!WRF:MODEL_LAYER:DYNAMICS
!
MODULE module_em 3
USE module_model_constants
USE module_advect_em
, only: advect_u, advect_v, advect_w, advect_scalar, advect_scalar_pd, advect_scalar_mono, &
advect_weno_u, advect_weno_v, advect_weno_w, advect_scalar_weno, advect_scalar_wenopd
USE module_big_step_utilities_em
, only: grid_config_rec_type, calculate_full, couple_momentum, calc_mu_uv, calc_ww_cp, calc_cq, calc_alt, calc_php, set_tend, rhs_ph, &
horizontal_pressure_gradient, pg_buoy_w, w_damp, perturbation_coriolis, coriolis, curvature, horizontal_diffusion, horizontal_diffusion_3dmp, vertical_diffusion_u, &
vertical_diffusion_v, vertical_diffusion, vertical_diffusion_3dmp, sixth_order_diffusion, rk_rayleigh_damp, theta_relaxation, vertical_diffusion_mp, zero_tend, zero_tend2d
USE module_state_description, only: param_first_scalar, p_qr, p_qv, p_qc, p_qg, p_qi, p_qs, tiedtkescheme, heldsuarez, positivedef, &
gdscheme, g3scheme, gfscheme, kfetascheme, monotonic, wenopd_scalar, weno_scalar, weno_mom
USE module_damping_em
, only: held_suarez_damp
USE module_dm
USE module_llxy
USE module_domain
, ONLY : domain, get_ijk_from_grid
USE module_configure
, ONLY: grid_config_rec_type, model_config_rec, model_to_grid_config_rec
CONTAINS
!------------------------------------------------------------------------
SUBROUTINE rk_step_prep ( config_flags, rk_step, & 1,7
u, v, w, t, ph, mu, &
moist, &
ru, rv, rw, ww, php, alt, &
muu, muv, &
mub, mut, phb, pb, p, al, alb, &
cqu, cqv, cqw, &
msfux, msfuy, &
msfvx, msfvx_inv, msfvy, &
msftx, msfty, &
fnm, fnp, dnw, rdx, rdy, &
n_moist, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
IMPLICIT NONE
! Input data.
TYPE(grid_config_rec_type ) , INTENT(IN ) :: config_flags
INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte
INTEGER , INTENT(IN ) :: n_moist, rk_step
REAL , INTENT(IN ) :: rdx, rdy
REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , &
INTENT(IN ) :: u, &
v, &
w, &
t, &
ph, &
phb, &
pb, &
al, &
alb
REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , &
INTENT( OUT) :: ru, &
rv, &
rw, &
ww, &
php, &
cqu, &
cqv, &
cqw, &
alt
REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , &
INTENT(IN ) :: p
REAL , DIMENSION( ims:ime, kms:kme, jms:jme, n_moist ), INTENT( IN) :: &
moist
REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msftx, &
msfty, &
msfux, &
msfuy, &
msfvx, &
msfvx_inv, &
msfvy, &
mu, &
mub
REAL , DIMENSION( ims:ime , jms:jme ) , INTENT( OUT) :: muu, &
muv, &
mut
REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fnm, fnp, dnw
integer :: k
!<DESCRIPTION>
!
! rk_step_prep prepares a number of diagnostic quantities
! in preperation for a Runge-Kutta timestep. subroutines called
! by rk_step_prep calculate
!
! (1) total column dry air mass (mut, call to calculate_full)
!
! (2) total column dry air mass at u and v points
! (muu, muv, call to calculate_mu_uv)
!
! (3) mass-coupled velocities for advection
! (ru, rv, and rw, call to couple_momentum)
!
! (4) omega (call to calc_ww_cp)
!
! (5) moisture coefficients (cqu, cqv, cqw, call to calc_cq)
!
! (6) inverse density (alt, call to calc_alt)
!
! (7) geopotential at pressure points (php, call to calc_php)
!
!</DESCRIPTION>
CALL calculate_full
( mut, mub, mu, &
ids, ide, jds, jde, 1, 2, &
ims, ime, jms, jme, 1, 1, &
its, ite, jts, jte, 1, 1 )
CALL calc_mu_uv
( config_flags, &
mu, mub, muu, muv, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL couple_momentum
( muu, ru, u, msfuy, &
muv, rv, v, msfvx, msfvx_inv, &
mut, rw, w, msfty, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
! new call, couples V with mu, also has correct map factors. WCS, 3 june 2001
CALL calc_ww_cp
( u, v, mu, mub, ww, &
rdx, rdy, msftx, msfty, &
msfux, msfuy, msfvx, msfvx_inv, &
msfvy, dnw, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL calc_cq
( moist, cqu, cqv, cqw, n_moist, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL calc_alt
( alt, al, alb, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL calc_php
( php, ph, phb, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
END SUBROUTINE rk_step_prep
!-------------------------------------------------------------------------------
SUBROUTINE rk_tendency ( config_flags, rk_step, & 1,42
ru_tend, rv_tend, rw_tend, ph_tend, t_tend, &
ru_tendf, rv_tendf, rw_tendf, ph_tendf, t_tendf, &
mu_tend, u_save, v_save, w_save, ph_save, &
t_save, mu_save, RTHFTEN, &
ru, rv, rw, ww, &
u, v, w, t, ph, &
u_old, v_old, w_old, t_old, ph_old, &
h_diabatic, phb,t_init, &
mu, mut, muu, muv, mub, &
al, alt, p, pb, php, cqu, cqv, cqw, &
u_base, v_base, t_base, qv_base, z_base, &
msfux, msfuy, msfvx, msfvx_inv, &
msfvy, msftx, msfty, &
clat, f, e, sina, cosa, &
fnm, fnp, rdn, rdnw, &
dt, rdx, rdy, khdif, kvdif, xkmhd, xkhh, &
diff_6th_opt, diff_6th_factor, &
adv_opt, &
dampcoef,zdamp,damp_opt,rad_nudge, &
cf1, cf2, cf3, cfn, cfn1, n_moist, &
non_hydrostatic, top_lid, &
u_frame, v_frame, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte, &
max_vert_cfl, max_horiz_cfl)
IMPLICIT NONE
! Input data.
TYPE(grid_config_rec_type) , INTENT(IN ) :: config_flags
INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte
LOGICAL , INTENT(IN ) :: non_hydrostatic, top_lid
INTEGER , INTENT(IN ) :: n_moist, rk_step
REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , &
INTENT(IN ) :: ru, &
rv, &
rw, &
ww, &
u, &
v, &
w, &
t, &
ph, &
u_old, &
v_old, &
w_old, &
t_old, &
ph_old, &
phb, &
al, &
alt, &
p, &
pb, &
php, &
cqu, &
cqv, &
t_init, &
xkmhd, &
xkhh, &
h_diabatic
REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , &
INTENT(OUT ) :: ru_tend, &
rv_tend, &
rw_tend, &
t_tend, &
ph_tend, &
RTHFTEN, &
u_save, &
v_save, &
w_save, &
ph_save, &
t_save
REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , &
INTENT(INOUT) :: ru_tendf, &
rv_tendf, &
rw_tendf, &
t_tendf, &
ph_tendf, &
cqw
REAL , DIMENSION( ims:ime , jms:jme ) , INTENT( OUT) :: mu_tend, &
mu_save
REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msfux, &
msfuy, &
msfvx, &
msfvx_inv, &
msfvy, &
msftx, &
msfty, &
clat, &
f, &
e, &
sina, &
cosa, &
mu, &
mut, &
mub, &
muu, &
muv
REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fnm, &
fnp, &
rdn, &
rdnw, &
u_base, &
v_base, &
t_base, &
qv_base, &
z_base
REAL , INTENT(IN ) :: rdx, &
rdy, &
dt, &
u_frame, &
v_frame, &
khdif, &
kvdif
INTEGER, INTENT( IN ) :: diff_6th_opt
REAL, INTENT( IN ) :: diff_6th_factor
INTEGER, INTENT( IN ) :: adv_opt
INTEGER, INTENT( IN ) :: damp_opt, rad_nudge
REAL, INTENT( IN ) :: zdamp, dampcoef
REAL, INTENT( OUT ) :: max_horiz_cfl
REAL, INTENT( OUT ) :: max_vert_cfl
REAL :: kdift, khdq, kvdq, cfn, cfn1, cf1, cf2, cf3
INTEGER :: i,j,k
INTEGER :: time_step
!<DESCRIPTION>
!
! rk_tendency computes the large-timestep tendency terms in the
! momentum, thermodynamic (theta), and geopotential equations.
! These terms include:
!
! (1) advection (for u, v, w, theta - calls to advect_u, advect_v,
! advect_w, and advact_scalar).
!
! (2) geopotential equation terms (advection and "gw" - call to rhs_ph).
!
! (3) buoyancy term in vertical momentum equation (call to pg_buoy_w).
!
! (4) Coriolis and curvature terms in u,v,w momentum equations
! (calls to subroutines coriolis, curvature)
!
! (5) 3D diffusion on coordinate surfaces.
!
!</DESCRIPTION>
CALL zero_tend
( ru_tend, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend
( rv_tend, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend
( rw_tend, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend
( t_tend, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend
( ph_tend, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend
( u_save, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend
( v_save, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend
( w_save, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend
( ph_save, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend
( t_save, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend2d
( mu_tend, &
ids, ide, jds, jde, 1, 1, &
ims, ime, jms, jme, 1, 1, &
its, ite, jts, jte, 1, 1 )
CALL zero_tend2d
( mu_save, &
ids, ide, jds, jde, 1, 1, &
ims, ime, jms, jme, 1, 1, &
its, ite, jts, jte, 1, 1 )
! advection tendencies
CALL nl_get_time_step ( 1, time_step )
IF( (rk_step == 3) .and. ( adv_opt == WENO_MOM ) ) THEN
CALL advect_weno_u
( u, u , ru_tend, ru, rv, ww, &
mut, time_step, config_flags, &
msfux, msfuy, msfvx, msfvy, &
msftx, msfty, &
fnm, fnp, rdx, rdy, rdnw, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
ELSE
CALL advect_u
( u, u , ru_tend, ru, rv, ww, &
mut, time_step, config_flags, &
msfux, msfuy, msfvx, msfvy, &
msftx, msfty, &
fnm, fnp, rdx, rdy, rdnw, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
ENDIF
IF( (rk_step == 3) .and. ( adv_opt == WENO_MOM ) ) THEN
CALL advect_weno_v
( v, v , rv_tend, ru, rv, ww, &
mut, time_step, config_flags, &
msfux, msfuy, msfvx, msfvy, &
msftx, msfty, &
fnm, fnp, rdx, rdy, rdnw, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
ELSE
CALL advect_v
( v, v , rv_tend, ru, rv, ww, &
mut, time_step, config_flags, &
msfux, msfuy, msfvx, msfvy, &
msftx, msfty, &
fnm, fnp, rdx, rdy, rdnw, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
ENDIF
IF (non_hydrostatic) THEN
IF( (rk_step == 3) .and. ( adv_opt == WENO_MOM ) ) THEN
CALL advect_weno_w
( w, w, rw_tend, ru, rv, ww, &
mut, time_step, config_flags, &
msfux, msfuy, msfvx, msfvy, &
msftx, msfty, &
fnm, fnp, rdx, rdy, rdn, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
ELSE
CALL advect_w
( w, w, rw_tend, ru, rv, ww, &
mut, time_step, config_flags, &
msfux, msfuy, msfvx, msfvy, &
msftx, msfty, &
fnm, fnp, rdx, rdy, rdn, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
ENDIF
ENDIF
! theta flux divergence
CALL advect_scalar
( t, t, t_tend, ru, rv, ww, &
mut, time_step, config_flags, &
msfux, msfuy, msfvx, msfvy, &
msftx, msfty, fnm, fnp, &
rdx, rdy, rdnw, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
IF ( config_flags%cu_physics == GDSCHEME .OR. &
config_flags%cu_physics == GFSCHEME .OR. &
config_flags%cu_physics == G3SCHEME ) THEN
! theta advection only:
CALL set_tend
( RTHFTEN, t_tend, msfty, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
END IF
CALL rhs_ph
( ph_tend, u, v, ww, ph, ph, phb, w, &
mut, muu, muv, &
fnm, fnp, &
rdnw, cfn, cfn1, rdx, rdy, &
msfux, msfuy, msfvx, &
msfvx_inv, msfvy, &
msftx, msfty, &
non_hydrostatic, &
config_flags, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL horizontal_pressure_gradient
( ru_tend,rv_tend, &
ph,alt,p,pb,al,php,cqu,cqv, &
muu,muv,mu,fnm,fnp,rdnw, &
cf1,cf2,cf3,rdx,rdy,msfux,msfuy,&
msfvx,msfvy,msftx,msfty, &
config_flags, non_hydrostatic, &
top_lid, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
IF (non_hydrostatic) THEN
CALL pg_buoy_w
( rw_tend, p, cqw, mu, mub, &
rdnw, rdn, g, msftx, msfty, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
ENDIF
CALL w_damp
( rw_tend, max_vert_cfl, &
max_horiz_cfl, &
u, v, ww, w, mut, rdnw, &
rdx, rdy, msfux, msfuy, msfvx, &
msfvy, dt, config_flags, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
IF(config_flags%pert_coriolis) THEN
CALL perturbation_coriolis
( ru, rv, rw, &
ru_tend, rv_tend, rw_tend, &
config_flags, &
u_base, v_base, z_base, &
muu, muv, phb, ph, &
msftx, msfty, msfux, msfuy, &
msfvx, msfvy, &
f, e, sina, cosa, fnm, fnp, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
ELSE
CALL coriolis
( ru, rv, rw, &
ru_tend, rv_tend, rw_tend, &
config_flags, &
msftx, msfty, msfux, msfuy, &
msfvx, msfvy, &
f, e, sina, cosa, fnm, fnp, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
END IF
CALL curvature
( ru, rv, rw, u, v, w, &
ru_tend, rv_tend, rw_tend, &
config_flags, &
msfux, msfuy, msfvx, msfvy, &
msftx, msfty, &
clat, fnm, fnp, rdx, rdy, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
! Damping option added for Held-Suarez test (also uses lw option HELDSUAREZ)
IF (config_flags%ra_lw_physics == HELDSUAREZ) THEN
CALL held_suarez_damp
( ru_tend, rv_tend, &
ru,rv,p,pb, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
END IF
!**************************************************************
!
! Next, the terms that we integrate only with forward-in-time
! (evaluate with time t variables).
!
!**************************************************************
forward_step: IF( rk_step == 1 ) THEN
diff_opt1 : IF (config_flags%diff_opt .eq. 1) THEN
CALL horizontal_diffusion
('u', u, ru_tendf, mut, config_flags, &
msfux, msfuy, msfvx, msfvx_inv, &
msfvy,msftx, msfty, &
khdif, xkmhd, rdx, rdy, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL horizontal_diffusion
('v', v, rv_tendf, mut, config_flags, &
msfux, msfuy, msfvx, msfvx_inv, &
msfvy,msftx, msfty, &
khdif, xkmhd, rdx, rdy, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL horizontal_diffusion
('w', w, rw_tendf, mut, config_flags, &
msfux, msfuy, msfvx, msfvx_inv, &
msfvy,msftx, msfty, &
khdif, xkmhd, rdx, rdy, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
khdq = 3.*khdif
CALL horizontal_diffusion_3dmp
( 'm', t, t_tendf, mut, &
config_flags, t_init, &
msfux, msfuy, msfvx, msfvx_inv, &
msfvy, msftx, msfty, &
khdq , xkhh, rdx, rdy, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
pbl_test : IF (config_flags%bl_pbl_physics .eq. 0) THEN
CALL vertical_diffusion_u
( u, ru_tendf, config_flags, &
u_base, &
alt, muu, rdn, rdnw, kvdif, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL vertical_diffusion_v
( v, rv_tendf, config_flags, &
v_base, &
alt, muv, rdn, rdnw, kvdif, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
IF (non_hydrostatic) &
CALL vertical_diffusion
( 'w', w, rw_tendf, config_flags, &
alt, mut, rdn, rdnw, kvdif, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
kvdq = 3.*kvdif
CALL vertical_diffusion_3dmp
( t, t_tendf, config_flags, t_init, &
alt, mut, rdn, rdnw, kvdq , &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
ENDIF pbl_test
! Theta tendency computations.
END IF diff_opt1
IF ( diff_6th_opt .NE. 0 ) THEN
CALL sixth_order_diffusion
( 'u', u, ru_tendf, mut, dt, &
config_flags, &
diff_6th_opt, diff_6th_factor, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL sixth_order_diffusion
( 'v', v, rv_tendf, mut, dt, &
config_flags, &
diff_6th_opt, diff_6th_factor, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
IF (non_hydrostatic) &
CALL sixth_order_diffusion
( 'w', w, rw_tendf, mut, dt, &
config_flags, &
diff_6th_opt, diff_6th_factor, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL sixth_order_diffusion
( 'm', t, t_tendf, mut, dt, &
config_flags, &
diff_6th_opt, diff_6th_factor, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
ENDIF
IF( damp_opt .eq. 2 ) &
CALL rk_rayleigh_damp
( ru_tendf, rv_tendf, &
rw_tendf, t_tendf, &
u, v, w, t, t_init, &
mut, muu, muv, ph, phb, &
u_base, v_base, t_base, z_base, &
dampcoef, zdamp, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
IF( rad_nudge .eq. 1 ) &
CALL theta_relaxation
( t_tendf, t, t_init, &
mut, ph, phb, &
t_base, z_base, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
END IF forward_step
END SUBROUTINE rk_tendency
!-------------------------------------------------------------------------------
SUBROUTINE rk_addtend_dry ( ru_tend, rv_tend, rw_tend, ph_tend, t_tend, & 1
ru_tendf, rv_tendf, rw_tendf, ph_tendf, t_tendf, &
u_save, v_save, w_save, ph_save, t_save, &
mu_tend, mu_tendf, rk_step, &
h_diabatic, mut, msftx, msfty, msfux, msfuy, &
msfvx, msfvx_inv, msfvy, &
ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
ips,ipe, jps,jpe, kps,kpe, &
its,ite, jts,jte, kts,kte )
IMPLICIT NONE
! Input data.
INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
ips, ipe, jps, jpe, kps, kpe, &
its, ite, jts, jte, kts, kte
INTEGER , INTENT(IN ) :: rk_step
REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , INTENT(INOUT) :: ru_tend, &
rv_tend, &
rw_tend, &
ph_tend, &
t_tend, &
ru_tendf, &
rv_tendf, &
rw_tendf, &
ph_tendf, &
t_tendf
REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(INOUT) :: mu_tend, &
mu_tendf
REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , INTENT(IN ) :: u_save, &
v_save, &
w_save, &
ph_save, &
t_save, &
h_diabatic
REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: mut, &
msftx, &
msfty, &
msfux, &
msfuy, &
msfvx, &
msfvx_inv, &
msfvy
! Local
INTEGER :: i, j, k
!<DESCRIPTION>
!
! rk_addtend_dry constructs the full large-timestep tendency terms for
! momentum (u,v,w), theta and geopotential equations. This is accomplished
! by combining the physics tendencies (in *tendf; these are computed
! the first RK substep, held fixed thereafter) with the RK tendencies
! (in *tend, these include advection, pressure gradient, etc;
! these change each rk substep). Output is in *tend.
!
!</DESCRIPTION>
! Finally, add the forward-step tendency to the rk_tendency
! u/v/w/save contain bc tendency that needs to be multiplied by msf
! (u by msfuy, v by msfvx)
! before adding it to physics tendency (*tendf)
! For momentum we need the final tendency to include an inverse msf
! physics/bc tendency needs to be divided, advection tendency already has it
! For scalars we need the final tendency to include an inverse msf (msfty)
! advection tendency is OK, physics/bc tendency needs to be divided by msf
DO j = jts,MIN(jte,jde-1)
DO k = kts,kte-1
DO i = its,ite
! multiply by my to uncouple u
IF(rk_step == 1)ru_tendf(i,k,j) = ru_tendf(i,k,j) + u_save(i,k,j)*msfuy(i,j)
! divide by my to couple u
ru_tend(i,k,j) = ru_tend(i,k,j) + ru_tendf(i,k,j)/msfuy(i,j)
ENDDO
ENDDO
ENDDO
DO j = jts,jte
DO k = kts,kte-1
DO i = its,MIN(ite,ide-1)
! multiply by mx to uncouple v
IF(rk_step == 1)rv_tendf(i,k,j) = rv_tendf(i,k,j) + v_save(i,k,j)*msfvx(i,j)
! divide by mx to couple v
rv_tend(i,k,j) = rv_tend(i,k,j) + rv_tendf(i,k,j)*msfvx_inv(i,j)
ENDDO
ENDDO
ENDDO
DO j = jts,MIN(jte,jde-1)
DO k = kts,kte
DO i = its,MIN(ite,ide-1)
! multiply by my to uncouple w
IF(rk_step == 1)rw_tendf(i,k,j) = rw_tendf(i,k,j) + w_save(i,k,j)*msfty(i,j)
! divide by my to couple w
rw_tend(i,k,j) = rw_tend(i,k,j) + rw_tendf(i,k,j)/msfty(i,j)
IF(rk_step == 1)ph_tendf(i,k,j) = ph_tendf(i,k,j) + ph_save(i,k,j)
! divide by my to couple scalar
ph_tend(i,k,j) = ph_tend(i,k,j) + ph_tendf(i,k,j)/msfty(i,j)
ENDDO
ENDDO
ENDDO
DO j = jts,MIN(jte,jde-1)
DO k = kts,kte-1
DO i = its,MIN(ite,ide-1)
IF(rk_step == 1)t_tendf(i,k,j) = t_tendf(i,k,j) + t_save(i,k,j)
! divide by my to couple theta
t_tend(i,k,j) = t_tend(i,k,j) + t_tendf(i,k,j)/msfty(i,j) &
+ mut(i,j)*h_diabatic(i,k,j)/msfty(i,j)
! divide by my to couple heating
ENDDO
ENDDO
ENDDO
DO j = jts,MIN(jte,jde-1)
DO i = its,MIN(ite,ide-1)
! mu tendencies not coupled with 1/msf
mu_tend(i,j) = mu_tend(i,j) + mu_tendf(i,j)
ENDDO
ENDDO
END SUBROUTINE rk_addtend_dry
!-------------------------------------------------------------------------------
SUBROUTINE rk_scalar_tend ( scs, sce, config_flags, & 5,13
tenddec, &
rk_step, dt, &
ru, rv, ww, mut, mub, mu_old, &
alt, &
scalar_old, scalar, &
scalar_tends, advect_tend, &
h_tendency, z_tendency, &
RQVFTEN, &
base, moist_step, fnm, fnp, &
msfux, msfuy, msfvx, msfvx_inv, &
msfvy, msftx, msfty, &
rdx, rdy, rdn, rdnw, &
khdif, kvdif, xkmhd, &
diff_6th_opt, diff_6th_factor, &
adv_opt, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
IMPLICIT NONE
! Input data.
TYPE(grid_config_rec_type ) , INTENT(IN ) :: config_flags
LOGICAL , INTENT(IN ) :: tenddec ! tendency term
INTEGER , INTENT(IN ) :: rk_step, scs, sce
INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte
LOGICAL , INTENT(IN ) :: moist_step
REAL, DIMENSION(ims:ime, kms:kme, jms:jme , scs:sce ), &
INTENT(IN ) :: scalar, scalar_old
REAL, DIMENSION(ims:ime, kms:kme, jms:jme , scs:sce ), &
INTENT(INOUT) :: scalar_tends
REAL, DIMENSION(ims:ime, kms:kme, jms:jme ), INTENT(INOUT) :: advect_tend
REAL, DIMENSION(ims:ime, kms:kme, jms:jme ), INTENT( OUT) :: h_tendency, z_tendency
REAL, DIMENSION(ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: RQVFTEN
REAL, DIMENSION(ims:ime, kms:kme, jms:jme ), INTENT(IN ) :: ru, &
rv, &
ww, &
xkmhd, &
alt
REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fnm, &
fnp, &
rdn, &
rdnw, &
base
REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msfux, &
msfuy, &
msfvx, &
msfvx_inv, &
msfvy, &
msftx, &
msfty, &
mub, &
mut, &
mu_old
REAL , INTENT(IN ) :: rdx, &
rdy, &
khdif, &
kvdif
INTEGER, INTENT( IN ) :: diff_6th_opt
REAL, INTENT( IN ) :: diff_6th_factor
REAL , INTENT(IN ) :: dt
INTEGER, INTENT(IN ) :: adv_opt
! Local data
INTEGER :: im, i,j,k
INTEGER :: time_step
REAL :: khdq, kvdq, tendency
!<DESCRIPTION>
!
! rk_scalar_tend calls routines that computes scalar tendency from advection
! and 3D mixing (TKE or fixed eddy viscosities).
!
!</DESCRIPTION>
khdq = khdif/prandtl
kvdq = kvdif/prandtl
scalar_loop : DO im = scs, sce
CALL zero_tend
( advect_tend(ims,kms,jms), &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend
( h_tendency(ims,kms,jms), &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend
( z_tendency(ims,kms,jms), &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL nl_get_time_step ( 1, time_step )
IF( (rk_step == 3) .and. (adv_opt == POSITIVEDEF) ) THEN
CALL advect_scalar_pd
( scalar(ims,kms,jms,im), &
scalar_old(ims,kms,jms,im), &
advect_tend(ims,kms,jms), &
h_tendency(ims,kms,jms), &
z_tendency(ims,kms,jms), &
ru, rv, ww, mut, mub, mu_old, &
time_step, config_flags, tenddec, &
msfux, msfuy, msfvx, msfvy, &
msftx, msfty, fnm, fnp, &
rdx, rdy, rdnw,dt, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
ELSE IF( (rk_step == 3) .and. (adv_opt == MONOTONIC) ) THEN
CALL advect_scalar_mono
( scalar(ims,kms,jms,im), &
scalar_old(ims,kms,jms,im), &
advect_tend(ims,kms,jms), &
h_tendency(ims,kms,jms), &
z_tendency(ims,kms,jms), &
ru, rv, ww, mut, mub, mu_old, &
config_flags, tenddec, &
msfux, msfuy, msfvx, msfvy, &
msftx, msfty, fnm, fnp, &
rdx, rdy, rdnw,dt, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
ELSE IF( (rk_step == 3) .and. (adv_opt == WENO_SCALAR) ) THEN
CALL advect_scalar_weno
( scalar(ims,kms,jms,im), &
scalar(ims,kms,jms,im), &
advect_tend(ims,kms,jms), &
ru, rv, ww, mut, time_step, &
config_flags, &
msfux, msfuy, msfvx, msfvy, &
msftx, msfty, fnm, fnp, &
rdx, rdy, rdnw, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
ELSEIF( (rk_step == 3) .and. (adv_opt == WENOPD_SCALAR) ) THEN
CALL advect_scalar_wenopd
( scalar(ims,kms,jms,im), &
scalar_old(ims,kms,jms,im), &
advect_tend(ims,kms,jms), &
ru, rv, ww, mut, mub, mu_old, &
time_step, config_flags, &
msfux, msfuy, msfvx, msfvy, &
msftx, msfty, fnm, fnp, &
rdx, rdy, rdnw,dt, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
ELSE
CALL advect_scalar
( scalar(ims,kms,jms,im), &
scalar(ims,kms,jms,im), &
advect_tend(ims,kms,jms), &
ru, rv, ww, mut, time_step, &
config_flags, &
msfux, msfuy, msfvx, msfvy, &
msftx, msfty, fnm, fnp, &
rdx, rdy, rdnw, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
END IF
IF((config_flags%cu_physics == GDSCHEME .OR. config_flags%cu_physics == G3SCHEME .OR. &
config_flags%cu_physics == GFSCHEME .OR. &
config_flags%cu_physics == KFETASCHEME .OR. & ! new trigger in KF
config_flags%cu_physics == TIEDTKESCHEME ) & ! Tiedtke
.and. moist_step .and. ( im == P_QV) ) THEN
CALL set_tend
( RQVFTEN, advect_tend, msfty, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
ENDIF
rk_step_1: IF( rk_step == 1 ) THEN
diff_opt1 : IF (config_flags%diff_opt .eq. 1) THEN
CALL horizontal_diffusion
( 'm', scalar(ims,kms,jms,im), &
scalar_tends(ims,kms,jms,im), mut, &
config_flags, &
msfux, msfuy, msfvx, msfvx_inv, &
msfvy, msftx, msfty, &
khdq , xkmhd, rdx, rdy, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
pbl_test : IF (config_flags%bl_pbl_physics .eq. 0) THEN
IF( (moist_step) .and. ( im == P_QV)) THEN
CALL vertical_diffusion_mp
( scalar(ims,kms,jms,im), &
scalar_tends(ims,kms,jms,im), &
config_flags, base, &
alt, mut, rdn, rdnw, kvdq , &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
ELSE
CALL vertical_diffusion
( 'm', scalar(ims,kms,jms,im), &
scalar_tends(ims,kms,jms,im), &
config_flags, &
alt, mut, rdn, rdnw, kvdq, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
END IF
ENDIF pbl_test
ENDIF diff_opt1
IF ( diff_6th_opt .NE. 0 ) &
CALL sixth_order_diffusion
( 'm', scalar(ims,kms,jms,im), &
scalar_tends(ims,kms,jms,im), &
mut, dt, config_flags, &
diff_6th_opt, diff_6th_factor, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
ENDIF rk_step_1
END DO scalar_loop
END SUBROUTINE rk_scalar_tend
!-------------------------------------------------------------------------------
SUBROUTINE rk_update_scalar( scs, sce, & 5
scalar_1, scalar_2, sc_tend, &
advh_t, advz_t, &
advect_tend, &
h_tendency, z_tendency, &
msftx, msfty, &
mu_old, mu_new, mu_base, &
rk_step, dt, spec_zone, &
config_flags, &
tenddec, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
IMPLICIT NONE
! Input data.
TYPE(grid_config_rec_type ) , INTENT(IN ) :: config_flags
LOGICAL , INTENT(IN ) :: tenddec
INTEGER , INTENT(IN ) :: scs, sce, rk_step, spec_zone
INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte
REAL, INTENT(IN ) :: dt
REAL, DIMENSION(ims:ime, kms:kme, jms:jme , scs:sce), &
INTENT(INOUT) :: scalar_1, &
scalar_2
REAL, DIMENSION(ims:ime, kms:kme, jms:jme , scs:sce), &
INTENT(IN) :: sc_tend
REAL, DIMENSION(ims:ime, kms:kme, jms:jme ), &
INTENT(IN) :: advect_tend
REAL, DIMENSION(ims:ime, kms:kme, jms:jme ), INTENT(INOUT) , OPTIONAL :: advh_t, advz_t ! accumulating for output
REAL, DIMENSION(ims:ime, kms:kme, jms:jme ), INTENT(IN ) :: h_tendency, z_tendency ! from rk_scalar_tend
REAL, DIMENSION(ims:ime, jms:jme ), INTENT(IN ) :: mu_old, &
mu_new, &
mu_base, &
msftx, &
msfty
INTEGER :: i,j,k,im
REAL :: sc_middle, msfsq
REAL, DIMENSION(its:ite) :: muold, r_munew
REAL, DIMENSION(its:ite, kts:kte, jts:jte ) :: tendency
INTEGER :: i_start,i_end,j_start,j_end,k_start,k_end
INTEGER :: i_start_spc,i_end_spc,j_start_spc,j_end_spc,k_start_spc,k_end_spc
!<DESCRIPTION>
!
! rk_scalar_update advances the scalar equation given the time t value
! of the scalar and the scalar tendency.
!
!</DESCRIPTION>
!
! set loop limits.
i_start = its
i_end = min(ite,ide-1)
j_start = jts
j_end = min(jte,jde-1)
k_start = kts
k_end = kte-1
i_start_spc = i_start
i_end_spc = i_end
j_start_spc = j_start
j_end_spc = j_end
k_start_spc = k_start
k_end_spc = k_end
IF( config_flags%nested .or. config_flags%specified ) THEN
IF( .NOT. config_flags%periodic_x)i_start = max( its,ids+spec_zone )
IF( .NOT. config_flags%periodic_x)i_end = min( ite,ide-spec_zone-1 )
j_start = max( jts,jds+spec_zone )
j_end = min( jte,jde-spec_zone-1 )
k_start = kts
k_end = min( kte, kde-1 )
ENDIF
IF ( rk_step == 1 ) THEN
! replace t-dt values (in scalar_1) with t values scalar_2,
! then compute new values by adding tendency to values at t
DO im = scs,sce
DO j = jts, min(jte,jde-1)
DO k = kts, min(kte,kde-1)
DO i = its, min(ite,ide-1)
tendency(i,k,j) = 0.
ENDDO
ENDDO
ENDDO
DO j = j_start,j_end
DO k = k_start,k_end
DO i = i_start,i_end
! scalar was coupled with my
tendency(i,k,j) = advect_tend(i,k,j) * msfty(i,j)
ENDDO
ENDDO
ENDDO
DO j = j_start_spc,j_end_spc
DO k = k_start_spc,k_end_spc
DO i = i_start_spc,i_end_spc
tendency(i,k,j) = tendency(i,k,j) + sc_tend(i,k,j,im)
ENDDO
ENDDO
ENDDO
DO j = jts, min(jte,jde-1)
DO i = its, min(ite,ide-1)
muold(i) = mu_old(i,j) + mu_base(i,j)
r_munew(i) = 1./(mu_new(i,j) + mu_base(i,j))
ENDDO
DO k = kts, min(kte,kde-1)
DO i = its, min(ite,ide-1)
scalar_1(i,k,j,im) = scalar_2(i,k,j,im)
scalar_2(i,k,j,im) = (muold(i)*scalar_1(i,k,j,im) &
+ dt*tendency(i,k,j))*r_munew(i)
ENDDO
ENDDO
ENDDO
ENDDO
ELSE
! just compute new values, scalar_1 already at time t.
DO im = scs, sce
DO j = jts, min(jte,jde-1)
DO k = kts, min(kte,kde-1)
DO i = its, min(ite,ide-1)
tendency(i,k,j) = 0.
ENDDO
ENDDO
ENDDO
DO j = j_start,j_end
DO k = k_start,k_end
DO i = i_start,i_end
! scalar was coupled with my
tendency(i,k,j) = advect_tend(i,k,j) * msfty(i,j)
ENDDO
ENDDO
ENDDO
DO j = j_start_spc,j_end_spc
DO k = k_start_spc,k_end_spc
DO i = i_start_spc,i_end_spc
tendency(i,k,j) = tendency(i,k,j) + sc_tend(i,k,j,im)
ENDDO
ENDDO
ENDDO
DO j = jts, min(jte,jde-1)
DO i = its, min(ite,ide-1)
muold(i) = mu_old(i,j) + mu_base(i,j)
r_munew(i) = 1./(mu_new(i,j) + mu_base(i,j))
ENDDO
DO k = kts, min(kte,kde-1)
DO i = its, min(ite,ide-1)
scalar_2(i,k,j,im) = (muold(i)*scalar_1(i,k,j,im) &
+ dt*tendency(i,k,j))*r_munew(i)
ENDDO
ENDDO
! This is separated from the k/i-loop above for better performance
IF ( PRESENT(advh_t) .AND. PRESENT(advz_t) ) THEN
IF(tenddec.and.rk_step.eq.config_flags%rk_ord) THEN
DO k = kts, min(kte,kde-1)
DO i = its, min(ite,ide-1)
advh_t(i,k,j) = advh_t(i,k,j) + (dt*h_tendency(i,k,j)* msfty(i,j))*r_munew(i)
advz_t(i,k,j) = advz_t(i,k,j) + (dt*z_tendency(i,k,j)* msfty(i,j))*r_munew(i)
ENDDO
ENDDO
END IF
END IF
ENDDO
ENDDO
END IF
END SUBROUTINE rk_update_scalar
!-------------------------------------------------------------------------------
SUBROUTINE rk_update_scalar_pd( scs, sce, & 5
scalar, sc_tend, &
mu_old, mu_new, mu_base, &
rk_step, dt, spec_zone, &
config_flags, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
IMPLICIT NONE
! Input data.
TYPE(grid_config_rec_type ) , INTENT(IN ) :: config_flags
INTEGER , INTENT(IN ) :: scs, sce, rk_step, spec_zone
INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte
REAL, INTENT(IN ) :: dt
REAL, DIMENSION(ims:ime, kms:kme, jms:jme , scs:sce), &
INTENT(INOUT) :: scalar, &
sc_tend
REAL, DIMENSION(ims:ime, jms:jme ), INTENT(IN ) :: mu_old, &
mu_new, &
mu_base
INTEGER :: i,j,k,im
REAL :: sc_middle, msfsq
REAL, DIMENSION(its:ite) :: muold, r_munew
REAL, DIMENSION(its:ite, kts:kte, jts:jte ) :: tendency
INTEGER :: i_start,i_end,j_start,j_end,k_start,k_end
INTEGER :: i_start_spc,i_end_spc,j_start_spc,j_end_spc,k_start_spc,k_end_spc
!<DESCRIPTION>
!
! rk_scalar_update advances the scalar equation given the time t value
! of the scalar and the scalar tendency.
!
!</DESCRIPTION>
!
! set loop limits.
i_start = its
i_end = min(ite,ide-1)
j_start = jts
j_end = min(jte,jde-1)
k_start = kts
k_end = kte-1
i_start_spc = i_start
i_end_spc = i_end
j_start_spc = j_start
j_end_spc = j_end
k_start_spc = k_start
k_end_spc = k_end
IF( config_flags%nested .or. config_flags%specified ) THEN
IF( .NOT. config_flags%periodic_x)i_start = max( its,ids+spec_zone )
IF( .NOT. config_flags%periodic_x)i_end = min( ite,ide-spec_zone-1 )
j_start = max( jts,jds+spec_zone )
j_end = min( jte,jde-spec_zone-1 )
k_start = kts
k_end = min( kte, kde-1 )
ENDIF
DO im = scs, sce
DO j = jts, min(jte,jde-1)
DO k = kts, min(kte,kde-1)
DO i = its, min(ite,ide-1)
tendency(i,k,j) = 0.
ENDDO
ENDDO
ENDDO
DO j = j_start_spc,j_end_spc
DO k = k_start_spc,k_end_spc
DO i = i_start_spc,i_end_spc
tendency(i,k,j) = tendency(i,k,j) + sc_tend(i,k,j,im)
sc_tend(i,k,j,im) = 0.
ENDDO
ENDDO
ENDDO
DO j = jts, min(jte,jde-1)
DO i = its, min(ite,ide-1)
muold(i) = mu_old(i,j) + mu_base(i,j)
r_munew(i) = 1./(mu_new(i,j) + mu_base(i,j))
ENDDO
DO k = kts, min(kte,kde-1)
DO i = its, min(ite,ide-1)
scalar(i,k,j,im) = (muold(i)*scalar(i,k,j,im) &
+ dt*tendency(i,k,j))*r_munew(i)
ENDDO
ENDDO
ENDDO
ENDDO
END SUBROUTINE rk_update_scalar_pd
!------------------------------------------------------------
SUBROUTINE init_zero_tendency(ru_tendf, rv_tendf, rw_tendf, ph_tendf, & 1,11
t_tendf, tke_tendf, mu_tendf, &
moist_tendf,chem_tendf,scalar_tendf, &
tracer_tendf,n_tracer, &
n_moist,n_chem,n_scalar,rk_step, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
!-----------------------------------------------------------------------
IMPLICIT NONE
!-----------------------------------------------------------------------
INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte
INTEGER , INTENT(IN ) :: n_moist,n_chem,n_scalar,n_tracer,rk_step
REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , INTENT(INOUT) :: &
ru_tendf, &
rv_tendf, &
rw_tendf, &
ph_tendf, &
t_tendf, &
tke_tendf
REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(INOUT) :: mu_tendf
REAL , DIMENSION(ims:ime, kms:kme, jms:jme, n_moist),INTENT(INOUT)::&
moist_tendf
REAL , DIMENSION(ims:ime, kms:kme, jms:jme, n_chem ),INTENT(INOUT)::&
chem_tendf
REAL , DIMENSION(ims:ime, kms:kme, jms:jme, n_tracer ),INTENT(INOUT)::&
tracer_tendf
REAL , DIMENSION(ims:ime, kms:kme, jms:jme, n_scalar ),INTENT(INOUT)::&
scalar_tendf
! LOCAL VARS
INTEGER :: im, ic, is
!<DESCRIPTION>
!
! init_zero_tendency
! sets tendency arrays to zero for all prognostic variables.
!
!</DESCRIPTION>
CALL zero_tend
( ru_tendf, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend
( rv_tendf, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend
( rw_tendf, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend
( ph_tendf, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend
( t_tendf, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend
( tke_tendf, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
CALL zero_tend2d
( mu_tendf, &
ids, ide, jds, jde, kds, kds, &
ims, ime, jms, jme, kms, kms, &
its, ite, jts, jte, kts, kts )
! DO im=PARAM_FIRST_SCALAR,n_moist
DO im=1,n_moist ! make sure first one is zero too
CALL zero_tend
( moist_tendf(ims,kms,jms,im), &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
ENDDO
! DO ic=PARAM_FIRST_SCALAR,n_chem
DO ic=1,n_chem ! make sure first one is zero too
CALL zero_tend
( chem_tendf(ims,kms,jms,ic), &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
ENDDO
! DO ic=PARAM_FIRST_SCALAR,n_tracer
DO ic=1,n_tracer ! make sure first one is zero too
CALL zero_tend
( tracer_tendf(ims,kms,jms,ic), &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
ENDDO
! DO ic=PARAM_FIRST_SCALAR,n_scalar
DO ic=1,n_scalar ! make sure first one is zero too
CALL zero_tend
( scalar_tendf(ims,kms,jms,ic), &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
ENDDO
END SUBROUTINE init_zero_tendency
!===================================================================
SUBROUTINE dump_data( a, field, io_unit, &
ims, ime, jms, jme, kms, kme, &
ids, ide, jds, jde, kds, kde )
implicit none
integer :: ims, ime, jms, jme, kms, kme, &
ids, ide, jds, jde, kds, kde
real, dimension(ims:ime, kms:kme, jds:jde) :: a
character :: field
integer :: io_unit
integer :: is,ie,js,je,ks,ke
!<DESCRIPTION
!
! quick and dirty debug io utility
!
!</DESCRIPTION
is = ids
ie = ide-1
js = jds
je = jde-1
ks = kds
ke = kde-1
if(field == 'u') ie = ide
if(field == 'v') je = jde
if(field == 'w') ke = kde
write(io_unit) is,ie,ks,ke,js,je
write(io_unit) a(is:ie, ks:ke, js:je)
end subroutine dump_data
!-----------------------------------------------------------------------
SUBROUTINE calculate_phy_tend (config_flags,mu,muu,muv,pi3d, & 1
RTHRATEN, &
RUBLTEN,RVBLTEN,RTHBLTEN, &
RQVBLTEN,RQCBLTEN,RQIBLTEN, &
RUCUTEN,RVCUTEN,RTHCUTEN, &
RQVCUTEN,RQCCUTEN,RQRCUTEN, &
RQICUTEN,RQSCUTEN, &
RUSHTEN,RVSHTEN,RTHSHTEN, &
RQVSHTEN,RQCSHTEN,RQRSHTEN, &
RQISHTEN,RQSSHTEN,RQGSHTEN, &
RUNDGDTEN,RVNDGDTEN,RTHNDGDTEN,RQVNDGDTEN, &
RMUNDGDTEN, &
ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte )
!-----------------------------------------------------------------------
IMPLICIT NONE
TYPE(grid_config_rec_type), INTENT(IN) :: config_flags
INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) , &
INTENT(IN ) :: pi3d
REAL, DIMENSION( ims:ime, jms:jme ) , &
INTENT(IN ) :: mu, &
muu, &
muv
! radiation
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), &
INTENT(INOUT) :: RTHRATEN
! cumulus
REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), &
INTENT(INOUT) :: &
RUCUTEN, &
RVCUTEN, &
RTHCUTEN, &
RQVCUTEN, &
RQCCUTEN, &
RQRCUTEN, &
RQICUTEN, &
RQSCUTEN, &
RUSHTEN, &
RVSHTEN, &
RTHSHTEN, &
RQVSHTEN, &
RQCSHTEN, &
RQRSHTEN, &
RQISHTEN, &
RQSSHTEN, &
RQGSHTEN
! pbl
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) , &
INTENT(INOUT) :: RUBLTEN, &
RVBLTEN, &
RTHBLTEN, &
RQVBLTEN, &
RQCBLTEN, &
RQIBLTEN
! fdda
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) , &
INTENT(INOUT) :: RUNDGDTEN, &
RVNDGDTEN, &
RTHNDGDTEN, &
RQVNDGDTEN
REAL, DIMENSION( ims:ime, jms:jme ) , &
INTENT(INOUT) :: RMUNDGDTEN
INTEGER :: i,k,j
INTEGER :: itf,ktf,jtf,itsu,jtsv
!-----------------------------------------------------------------------
!<DESCRIPTION>
!
! calculate_phy_tend couples the physics tendencies to the column mass (mu),
! because prognostic equations are in flux form, but physics tendencies are
! computed for uncoupled variables.
!
!</DESCRIPTION>
itf=MIN(ite,ide-1)
jtf=MIN(jte,jde-1)
ktf=MIN(kte,kde-1)
itsu=MAX(its,ids+1)
jtsv=MAX(jts,jds+1)
! radiation
IF (config_flags%ra_lw_physics .gt. 0 .or. config_flags%ra_sw_physics .gt. 0) THEN
DO J=jts,jtf
DO K=kts,ktf
DO I=its,itf
RTHRATEN(I,K,J)=mu(I,J)*RTHRATEN(I,K,J)
ENDDO
ENDDO
ENDDO
ENDIF
! cumulus
IF (config_flags%cu_physics .gt. 0) THEN
DO J=jts,jtf
DO I=its,itf
DO K=kts,ktf
RUCUTEN(I,K,J) =mu(I,J)*RUCUTEN(I,K,J)
RVCUTEN(I,K,J) =mu(I,J)*RVCUTEN(I,K,J)
RTHCUTEN(I,K,J)=mu(I,J)*RTHCUTEN(I,K,J)
RQVCUTEN(I,K,J)=mu(I,J)*RQVCUTEN(I,K,J)
ENDDO
ENDDO
ENDDO
IF (P_QC .ge. PARAM_FIRST_SCALAR)THEN
DO J=jts,jtf
DO I=its,itf
DO K=kts,ktf
RQCCUTEN(I,K,J)=mu(I,J)*RQCCUTEN(I,K,J)
ENDDO
ENDDO
ENDDO
ENDIF
IF (P_QR .ge. PARAM_FIRST_SCALAR)THEN
DO J=jts,jtf
DO I=its,itf
DO K=kts,ktf
RQRCUTEN(I,K,J)=mu(I,J)*RQRCUTEN(I,K,J)
ENDDO
ENDDO
ENDDO
ENDIF
IF (P_QI .ge. PARAM_FIRST_SCALAR)THEN
DO J=jts,jtf
DO I=its,itf
DO K=kts,ktf
RQICUTEN(I,K,J)=mu(I,J)*RQICUTEN(I,K,J)
ENDDO
ENDDO
ENDDO
ENDIF
IF(P_QS .ge. PARAM_FIRST_SCALAR)THEN
DO J=jts,jtf
DO I=its,itf
DO K=kts,ktf
RQSCUTEN(I,K,J)=mu(I,J)*RQSCUTEN(I,K,J)
ENDDO
ENDDO
ENDDO
ENDIF
ENDIF
! shallow cumulus
IF (config_flags%shcu_physics .gt. 0) THEN
DO J=jts,jtf
DO I=its,itf
DO K=kts,ktf
RUSHTEN(I,K,J) =mu(I,J)*RUSHTEN(I,K,J)
RVSHTEN(I,K,J) =mu(I,J)*RVSHTEN(I,K,J)
RTHSHTEN(I,K,J)=mu(I,J)*RTHSHTEN(I,K,J)
RQVSHTEN(I,K,J)=mu(I,J)*RQVSHTEN(I,K,J)
ENDDO
ENDDO
ENDDO
IF (P_QC .ge. PARAM_FIRST_SCALAR)THEN
DO J=jts,jtf
DO I=its,itf
DO K=kts,ktf
RQCSHTEN(I,K,J)=mu(I,J)*RQCSHTEN(I,K,J)
ENDDO
ENDDO
ENDDO
ENDIF
IF (P_QR .ge. PARAM_FIRST_SCALAR)THEN
DO J=jts,jtf
DO I=its,itf
DO K=kts,ktf
RQRSHTEN(I,K,J)=mu(I,J)*RQRSHTEN(I,K,J)
ENDDO
ENDDO
ENDDO
ENDIF
IF (P_QI .ge. PARAM_FIRST_SCALAR)THEN
DO J=jts,jtf
DO I=its,itf
DO K=kts,ktf
RQISHTEN(I,K,J)=mu(I,J)*RQISHTEN(I,K,J)
ENDDO
ENDDO
ENDDO
ENDIF
IF(P_QS .ge. PARAM_FIRST_SCALAR)THEN
DO J=jts,jtf
DO I=its,itf
DO K=kts,ktf
RQSSHTEN(I,K,J)=mu(I,J)*RQSSHTEN(I,K,J)
ENDDO
ENDDO
ENDDO
ENDIF
IF(P_QG .ge. PARAM_FIRST_SCALAR)THEN
DO J=jts,jtf
DO I=its,itf
DO K=kts,ktf
RQGSHTEN(I,K,J)=mu(I,J)*RQGSHTEN(I,K,J)
ENDDO
ENDDO
ENDDO
ENDIF
ENDIF
! pbl
IF (config_flags%bl_pbl_physics .gt. 0) THEN
DO J=jts,jtf
DO K=kts,ktf
DO I=its,itf
RUBLTEN(I,K,J) =mu(I,J)*RUBLTEN(I,K,J)
RVBLTEN(I,K,J) =mu(I,J)*RVBLTEN(I,K,J)
RTHBLTEN(I,K,J)=mu(I,J)*RTHBLTEN(I,K,J)
ENDDO
ENDDO
ENDDO
IF (P_QV .ge. PARAM_FIRST_SCALAR) THEN
DO J=jts,jtf
DO K=kts,ktf
DO I=its,itf
RQVBLTEN(I,K,J)=mu(I,J)*RQVBLTEN(I,K,J)
ENDDO
ENDDO
ENDDO
ENDIF
IF (P_QC .ge. PARAM_FIRST_SCALAR) THEN
DO J=jts,jtf
DO K=kts,ktf
DO I=its,itf
RQCBLTEN(I,K,J)=mu(I,J)*RQCBLTEN(I,K,J)
ENDDO
ENDDO
ENDDO
ENDIF
IF (P_QI .ge. PARAM_FIRST_SCALAR) THEN
DO J=jts,jtf
DO K=kts,ktf
DO I=its,itf
RQIBLTEN(I,K,J)=mu(I,J)*RQIBLTEN(I,K,J)
ENDDO
ENDDO
ENDDO
ENDIF
ENDIF
! fdda
! note fdda u and v tendencies are staggered, also only interior points have muu/muv,
! so only couple those
IF (config_flags%grid_fdda .gt. 0) THEN
DO J=jts,jtf
DO K=kts,ktf
DO I=itsu,itf
! if( i == itf/2 .AND. j == jtf/2 .AND. k == ktf/2 ) &
! write(*,'(a,3i6,e15.5)') 'u_ten before=',i,k,j, RUNDGDTEN(i,k,j)
RUNDGDTEN(I,K,J) =muu(I,J)*RUNDGDTEN(I,K,J)
! if( i == itf/2 .AND. j == jtf/2 .AND. k==ktf/2 ) &
! write(*,'(a,2f15.5)') 'mu, muu=',mu(i,j), muu(i,j)
! if( i == itf/2 .AND. j == jtf/2 .AND. k == ktf/2 ) &
! write(*,'(a,3i6,e15.5)') 'u_ten after=',i,k,j, RUNDGDTEN(i,k,j)
! if( RUNDGDTEN(i,k,j) > 30.0 ) write(*,*) 'IKJ=',i,k,j
ENDDO
ENDDO
ENDDO
! write(*,'(a,e15.5)') 'u_ten MAXIMUM after=', maxval(RUNDGDTEN)
DO J=jtsv,jtf
DO K=kts,ktf
DO I=its,itf
RVNDGDTEN(I,K,J) =muv(I,J)*RVNDGDTEN(I,K,J)
ENDDO
ENDDO
ENDDO
DO J=jts,jtf
DO K=kts,ktf
DO I=its,itf
! if( i == itf/2 .AND. j == jtf/2 .AND. k == ktf/2 ) &
! write(*,'(a,3i6,e15.5)') 'th before=',i,k,j, RTHNDGDTEN(I,K,J)
RTHNDGDTEN(I,K,J)=mu(I,J)*RTHNDGDTEN(I,K,J)
! RMUNDGDTEN(I,J) - no coupling
! if( i == itf/2 .AND. j == jtf/2 .AND. k == ktf/2 ) &
! write(*,'(a,3i6,e15.5)') 'th after=',i,k,j, RTHNDGDTEN(I,K,J)
ENDDO
ENDDO
ENDDO
IF (P_QV .ge. PARAM_FIRST_SCALAR) THEN
DO J=jts,jtf
DO K=kts,ktf
DO I=its,itf
RQVNDGDTEN(I,K,J)=mu(I,J)*RQVNDGDTEN(I,K,J)
ENDDO
ENDDO
ENDDO
ENDIF
ENDIF
END SUBROUTINE calculate_phy_tend
!-----------------------------------------------------------------------
SUBROUTINE positive_definite_filter ( a, &
ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte )
IMPLICIT NONE
INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte
REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), INTENT(INOUT) :: a
INTEGER :: i,k,j
!<DESCRIPTION>
!
! debug and testing code for bounding a variable
!
!</DESCRIPTION>
DO j=jts,min(jte,jde-1)
DO k=kts,kte-1
DO i=its,min(ite,ide-1)
! a(i,k,j) = max(a(i,k,j),0.)
a(i,k,j) = min(1000.,max(a(i,k,j),0.))
ENDDO
ENDDO
ENDDO
END SUBROUTINE positive_definite_filter
!-----------------------------------------------------------------------
SUBROUTINE bound_tke ( tke, tke_upper_bound, & 1
ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte )
IMPLICIT NONE
INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte
REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), INTENT(INOUT) :: tke
REAL, INTENT( IN) :: tke_upper_bound
INTEGER :: i,k,j
!<DESCRIPTION>
!
! bounds tke between zero and tke_upper_bound.
!
!</DESCRIPTION>
DO j=jts,min(jte,jde-1)
DO k=kts,kte-1
DO i=its,min(ite,ide-1)
tke(i,k,j) = min(tke_upper_bound,max(tke(i,k,j),0.))
ENDDO
ENDDO
ENDDO
END SUBROUTINE bound_tke
!----------------------------------------------------------------------------------
!cyl: Implement the forward Lagrangian trajectory calculation in WRF
!Chiaying Lee RSMAS/UM
!----------------------------------------------------------------------------------
subroutine trajectory ( grid,config_flags, & 1,8
dt,itimestep,ru_m, rv_m, ww_m, mut,muu,muv,&
rdx, rdy, rdn, rdnw,rdzw, &
traj_i,traj_j,traj_k, &
traj_long,traj_lat, &
xlong,xlat, &
msft,msfu,msfv, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
!---------------------------------------------------------------------------------------------------
implicit none
!---------------------------------------------------------------------------------------------------
! Subroutine trajectory calculates forward Lagrangian trajectory
! of the selecting points. The trajectory of each point is subjected to u, v, and w.
! (Lee and Chen 2013, MWR).
!
! The trajectories is initialized with given longitude (degree), latitude (degree), and height(eta level).
!
!--traj_i grid number in x direction (on mass grid), float
!--traj_j grid number in y direction (on mass grid), float
!--traj_k grid number in z direction (on mass grid), float
!--traj_long longitude of trajectories, float
!--traj_lat longitude of trajectories, float
!
!--------------------------------------------------------------------------------------------------
TYPE(proj_info) :: proj
TYPE(domain), INTENT(IN) :: grid
TYPE (grid_config_rec_type) , INTENT(IN) :: config_flags
INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte
INTEGER , INTENT(IN ) :: itimestep
REAL , INTENT(IN ) :: rdx, &
rdy, &
dt
REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: rdn, &
rdnw
REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , &
INTENT(IN ) :: ru_m, &
rv_m, &
ww_m
REAL , DIMENSION( ims:ime , jms:jme ) , &
INTENT(IN ) ::xlong, xlat
real, dimension(kms:kme), intent(inout) :: traj_i,traj_j,traj_k
real, dimension(kms:kme), intent(inout) :: traj_long,traj_lat
real, dimension(ims:ime,kms:kme,jms:jme),intent(in) :: rdzw
real, dimension(ims:ime,kms:kme,jms:jme)::u,v,w
real, dimension(ims:ime,jms:jme),intent(in)::msft,msfu,msfv
real, dimension(ims:ime,jms:jme),intent(in)::muu,muv,mut
integer :: i_traj,j_traj,k_traj,tjk,k
real :: traj_u,traj_v,traj_w
real :: rdx_grid,rdy_grid,rdz_grid
real :: deltx, delty, deltz,ax
real :: const1
real :: temp_i,temp_j
integer :: i_u,j_v,k_w
real :: u_a,u_b,u_c,u_d,v_a,v_b,v_c,v_d,w_a,w_b,w_c,w_d
real :: d_a,d_b,d_c,d_d
real :: u_temp_upper,u_temp_lower
real :: v_temp_upper,v_temp_lower
real :: w_temp_upper,w_temp_lower
real :: eta_old, eta_new
integer :: keta, keta_temp
! varalbe for map projectory
real:: known_lat, known_lon
TYPE (grid_config_rec_type) :: config_flags_temp
config_flags_temp = config_flags
call trajmapproj
(grid, config_flags_temp,proj)
! convert ru_m, rv_m and ww_m in u,v,w
const1=1.0/2.0/sqrt(2.0)
do k=kms,kme
u(:,k,:)=ru_m(:,k,:)/muu(:,:)*msfu(:,:)
v(:,k,:)=rv_m(:,k,:)/muv(:,:)*msfv(:,:)
w(:,k,:)=ww_m(:,k,:)/mut(:,:)*msft(:,:)
enddo
do tjk = 1,config_flags%num_traj
eta_old = 0.0
eta_new = 0.0
keta=0
keta_temp=0
if (traj_lat(tjk) .ne. -9999.0) then
call latlon_to_ij
(proj, traj_lat(tjk),traj_long(tjk),traj_i(tjk),traj_j(tjk))
i_traj=floor(traj_i(tjk)) ! find the lower_left_bottom corner for trajectory
j_traj=floor(traj_j(tjk)) !
k_traj=floor(traj_k(tjk)) !
if ((i_traj .ge. its .and. i_traj .le. ite .and. i_traj .lt. ide) .and. &
(j_traj .ge. jts .and. j_traj .le. jte .and. j_traj .lt. jde) .and. &
(k_traj .le. kte .and. k_traj .lt. kde)) then
! for u : check x stagger
if (traj_i(tjk)-real(floor(traj_i(tjk))) .ge. 0.5 ) then
i_u=floor(traj_i(tjk)) + 1
else
i_u=floor(traj_i(tjk))
endif
! for layer k_traj
if (k_traj .ge. 1 ) then
u_a=u(i_u ,k_traj,j_traj+1)
u_b=u(i_u ,k_traj,j_traj )
u_c=u(i_u+1,k_traj,j_traj )
u_d=u(i_u+1,k_traj,j_traj+1)
else
u_a=0.0
u_b=0.0
u_c=0.0
u_d=0.0
endif
d_a=abs((real(i_u+1)-(traj_i(tjk)+0.5))*(real(j_traj )-traj_j(tjk)))
d_b=abs((real(i_u+1)-(traj_i(tjk)+0.5))*(real(j_traj+1)-traj_j(tjk)))
d_c=abs((real(i_u )-(traj_i(tjk)+0.5))*(real(j_traj+1)-traj_j(tjk)))
d_d=abs((real(i_u )-(traj_i(tjk)+0.5))*(real(j_traj )-traj_j(tjk)))
u_temp_lower=(u_a*d_a+u_b*d_b+u_c*d_c+u_d*d_d)/(d_a+d_b+d_c+d_d)
!for layer k_traj+1
u_a=u(i_u ,k_traj+1,j_traj+1)
u_b=u(i_u ,k_traj+1,j_traj )
u_c=u(i_u+1,k_traj+1,j_traj )
u_d=u(i_u+1,k_traj+1,j_traj+1)
d_a=abs((real(i_u+1)-(traj_i(tjk)+0.5))*(real(j_traj )-traj_j(tjk)))
d_b=abs((real(i_u+1)-(traj_i(tjk)+0.5))*(real(j_traj+1)-traj_j(tjk)))
d_c=abs((real(i_u )-(traj_i(tjk)+0.5))*(real(j_traj+1)-traj_j(tjk)))
d_d=abs((real(i_u )-(traj_i(tjk)+0.5))*(real(j_traj )-traj_j(tjk)))
u_temp_upper=(u_a*d_a+u_b*d_b+u_c*d_c+u_d*d_d)/(d_a+d_b+d_c+d_d)
traj_u=u_temp_upper*abs(real(k_traj)-traj_k(tjk))+u_temp_lower*abs(real(k_traj+1)-traj_k(tjk))
! for v: check y-stagger
if (traj_j(tjk)-real(floor(traj_j(tjk))) .ge. 0.5 ) then
j_v=floor(traj_j(tjk)) + 1
else
j_v=floor(traj_j(tjk))
endif
! for layer k_traj
if (k_traj .ge. 1 ) then
v_a=v(i_traj ,k_traj,j_v+1)
v_b=v(i_traj ,k_traj,j_v )
v_c=v(i_traj+1,k_traj,j_v )
v_d=v(i_traj+1,k_traj,j_v+1)
else
v_a=0.0
v_b=0.0
v_c=0.0
v_d=0.0
endif
d_a=abs((real(i_traj+1)-traj_i(tjk))*(real(j_v )-(traj_j(tjk)+0.5)))
d_b=abs((real(i_traj+1)-traj_i(tjk))*(real(j_v+1)-(traj_j(tjk)+0.5)))
d_c=abs((real(i_traj )-traj_i(tjk))*(real(j_v+1)-(traj_j(tjk)+0.5)))
d_d=abs((real(i_traj )-traj_i(tjk))*(real(j_v )-(traj_j(tjk)+0.5)))
v_temp_lower=(v_a*d_a+v_b*d_b+v_c*d_c+v_d*d_d)/(d_a+d_b+d_c+d_d)
!for layer k_traj+1
v_a=v(i_traj ,k_traj+1,j_v+1)
v_b=v(i_traj ,k_traj+1,j_v )
v_c=v(i_traj+1,k_traj+1,j_v )
v_d=v(i_traj+1,k_traj+1,j_v+1)
d_a=abs((real(i_traj+1)-traj_i(tjk))*(real(j_v )-(traj_j(tjk)+0.5)))
d_b=abs((real(i_traj+1)-traj_i(tjk))*(real(j_v+1)-(traj_j(tjk)+0.5)))
d_c=abs((real(i_traj )-traj_i(tjk))*(real(j_v+1)-(traj_j(tjk)+0.5)))
d_d=abs((real(i_traj )-traj_i(tjk))*(real(j_v )-(traj_j(tjk)+0.5)))
v_temp_upper=(v_a*d_a+v_b*d_b+v_c*d_c+v_d*d_d)/(d_a+d_b+d_c+d_d)
traj_v=v_temp_upper*abs(real(k_traj)-traj_k(tjk))+v_temp_lower*abs(real(k_traj+1)-traj_k(tjk))
!for w: check for z-stagger
if (traj_k(tjk)-real(floor(traj_k(tjk))) .ge. 0.5 ) then
k_w=floor(traj_k(tjk)) + 1
else
k_w=floor(traj_k(tjk))
endif
!for layer j_traj
if (k_w .ge. 1) then
w_b=w(i_traj ,k_w ,j_traj)
w_c=w(i_traj+1,k_w ,j_traj)
else
w_b=0.0
w_c=0.0
endif
w_a=w(i_traj ,k_w+1,j_traj)
w_d=w(i_traj+1,k_w+1,j_traj)
d_a=abs((real(i_traj+1)-traj_i(tjk))*(real(k_w )-(traj_k(tjk)+0.5)))
d_b=abs((real(i_traj+1)-traj_i(tjk))*(real(k_w+1)-(traj_k(tjk)+0.5)))
d_c=abs((real(i_traj )-traj_i(tjk))*(real(k_w+1)-(traj_k(tjk)+0.5)))
d_d=abs((real(i_traj )-traj_i(tjk))*(real(k_w )-(traj_k(tjk)+0.5)))
w_temp_lower=(w_a*d_a+w_b*d_b+w_c*d_c+w_d*d_d)/(d_a+d_b+d_c+d_d)
!for layer j_traj+1
if (k_w .ge. 1) then
w_b=w(i_traj ,k_w ,j_traj+1)
w_c=w(i_traj+1,k_w ,j_traj+1)
else
w_b=0.0
w_c=0.0
endif
w_a=w(i_traj ,k_w+1,j_traj+1)
w_d=w(i_traj+1,k_w+1,j_traj+1)
d_a=abs((real(i_traj+1)-traj_i(tjk))*(real(k_w )-(traj_k(tjk)+0.5)))
d_b=abs((real(i_traj+1)-traj_i(tjk))*(real(k_w+1)-(traj_k(tjk)+0.5)))
d_c=abs((real(i_traj )-traj_i(tjk))*(real(k_w+1)-(traj_k(tjk)+0.5)))
d_d=abs((real(i_traj )-traj_i(tjk))*(real(k_w )-(traj_k(tjk)+0.5)))
w_temp_upper=(w_a*d_a+w_b*d_b+w_c*d_c+w_d*d_d)/(d_a+d_b+d_c+d_d)
traj_w=w_temp_upper*abs(real(j_traj)-traj_j(tjk))+w_temp_lower*abs(real(j_traj+1)-traj_j(tjk))
!get old eta
eta_old=grid%znw(k_w+1)*abs(traj_k(tjk)+0.5-real(k_w))+grid%znw(k_w)*abs(traj_k(tjk)+0.5-real(k_w+1))
rdx_grid=rdx*msft(i_traj,j_traj)! 1/(dx/msft)
rdy_grid=rdy*msft(i_traj,j_traj)
rdz_grid=rdnw(k_traj)
deltx=traj_u*DT
delty=traj_v*DT
deltz=traj_w*DT
traj_i(tjk)=traj_i(tjk)+deltx*rdx_grid
traj_j(tjk)=traj_j(tjk)+delty*rdy_grid
eta_new=eta_old+deltz
! get new traj_k(tjk)
keta_temp = 0
do keta=1, kme-1
if (eta_new .le. grid%znw(keta) .and. eta_new .gt. grid%znw(keta+1)) then
keta_temp=keta
endif
enddo
if (keta_temp .eq. 0) then
traj_k(tjk) = traj_k(tjk)
else
traj_k(tjk) = (real(keta_temp)*abs(eta_new-grid%znw(keta_temp+1))+ &
real(keta_temp+1)*abs(eta_new-grid%znw(keta_temp))) &
/(grid%znw(keta_temp)-grid%znw(keta_temp+1))
traj_k(tjk) = traj_k(tjk)-0.5
endif
!! convert i,j,k into lon, lat
call ij_to_latlon
(proj, traj_i(tjk), traj_j(tjk),traj_lat(tjk),traj_long(tjk))
else
traj_i(tjk) = -9999.0
traj_j(tjk) = -9999.0
traj_k(tjk) = -9999.0
traj_long(tjk) = -9999.0
traj_lat(tjk) = -9999.0
endif
endif
traj_i(tjk) = wrf_dm_max_real
(traj_i(tjk))! save the information from highest fomain
traj_j(tjk) = wrf_dm_max_real
(traj_j(tjk))
traj_k(tjk) = wrf_dm_max_real
(traj_k(tjk))
traj_long(tjk) = wrf_dm_max_real
(traj_long(tjk))
traj_lat(tjk) = wrf_dm_max_real
(traj_lat(tjk))
enddo
!end trajectory
END SUBROUTINE trajectory
!------------------------------------------------------------------------
!cyl:Implement the map prpjection code for trajectory calculation
! Chiaying Lee RSMAS/UM
!------------------------------------------------------------------------
subroutine trajmapproj (grid,config_flags,ts_proj) 1,10
!------------------------------------------------------------------------
!!! This code calculates map-projection of trajectories. It is from share/wrf_timeseries.F
!------------------------------------------------------------------------
IMPLICIT NONE
! Arguments
TYPE (domain), INTENT(IN) :: grid
TYPE (grid_config_rec_type) , INTENT(IN) :: config_flags
! Externals
LOGICAL, EXTERNAL :: wrf_dm_on_monitor
INTEGER, EXTERNAL :: get_unused_unit
! Local variables
INTEGER :: ntsloc_temp
INTEGER :: i, k, iunit
REAL :: ts_rx, ts_ry, ts_xlat, ts_xlong, ts_hgt
REAL :: known_lat, known_lon
CHARACTER (LEN=132) :: message
TYPE (PROJ_INFO), INTENT(out) :: ts_proj
INTEGER :: ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
ips, ipe, jps, jpe, kps, kpe, &
imsx, imex, jmsx, jmex, kmsx, kmex, &
ipsx, ipex, jpsx, jpex, kpsx, kpex, &
imsy, imey, jmsy, jmey, kmsy, kmey, &
ipsy, ipey, jpsy, jpey, kpsy, kpey
TYPE (grid_config_rec_type) :: config_flags_temp
config_flags_temp = config_flags
CALL get_ijk_from_grid
( grid , &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
ips, ipe, jps, jpe, kps, kpe, &
imsx, imex, jmsx, jmex, kmsx, kmex, &
ipsx, ipex, jpsx, jpex, kpsx, kpex, &
imsy, imey, jmsy, jmey, kmsy, kmey, &
ipsy, ipey, jpsy, jpey, kpsy, kpey )
CALL model_to_grid_config_rec
( grid%id , model_config_rec , config_flags_temp )
! Set up map transformation structure
CALL map_init
(ts_proj)
IF (ips <= 1 .AND. 1 <= ipe .AND. &
jps <= 1 .AND. 1 <= jpe) THEN
known_lat = grid%xlat(1,1)
known_lon = grid%xlong(1,1)
ELSE
known_lat = 9999.
known_lon = 9999.
END IF
known_lat = wrf_dm_min_real
(known_lat)
known_lon = wrf_dm_min_real
(known_lon)
! Mercator
IF (config_flags%map_proj == PROJ_MERC) THEN
CALL map_set
(PROJ_MERC, ts_proj, &
truelat1 = config_flags%truelat1, &
lat1 = known_lat, &
lon1 = known_lon, &
knowni = 1., &
knownj = 1., &
dx = config_flags%dx)
! Lambert conformal
ELSE IF (config_flags%map_proj == PROJ_LC) THEN
CALL map_set
(PROJ_LC, ts_proj, &
truelat1 = config_flags%truelat1, &
truelat2 = config_flags%truelat2, &
stdlon = config_flags%stand_lon, &
lat1 = known_lat, &
lon1 = known_lon, &
knowni = 1., &
knownj = 1., &
dx = config_flags%dx)
! Polar stereographic
ELSE IF (config_flags%map_proj == PROJ_PS) THEN
CALL map_set
(PROJ_PS, ts_proj, &
truelat1 = config_flags%truelat1, &
stdlon = config_flags%stand_lon, &
lat1 = known_lat, &
lon1 = known_lon, &
knowni = 1., &
knownj = 1., &
dx = config_flags%dx)
! Cassini (global ARW)
ELSE IF (config_flags%map_proj == PROJ_CASSINI) THEN
CALL map_set
(PROJ_CASSINI, ts_proj, &
latinc = grid%dy*360.0/(2.0*EARTH_RADIUS_M*PI), &
loninc = grid%dx*360.0/(2.0*EARTH_RADIUS_M*PI), &
lat1 = known_lat, &
lon1 = known_lon, &
! We still need to get POLE_LAT and POLE_LON metadata variables before
! this will work for rotated poles.
lat0 = 90.0, &
lon0 = 0.0, &
knowni = 1., &
knownj = 1., &
stdlon = config_flags%stand_lon)
! Rotated latitude-longitude
ELSE IF (config_flags%map_proj == PROJ_ROTLL) THEN
CALL map_set
(PROJ_ROTLL, ts_proj, &
! I have no idea how this should work for NMM nested domains
ixdim = grid%e_we-1, &
jydim = grid%e_sn-1, &
phi = real(grid%e_sn-2)*grid%dy/2.0, &
lambda = real(grid%e_we-2)*grid%dx, &
lat1 = config_flags%cen_lat, &
lon1 = config_flags%cen_lon, &
latinc = grid%dy, &
loninc = grid%dx, &
stagger = HH)
END IF
end subroutine trajmapproj
END MODULE module_em