W m-2 1 1.013 1.1400793 287.5329895 286.3929138 2 3.748 3.1372857 286.8310242 283.6937256 3 10.383 5.5952296 285.8203125 280.2250977 4 24.616 8.6439619 285.2369080 276.5929565 5 47.358 11.6921558 285.6866150 273.9944458 6 82.002 15.0054398 287.4395752 272.4341431 7 132.247 18.8056030 290.0491943 271.2435913 8 197.890 24.4675999 294.6146851 270.1470947 9 278.778 45.4378319 303.3063354 257.8684998 10 371.569 79.5549622 317.2322388 237.6772766 11 468.462 115.3526306 333.4089966 218.0563660 12 565.153 151.7930146 349.8869019 198.0938874 13 661.691 191.7238312 367.1726379 175.4488068 14 754.533 234.1117859 384.8811035 150.7693177 15 836.080 272.3028564 399.9328003 127.6299439 16 902.279 301.8014221 410.3822632 108.5808411 17 953.182 323.1600342 417.2138062 94.0537720 18 988.789 337.7299194 421.4178467 83.6879273 19 1013.000 347.4642334 423.6160583 76.1518250 Total SW+LW Fluxes: Interface Pressure Down Up Net # mb W m-2 W m-2 W m-2 1 1.013 685.0398560 395.8837891 289.1560669 2 3.748 683.9204712 395.1549683 288.7655334 3 10.383 682.6254272 394.1683960 288.4570618 4 24.616 680.9367065 393.6072388 287.3294678 5 47.358 679.1502686 393.8174438 285.3328552 6 82.002 677.5696411 394.7866211 282.7830505 7 132.247 676.6452026 395.7797852 280.8654175 8 197.890 677.2812500 398.0314331 279.2498169 9 278.778 689.3757935 403.7780457 285.5977783 10 371.569 707.0524902 414.3240967 292.7283630 11 468.462 725.4339600 427.0013428 298.4326782 12 565.153 744.7131958 440.0331116 304.6800842 13 661.691 766.3464966 453.9494324 312.3970642 14 754.533 789.8542480 468.5302124 321.3240051 15 836.080 811.7916260 480.9704285 330.8211975 16 902.279 828.7777100 489.4370117 339.3407288 17 953.182 827.5556641 481.5208435 346.0347900 18 988.789 826.9938965 475.8561707 351.1377258 19 1013.000 826.7802734 471.5476685 355.2326050 Heating rates: Level Pressure SW LW Net # mb K day-1 K day-1 K day-1 1 2.026 9.5267220 -8.3229246 1.2037975 2 5.470 4.8008847 -4.4087901 0.3920945 3 15.296 2.8202660 -2.1521285 0.6681376 4 33.936 1.7039667 -0.9636011 0.7403657 5 60.780 1.0005264 -0.3798222 0.6207043 6 103.225 0.5217029 -0.1998262 0.3218768 7 161.270 0.3484374 -0.1408761 0.2075613 8 234.510 0.6183283 -1.2801652 -0.6618368 9 323.046 1.1870308 -1.8351072 -0.6480764 10 420.091 1.2112707 -1.7077594 -0.4964888 11 516.833 1.1962310 -1.7411274 -0.5448964 12 613.473 1.3040839 -1.9782243 -0.6741403 13 709.910 1.4309096 -2.2417965 -0.8108867 14 799.156 1.4108471 -2.3930321 -0.9821851 15 873.003 1.3413934 -2.4267321 -1.0853388 16 931.555 1.2977316 -2.4067631 -1.1090313 17 974.810 1.2465074 -2.4551132 -1.2086058 18 1002.769 1.1986870 -2.6250935 -1.4264065 End CCM3 CRM |
...that was the end of the output file
The CRM model that was used for the computations was: standard CRM
Here is the input file that produced the above output file:
Experiment 1:
|
Experiment 2: A more complete model would show that the stratosphere would cool in response to an increase of CO2. We can include that effect here in the prediction of tropospheric warming.
|
Experiment 3: Repeat Experiment 2, but allow for water vapor feedback in global warming by holding relative humidity invariant when multiplying CO2 by 2, and applying the temperature changes. (1.4,-1.25) |
Experiment 4:
|
Experiment 5: Demonstrate that low clouds cool and high clouds warm. In all of these model runs, the temperatures and CO2 concentration will not be modified.
|
Experiment 6: Here we investigate how clouds affect the radiative heat budget of the surface, as in a nocturnal boundary layer. The solar radiation is ignored in this experiment, as if it is a night time calculation.
|
Experiment 7:New in 2011! We save the best for last. Here we experiment with radconeq.in, the significance of which is explained in radiative convective equilibrium. Note: for most accurate results in Experiment 7 you should click the revised CRM button, because that is what was used in the radiative convective equilibrium experiments. First, note the change in LW up flux TOA for a uniform temperature increase of 1 K everywhere. This provides a simple estimate of climate sensitivity, for the case of no feedbacks: the climate sensitivity λo would be 1 K divided by the change in LW up flux TOA. Next reset the temperature change back to zero, and calculate the radiative forcing at the top of the atmosphere for double CO2 ΔF. How well do these two numbers combine to predict the ΔT occuring in the radiative convective model here, in a double CO2 experiment? You will find your sensitivity analysis prediction ΔT=λoΔF comes up a bit short in the prediction of what happens in the radiative convective model, even when applied to a case with no feedback (stn2xw). Finally, investigate how well the TOA sensitivity analysis predicts what happens in the simulation with solar radiative forcing stnsolw (it should work much better in that case). |
Experiment 8:New in 2011! The no feedback case stn2xw is misnamed, because stratospheric cooling provides a positive feedback. But we do not need to run the radiative convective model to anticipate the result in the model. Again select radconeq.in. Then with double CO2, find the tropospheric temperature change and stratospheric temperature change that together are able to both restore flux balance at the top of the atmosphere and restore 0 net heating at Level 4. (Hint: add approximately -4 to stratospheric temperature). |