!WRF:MODEL_LAYER:DYNAMICS ! MODULE module_em 3 USE module_model_constants USE module_advect_em, only: advect_u, advect_v, advect_w, advect_scalar, advect_scalar_pd, advect_scalar_mono, & advect_weno_u, advect_weno_v, advect_weno_w, advect_scalar_weno, advect_scalar_wenopd USE module_big_step_utilities_em, only: grid_config_rec_type, calculate_full, couple_momentum, calc_mu_uv, calc_ww_cp, calc_cq, calc_alt, calc_php, set_tend, rhs_ph, & horizontal_pressure_gradient, pg_buoy_w, w_damp, perturbation_coriolis, coriolis, curvature, horizontal_diffusion, horizontal_diffusion_3dmp, vertical_diffusion_u, & vertical_diffusion_v, vertical_diffusion, vertical_diffusion_3dmp, sixth_order_diffusion, rk_rayleigh_damp, theta_relaxation, vertical_diffusion_mp, zero_tend, zero_tend2d USE module_state_description, only: param_first_scalar, p_qr, p_qv, p_qc, p_qg, p_qi, p_qs, tiedtkescheme, heldsuarez, positivedef, & gdscheme, g3scheme, gfscheme, kfetascheme, monotonic, wenopd_scalar, weno_scalar, weno_mom USE module_damping_em, only: held_suarez_damp USE module_dm USE module_llxy USE module_domain, ONLY : domain, get_ijk_from_grid USE module_configure, ONLY: grid_config_rec_type, model_config_rec, model_to_grid_config_rec CONTAINS !------------------------------------------------------------------------ SUBROUTINE rk_step_prep ( config_flags, rk_step, & 1,7 u, v, w, t, ph, mu, & moist, & ru, rv, rw, ww, php, alt, & muu, muv, & mub, mut, phb, pb, p, al, alb, & cqu, cqv, cqw, & msfux, msfuy, & msfvx, msfvx_inv, msfvy, & msftx, msfty, & fnm, fnp, dnw, rdx, rdy, & n_moist, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) IMPLICIT NONE ! Input data. TYPE(grid_config_rec_type ) , INTENT(IN ) :: config_flags INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte INTEGER , INTENT(IN ) :: n_moist, rk_step REAL , INTENT(IN ) :: rdx, rdy REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , & INTENT(IN ) :: u, & v, & w, & t, & ph, & phb, & pb, & al, & alb REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , & INTENT( OUT) :: ru, & rv, & rw, & ww, & php, & cqu, & cqv, & cqw, & alt REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , & INTENT(IN ) :: p REAL , DIMENSION( ims:ime, kms:kme, jms:jme, n_moist ), INTENT( IN) :: & moist REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msftx, & msfty, & msfux, & msfuy, & msfvx, & msfvx_inv, & msfvy, & mu, & mub REAL , DIMENSION( ims:ime , jms:jme ) , INTENT( OUT) :: muu, & muv, & mut REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fnm, fnp, dnw integer :: k !<DESCRIPTION> ! ! rk_step_prep prepares a number of diagnostic quantities ! in preperation for a Runge-Kutta timestep. subroutines called ! by rk_step_prep calculate ! ! (1) total column dry air mass (mut, call to calculate_full) ! ! (2) total column dry air mass at u and v points ! (muu, muv, call to calculate_mu_uv) ! ! (3) mass-coupled velocities for advection ! (ru, rv, and rw, call to couple_momentum) ! ! (4) omega (call to calc_ww_cp) ! ! (5) moisture coefficients (cqu, cqv, cqw, call to calc_cq) ! ! (6) inverse density (alt, call to calc_alt) ! ! (7) geopotential at pressure points (php, call to calc_php) ! !</DESCRIPTION> CALL calculate_full( mut, mub, mu, & ids, ide, jds, jde, 1, 2, & ims, ime, jms, jme, 1, 1, & its, ite, jts, jte, 1, 1 ) CALL calc_mu_uv ( config_flags, & mu, mub, muu, muv, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL couple_momentum( muu, ru, u, msfuy, & muv, rv, v, msfvx, msfvx_inv, & mut, rw, w, msfty, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ! new call, couples V with mu, also has correct map factors. WCS, 3 june 2001 CALL calc_ww_cp ( u, v, mu, mub, ww, & rdx, rdy, msftx, msfty, & msfux, msfuy, msfvx, msfvx_inv, & msfvy, dnw, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL calc_cq ( moist, cqu, cqv, cqw, n_moist, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL calc_alt ( alt, al, alb, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL calc_php ( php, ph, phb, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) END SUBROUTINE rk_step_prep !------------------------------------------------------------------------------- SUBROUTINE rk_tendency ( config_flags, rk_step, & 1,42 ru_tend, rv_tend, rw_tend, ph_tend, t_tend, & ru_tendf, rv_tendf, rw_tendf, ph_tendf, t_tendf, & mu_tend, u_save, v_save, w_save, ph_save, & t_save, mu_save, RTHFTEN, & ru, rv, rw, ww, & u, v, w, t, ph, & u_old, v_old, w_old, t_old, ph_old, & h_diabatic, phb,t_init, & mu, mut, muu, muv, mub, & al, alt, p, pb, php, cqu, cqv, cqw, & u_base, v_base, t_base, qv_base, z_base, & msfux, msfuy, msfvx, msfvx_inv, & msfvy, msftx, msfty, & clat, f, e, sina, cosa, & fnm, fnp, rdn, rdnw, & dt, rdx, rdy, khdif, kvdif, xkmhd, xkhh, & diff_6th_opt, diff_6th_factor, & adv_opt, & dampcoef,zdamp,damp_opt,rad_nudge, & cf1, cf2, cf3, cfn, cfn1, n_moist, & non_hydrostatic, top_lid, & u_frame, v_frame, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte, & max_vert_cfl, max_horiz_cfl) IMPLICIT NONE ! Input data. TYPE(grid_config_rec_type) , INTENT(IN ) :: config_flags INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte LOGICAL , INTENT(IN ) :: non_hydrostatic, top_lid INTEGER , INTENT(IN ) :: n_moist, rk_step REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , & INTENT(IN ) :: ru, & rv, & rw, & ww, & u, & v, & w, & t, & ph, & u_old, & v_old, & w_old, & t_old, & ph_old, & phb, & al, & alt, & p, & pb, & php, & cqu, & cqv, & t_init, & xkmhd, & xkhh, & h_diabatic REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , & INTENT(OUT ) :: ru_tend, & rv_tend, & rw_tend, & t_tend, & ph_tend, & RTHFTEN, & u_save, & v_save, & w_save, & ph_save, & t_save REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , & INTENT(INOUT) :: ru_tendf, & rv_tendf, & rw_tendf, & t_tendf, & ph_tendf, & cqw REAL , DIMENSION( ims:ime , jms:jme ) , INTENT( OUT) :: mu_tend, & mu_save REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msfux, & msfuy, & msfvx, & msfvx_inv, & msfvy, & msftx, & msfty, & clat, & f, & e, & sina, & cosa, & mu, & mut, & mub, & muu, & muv REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fnm, & fnp, & rdn, & rdnw, & u_base, & v_base, & t_base, & qv_base, & z_base REAL , INTENT(IN ) :: rdx, & rdy, & dt, & u_frame, & v_frame, & khdif, & kvdif INTEGER, INTENT( IN ) :: diff_6th_opt REAL, INTENT( IN ) :: diff_6th_factor INTEGER, INTENT( IN ) :: adv_opt INTEGER, INTENT( IN ) :: damp_opt, rad_nudge REAL, INTENT( IN ) :: zdamp, dampcoef REAL, INTENT( OUT ) :: max_horiz_cfl REAL, INTENT( OUT ) :: max_vert_cfl REAL :: kdift, khdq, kvdq, cfn, cfn1, cf1, cf2, cf3 INTEGER :: i,j,k INTEGER :: time_step !<DESCRIPTION> ! ! rk_tendency computes the large-timestep tendency terms in the ! momentum, thermodynamic (theta), and geopotential equations. ! These terms include: ! ! (1) advection (for u, v, w, theta - calls to advect_u, advect_v, ! advect_w, and advact_scalar). ! ! (2) geopotential equation terms (advection and "gw" - call to rhs_ph). ! ! (3) buoyancy term in vertical momentum equation (call to pg_buoy_w). ! ! (4) Coriolis and curvature terms in u,v,w momentum equations ! (calls to subroutines coriolis, curvature) ! ! (5) 3D diffusion on coordinate surfaces. ! !</DESCRIPTION> CALL zero_tend ( ru_tend, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend ( rv_tend, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend ( rw_tend, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend ( t_tend, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend ( ph_tend, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend ( u_save, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend ( v_save, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend ( w_save, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend ( ph_save, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend ( t_save, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend2d( mu_tend, & ids, ide, jds, jde, 1, 1, & ims, ime, jms, jme, 1, 1, & its, ite, jts, jte, 1, 1 ) CALL zero_tend2d( mu_save, & ids, ide, jds, jde, 1, 1, & ims, ime, jms, jme, 1, 1, & its, ite, jts, jte, 1, 1 ) ! advection tendencies CALL nl_get_time_step ( 1, time_step ) IF( (rk_step == 3) .and. ( adv_opt == WENO_MOM ) ) THEN CALL advect_weno_u ( u, u , ru_tend, ru, rv, ww, & mut, time_step, config_flags, & msfux, msfuy, msfvx, msfvy, & msftx, msfty, & fnm, fnp, rdx, rdy, rdnw, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ELSE CALL advect_u ( u, u , ru_tend, ru, rv, ww, & mut, time_step, config_flags, & msfux, msfuy, msfvx, msfvy, & msftx, msfty, & fnm, fnp, rdx, rdy, rdnw, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ENDIF IF( (rk_step == 3) .and. ( adv_opt == WENO_MOM ) ) THEN CALL advect_weno_v ( v, v , rv_tend, ru, rv, ww, & mut, time_step, config_flags, & msfux, msfuy, msfvx, msfvy, & msftx, msfty, & fnm, fnp, rdx, rdy, rdnw, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ELSE CALL advect_v ( v, v , rv_tend, ru, rv, ww, & mut, time_step, config_flags, & msfux, msfuy, msfvx, msfvy, & msftx, msfty, & fnm, fnp, rdx, rdy, rdnw, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ENDIF IF (non_hydrostatic) THEN IF( (rk_step == 3) .and. ( adv_opt == WENO_MOM ) ) THEN CALL advect_weno_w ( w, w, rw_tend, ru, rv, ww, & mut, time_step, config_flags, & msfux, msfuy, msfvx, msfvy, & msftx, msfty, & fnm, fnp, rdx, rdy, rdn, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ELSE CALL advect_w ( w, w, rw_tend, ru, rv, ww, & mut, time_step, config_flags, & msfux, msfuy, msfvx, msfvy, & msftx, msfty, & fnm, fnp, rdx, rdy, rdn, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ENDIF ENDIF ! theta flux divergence CALL advect_scalar ( t, t, t_tend, ru, rv, ww, & mut, time_step, config_flags, & msfux, msfuy, msfvx, msfvy, & msftx, msfty, fnm, fnp, & rdx, rdy, rdnw, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) IF ( config_flags%cu_physics == GDSCHEME .OR. & config_flags%cu_physics == GFSCHEME .OR. & config_flags%cu_physics == G3SCHEME ) THEN ! theta advection only: CALL set_tend( RTHFTEN, t_tend, msfty, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) END IF CALL rhs_ph( ph_tend, u, v, ww, ph, ph, phb, w, & mut, muu, muv, & fnm, fnp, & rdnw, cfn, cfn1, rdx, rdy, & msfux, msfuy, msfvx, & msfvx_inv, msfvy, & msftx, msfty, & non_hydrostatic, & config_flags, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL horizontal_pressure_gradient( ru_tend,rv_tend, & ph,alt,p,pb,al,php,cqu,cqv, & muu,muv,mu,fnm,fnp,rdnw, & cf1,cf2,cf3,rdx,rdy,msfux,msfuy,& msfvx,msfvy,msftx,msfty, & config_flags, non_hydrostatic, & top_lid, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) IF (non_hydrostatic) THEN CALL pg_buoy_w( rw_tend, p, cqw, mu, mub, & rdnw, rdn, g, msftx, msfty, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ENDIF CALL w_damp ( rw_tend, max_vert_cfl, & max_horiz_cfl, & u, v, ww, w, mut, rdnw, & rdx, rdy, msfux, msfuy, msfvx, & msfvy, dt, config_flags, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) IF(config_flags%pert_coriolis) THEN CALL perturbation_coriolis ( ru, rv, rw, & ru_tend, rv_tend, rw_tend, & config_flags, & u_base, v_base, z_base, & muu, muv, phb, ph, & msftx, msfty, msfux, msfuy, & msfvx, msfvy, & f, e, sina, cosa, fnm, fnp, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ELSE CALL coriolis ( ru, rv, rw, & ru_tend, rv_tend, rw_tend, & config_flags, & msftx, msfty, msfux, msfuy, & msfvx, msfvy, & f, e, sina, cosa, fnm, fnp, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) END IF CALL curvature ( ru, rv, rw, u, v, w, & ru_tend, rv_tend, rw_tend, & config_flags, & msfux, msfuy, msfvx, msfvy, & msftx, msfty, & clat, fnm, fnp, rdx, rdy, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ! Damping option added for Held-Suarez test (also uses lw option HELDSUAREZ) IF (config_flags%ra_lw_physics == HELDSUAREZ) THEN CALL held_suarez_damp ( ru_tend, rv_tend, & ru,rv,p,pb, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) END IF !************************************************************** ! ! Next, the terms that we integrate only with forward-in-time ! (evaluate with time t variables). ! !************************************************************** forward_step: IF( rk_step == 1 ) THEN diff_opt1 : IF (config_flags%diff_opt .eq. 1) THEN CALL horizontal_diffusion ('u', u, ru_tendf, mut, config_flags, & msfux, msfuy, msfvx, msfvx_inv, & msfvy,msftx, msfty, & khdif, xkmhd, rdx, rdy, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL horizontal_diffusion ('v', v, rv_tendf, mut, config_flags, & msfux, msfuy, msfvx, msfvx_inv, & msfvy,msftx, msfty, & khdif, xkmhd, rdx, rdy, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL horizontal_diffusion ('w', w, rw_tendf, mut, config_flags, & msfux, msfuy, msfvx, msfvx_inv, & msfvy,msftx, msfty, & khdif, xkmhd, rdx, rdy, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) khdq = 3.*khdif CALL horizontal_diffusion_3dmp ( 'm', t, t_tendf, mut, & config_flags, t_init, & msfux, msfuy, msfvx, msfvx_inv, & msfvy, msftx, msfty, & khdq , xkhh, rdx, rdy, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) pbl_test : IF (config_flags%bl_pbl_physics .eq. 0) THEN CALL vertical_diffusion_u ( u, ru_tendf, config_flags, & u_base, & alt, muu, rdn, rdnw, kvdif, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL vertical_diffusion_v ( v, rv_tendf, config_flags, & v_base, & alt, muv, rdn, rdnw, kvdif, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) IF (non_hydrostatic) & CALL vertical_diffusion ( 'w', w, rw_tendf, config_flags, & alt, mut, rdn, rdnw, kvdif, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) kvdq = 3.*kvdif CALL vertical_diffusion_3dmp ( t, t_tendf, config_flags, t_init, & alt, mut, rdn, rdnw, kvdq , & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ENDIF pbl_test ! Theta tendency computations. END IF diff_opt1 IF ( diff_6th_opt .NE. 0 ) THEN CALL sixth_order_diffusion( 'u', u, ru_tendf, mut, dt, & config_flags, & diff_6th_opt, diff_6th_factor, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL sixth_order_diffusion( 'v', v, rv_tendf, mut, dt, & config_flags, & diff_6th_opt, diff_6th_factor, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) IF (non_hydrostatic) & CALL sixth_order_diffusion( 'w', w, rw_tendf, mut, dt, & config_flags, & diff_6th_opt, diff_6th_factor, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL sixth_order_diffusion( 'm', t, t_tendf, mut, dt, & config_flags, & diff_6th_opt, diff_6th_factor, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ENDIF IF( damp_opt .eq. 2 ) & CALL rk_rayleigh_damp( ru_tendf, rv_tendf, & rw_tendf, t_tendf, & u, v, w, t, t_init, & mut, muu, muv, ph, phb, & u_base, v_base, t_base, z_base, & dampcoef, zdamp, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) IF( rad_nudge .eq. 1 ) & CALL theta_relaxation( t_tendf, t, t_init, & mut, ph, phb, & t_base, z_base, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) END IF forward_step END SUBROUTINE rk_tendency !------------------------------------------------------------------------------- SUBROUTINE rk_addtend_dry ( ru_tend, rv_tend, rw_tend, ph_tend, t_tend, & 1 ru_tendf, rv_tendf, rw_tendf, ph_tendf, t_tendf, & u_save, v_save, w_save, ph_save, t_save, & mu_tend, mu_tendf, rk_step, & h_diabatic, mut, msftx, msfty, msfux, msfuy, & msfvx, msfvx_inv, msfvy, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & ips,ipe, jps,jpe, kps,kpe, & its,ite, jts,jte, kts,kte ) IMPLICIT NONE ! Input data. INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & ips, ipe, jps, jpe, kps, kpe, & its, ite, jts, jte, kts, kte INTEGER , INTENT(IN ) :: rk_step REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , INTENT(INOUT) :: ru_tend, & rv_tend, & rw_tend, & ph_tend, & t_tend, & ru_tendf, & rv_tendf, & rw_tendf, & ph_tendf, & t_tendf REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(INOUT) :: mu_tend, & mu_tendf REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , INTENT(IN ) :: u_save, & v_save, & w_save, & ph_save, & t_save, & h_diabatic REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: mut, & msftx, & msfty, & msfux, & msfuy, & msfvx, & msfvx_inv, & msfvy ! Local INTEGER :: i, j, k !<DESCRIPTION> ! ! rk_addtend_dry constructs the full large-timestep tendency terms for ! momentum (u,v,w), theta and geopotential equations. This is accomplished ! by combining the physics tendencies (in *tendf; these are computed ! the first RK substep, held fixed thereafter) with the RK tendencies ! (in *tend, these include advection, pressure gradient, etc; ! these change each rk substep). Output is in *tend. ! !</DESCRIPTION> ! Finally, add the forward-step tendency to the rk_tendency ! u/v/w/save contain bc tendency that needs to be multiplied by msf ! (u by msfuy, v by msfvx) ! before adding it to physics tendency (*tendf) ! For momentum we need the final tendency to include an inverse msf ! physics/bc tendency needs to be divided, advection tendency already has it ! For scalars we need the final tendency to include an inverse msf (msfty) ! advection tendency is OK, physics/bc tendency needs to be divided by msf DO j = jts,MIN(jte,jde-1) DO k = kts,kte-1 DO i = its,ite ! multiply by my to uncouple u IF(rk_step == 1)ru_tendf(i,k,j) = ru_tendf(i,k,j) + u_save(i,k,j)*msfuy(i,j) ! divide by my to couple u ru_tend(i,k,j) = ru_tend(i,k,j) + ru_tendf(i,k,j)/msfuy(i,j) ENDDO ENDDO ENDDO DO j = jts,jte DO k = kts,kte-1 DO i = its,MIN(ite,ide-1) ! multiply by mx to uncouple v IF(rk_step == 1)rv_tendf(i,k,j) = rv_tendf(i,k,j) + v_save(i,k,j)*msfvx(i,j) ! divide by mx to couple v rv_tend(i,k,j) = rv_tend(i,k,j) + rv_tendf(i,k,j)*msfvx_inv(i,j) ENDDO ENDDO ENDDO DO j = jts,MIN(jte,jde-1) DO k = kts,kte DO i = its,MIN(ite,ide-1) ! multiply by my to uncouple w IF(rk_step == 1)rw_tendf(i,k,j) = rw_tendf(i,k,j) + w_save(i,k,j)*msfty(i,j) ! divide by my to couple w rw_tend(i,k,j) = rw_tend(i,k,j) + rw_tendf(i,k,j)/msfty(i,j) IF(rk_step == 1)ph_tendf(i,k,j) = ph_tendf(i,k,j) + ph_save(i,k,j) ! divide by my to couple scalar ph_tend(i,k,j) = ph_tend(i,k,j) + ph_tendf(i,k,j)/msfty(i,j) ENDDO ENDDO ENDDO DO j = jts,MIN(jte,jde-1) DO k = kts,kte-1 DO i = its,MIN(ite,ide-1) IF(rk_step == 1)t_tendf(i,k,j) = t_tendf(i,k,j) + t_save(i,k,j) ! divide by my to couple theta t_tend(i,k,j) = t_tend(i,k,j) + t_tendf(i,k,j)/msfty(i,j) & + mut(i,j)*h_diabatic(i,k,j)/msfty(i,j) ! divide by my to couple heating ENDDO ENDDO ENDDO DO j = jts,MIN(jte,jde-1) DO i = its,MIN(ite,ide-1) ! mu tendencies not coupled with 1/msf mu_tend(i,j) = mu_tend(i,j) + mu_tendf(i,j) ENDDO ENDDO END SUBROUTINE rk_addtend_dry !------------------------------------------------------------------------------- SUBROUTINE rk_scalar_tend ( scs, sce, config_flags, & 5,13 tenddec, & rk_step, dt, & ru, rv, ww, mut, mub, mu_old, & alt, & scalar_old, scalar, & scalar_tends, advect_tend, & h_tendency, z_tendency, & RQVFTEN, & base, moist_step, fnm, fnp, & msfux, msfuy, msfvx, msfvx_inv, & msfvy, msftx, msfty, & rdx, rdy, rdn, rdnw, & khdif, kvdif, xkmhd, & diff_6th_opt, diff_6th_factor, & adv_opt, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) IMPLICIT NONE ! Input data. TYPE(grid_config_rec_type ) , INTENT(IN ) :: config_flags LOGICAL , INTENT(IN ) :: tenddec ! tendency term INTEGER , INTENT(IN ) :: rk_step, scs, sce INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte LOGICAL , INTENT(IN ) :: moist_step REAL, DIMENSION(ims:ime, kms:kme, jms:jme , scs:sce ), & INTENT(IN ) :: scalar, scalar_old REAL, DIMENSION(ims:ime, kms:kme, jms:jme , scs:sce ), & INTENT(INOUT) :: scalar_tends REAL, DIMENSION(ims:ime, kms:kme, jms:jme ), INTENT(INOUT) :: advect_tend REAL, DIMENSION(ims:ime, kms:kme, jms:jme ), INTENT( OUT) :: h_tendency, z_tendency REAL, DIMENSION(ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: RQVFTEN REAL, DIMENSION(ims:ime, kms:kme, jms:jme ), INTENT(IN ) :: ru, & rv, & ww, & xkmhd, & alt REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: fnm, & fnp, & rdn, & rdnw, & base REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN ) :: msfux, & msfuy, & msfvx, & msfvx_inv, & msfvy, & msftx, & msfty, & mub, & mut, & mu_old REAL , INTENT(IN ) :: rdx, & rdy, & khdif, & kvdif INTEGER, INTENT( IN ) :: diff_6th_opt REAL, INTENT( IN ) :: diff_6th_factor REAL , INTENT(IN ) :: dt INTEGER, INTENT(IN ) :: adv_opt ! Local data INTEGER :: im, i,j,k INTEGER :: time_step REAL :: khdq, kvdq, tendency !<DESCRIPTION> ! ! rk_scalar_tend calls routines that computes scalar tendency from advection ! and 3D mixing (TKE or fixed eddy viscosities). ! !</DESCRIPTION> khdq = khdif/prandtl kvdq = kvdif/prandtl scalar_loop : DO im = scs, sce CALL zero_tend ( advect_tend(ims,kms,jms), & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend ( h_tendency(ims,kms,jms), & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend ( z_tendency(ims,kms,jms), & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL nl_get_time_step ( 1, time_step ) IF( (rk_step == 3) .and. (adv_opt == POSITIVEDEF) ) THEN CALL advect_scalar_pd ( scalar(ims,kms,jms,im), & scalar_old(ims,kms,jms,im), & advect_tend(ims,kms,jms), & h_tendency(ims,kms,jms), & z_tendency(ims,kms,jms), & ru, rv, ww, mut, mub, mu_old, & time_step, config_flags, tenddec, & msfux, msfuy, msfvx, msfvy, & msftx, msfty, fnm, fnp, & rdx, rdy, rdnw,dt, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ELSE IF( (rk_step == 3) .and. (adv_opt == MONOTONIC) ) THEN CALL advect_scalar_mono ( scalar(ims,kms,jms,im), & scalar_old(ims,kms,jms,im), & advect_tend(ims,kms,jms), & h_tendency(ims,kms,jms), & z_tendency(ims,kms,jms), & ru, rv, ww, mut, mub, mu_old, & config_flags, tenddec, & msfux, msfuy, msfvx, msfvy, & msftx, msfty, fnm, fnp, & rdx, rdy, rdnw,dt, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ELSE IF( (rk_step == 3) .and. (adv_opt == WENO_SCALAR) ) THEN CALL advect_scalar_weno ( scalar(ims,kms,jms,im), & scalar(ims,kms,jms,im), & advect_tend(ims,kms,jms), & ru, rv, ww, mut, time_step, & config_flags, & msfux, msfuy, msfvx, msfvy, & msftx, msfty, fnm, fnp, & rdx, rdy, rdnw, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ELSEIF( (rk_step == 3) .and. (adv_opt == WENOPD_SCALAR) ) THEN CALL advect_scalar_wenopd ( scalar(ims,kms,jms,im), & scalar_old(ims,kms,jms,im), & advect_tend(ims,kms,jms), & ru, rv, ww, mut, mub, mu_old, & time_step, config_flags, & msfux, msfuy, msfvx, msfvy, & msftx, msfty, fnm, fnp, & rdx, rdy, rdnw,dt, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ELSE CALL advect_scalar ( scalar(ims,kms,jms,im), & scalar(ims,kms,jms,im), & advect_tend(ims,kms,jms), & ru, rv, ww, mut, time_step, & config_flags, & msfux, msfuy, msfvx, msfvy, & msftx, msfty, fnm, fnp, & rdx, rdy, rdnw, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) END IF IF((config_flags%cu_physics == GDSCHEME .OR. config_flags%cu_physics == G3SCHEME .OR. & config_flags%cu_physics == GFSCHEME .OR. & config_flags%cu_physics == KFETASCHEME .OR. & ! new trigger in KF config_flags%cu_physics == TIEDTKESCHEME ) & ! Tiedtke .and. moist_step .and. ( im == P_QV) ) THEN CALL set_tend( RQVFTEN, advect_tend, msfty, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ENDIF rk_step_1: IF( rk_step == 1 ) THEN diff_opt1 : IF (config_flags%diff_opt .eq. 1) THEN CALL horizontal_diffusion ( 'm', scalar(ims,kms,jms,im), & scalar_tends(ims,kms,jms,im), mut, & config_flags, & msfux, msfuy, msfvx, msfvx_inv, & msfvy, msftx, msfty, & khdq , xkmhd, rdx, rdy, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) pbl_test : IF (config_flags%bl_pbl_physics .eq. 0) THEN IF( (moist_step) .and. ( im == P_QV)) THEN CALL vertical_diffusion_mp ( scalar(ims,kms,jms,im), & scalar_tends(ims,kms,jms,im), & config_flags, base, & alt, mut, rdn, rdnw, kvdq , & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ELSE CALL vertical_diffusion ( 'm', scalar(ims,kms,jms,im), & scalar_tends(ims,kms,jms,im), & config_flags, & alt, mut, rdn, rdnw, kvdq, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) END IF ENDIF pbl_test ENDIF diff_opt1 IF ( diff_6th_opt .NE. 0 ) & CALL sixth_order_diffusion( 'm', scalar(ims,kms,jms,im), & scalar_tends(ims,kms,jms,im), & mut, dt, config_flags, & diff_6th_opt, diff_6th_factor, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ENDIF rk_step_1 END DO scalar_loop END SUBROUTINE rk_scalar_tend !------------------------------------------------------------------------------- SUBROUTINE rk_update_scalar( scs, sce, & 5 scalar_1, scalar_2, sc_tend, & advh_t, advz_t, & advect_tend, & h_tendency, z_tendency, & msftx, msfty, & mu_old, mu_new, mu_base, & rk_step, dt, spec_zone, & config_flags, & tenddec, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) IMPLICIT NONE ! Input data. TYPE(grid_config_rec_type ) , INTENT(IN ) :: config_flags LOGICAL , INTENT(IN ) :: tenddec INTEGER , INTENT(IN ) :: scs, sce, rk_step, spec_zone INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte REAL, INTENT(IN ) :: dt REAL, DIMENSION(ims:ime, kms:kme, jms:jme , scs:sce), & INTENT(INOUT) :: scalar_1, & scalar_2 REAL, DIMENSION(ims:ime, kms:kme, jms:jme , scs:sce), & INTENT(IN) :: sc_tend REAL, DIMENSION(ims:ime, kms:kme, jms:jme ), & INTENT(IN) :: advect_tend REAL, DIMENSION(ims:ime, kms:kme, jms:jme ), INTENT(INOUT) , OPTIONAL :: advh_t, advz_t ! accumulating for output REAL, DIMENSION(ims:ime, kms:kme, jms:jme ), INTENT(IN ) :: h_tendency, z_tendency ! from rk_scalar_tend REAL, DIMENSION(ims:ime, jms:jme ), INTENT(IN ) :: mu_old, & mu_new, & mu_base, & msftx, & msfty INTEGER :: i,j,k,im REAL :: sc_middle, msfsq REAL, DIMENSION(its:ite) :: muold, r_munew REAL, DIMENSION(its:ite, kts:kte, jts:jte ) :: tendency INTEGER :: i_start,i_end,j_start,j_end,k_start,k_end INTEGER :: i_start_spc,i_end_spc,j_start_spc,j_end_spc,k_start_spc,k_end_spc !<DESCRIPTION> ! ! rk_scalar_update advances the scalar equation given the time t value ! of the scalar and the scalar tendency. ! !</DESCRIPTION> ! ! set loop limits. i_start = its i_end = min(ite,ide-1) j_start = jts j_end = min(jte,jde-1) k_start = kts k_end = kte-1 i_start_spc = i_start i_end_spc = i_end j_start_spc = j_start j_end_spc = j_end k_start_spc = k_start k_end_spc = k_end IF( config_flags%nested .or. config_flags%specified ) THEN IF( .NOT. config_flags%periodic_x)i_start = max( its,ids+spec_zone ) IF( .NOT. config_flags%periodic_x)i_end = min( ite,ide-spec_zone-1 ) j_start = max( jts,jds+spec_zone ) j_end = min( jte,jde-spec_zone-1 ) k_start = kts k_end = min( kte, kde-1 ) ENDIF IF ( rk_step == 1 ) THEN ! replace t-dt values (in scalar_1) with t values scalar_2, ! then compute new values by adding tendency to values at t DO im = scs,sce DO j = jts, min(jte,jde-1) DO k = kts, min(kte,kde-1) DO i = its, min(ite,ide-1) tendency(i,k,j) = 0. ENDDO ENDDO ENDDO DO j = j_start,j_end DO k = k_start,k_end DO i = i_start,i_end ! scalar was coupled with my tendency(i,k,j) = advect_tend(i,k,j) * msfty(i,j) ENDDO ENDDO ENDDO DO j = j_start_spc,j_end_spc DO k = k_start_spc,k_end_spc DO i = i_start_spc,i_end_spc tendency(i,k,j) = tendency(i,k,j) + sc_tend(i,k,j,im) ENDDO ENDDO ENDDO DO j = jts, min(jte,jde-1) DO i = its, min(ite,ide-1) muold(i) = mu_old(i,j) + mu_base(i,j) r_munew(i) = 1./(mu_new(i,j) + mu_base(i,j)) ENDDO DO k = kts, min(kte,kde-1) DO i = its, min(ite,ide-1) scalar_1(i,k,j,im) = scalar_2(i,k,j,im) scalar_2(i,k,j,im) = (muold(i)*scalar_1(i,k,j,im) & + dt*tendency(i,k,j))*r_munew(i) ENDDO ENDDO ENDDO ENDDO ELSE ! just compute new values, scalar_1 already at time t. DO im = scs, sce DO j = jts, min(jte,jde-1) DO k = kts, min(kte,kde-1) DO i = its, min(ite,ide-1) tendency(i,k,j) = 0. ENDDO ENDDO ENDDO DO j = j_start,j_end DO k = k_start,k_end DO i = i_start,i_end ! scalar was coupled with my tendency(i,k,j) = advect_tend(i,k,j) * msfty(i,j) ENDDO ENDDO ENDDO DO j = j_start_spc,j_end_spc DO k = k_start_spc,k_end_spc DO i = i_start_spc,i_end_spc tendency(i,k,j) = tendency(i,k,j) + sc_tend(i,k,j,im) ENDDO ENDDO ENDDO DO j = jts, min(jte,jde-1) DO i = its, min(ite,ide-1) muold(i) = mu_old(i,j) + mu_base(i,j) r_munew(i) = 1./(mu_new(i,j) + mu_base(i,j)) ENDDO DO k = kts, min(kte,kde-1) DO i = its, min(ite,ide-1) scalar_2(i,k,j,im) = (muold(i)*scalar_1(i,k,j,im) & + dt*tendency(i,k,j))*r_munew(i) ENDDO ENDDO ! This is separated from the k/i-loop above for better performance IF ( PRESENT(advh_t) .AND. PRESENT(advz_t) ) THEN IF(tenddec.and.rk_step.eq.config_flags%rk_ord) THEN DO k = kts, min(kte,kde-1) DO i = its, min(ite,ide-1) advh_t(i,k,j) = advh_t(i,k,j) + (dt*h_tendency(i,k,j)* msfty(i,j))*r_munew(i) advz_t(i,k,j) = advz_t(i,k,j) + (dt*z_tendency(i,k,j)* msfty(i,j))*r_munew(i) ENDDO ENDDO END IF END IF ENDDO ENDDO END IF END SUBROUTINE rk_update_scalar !------------------------------------------------------------------------------- SUBROUTINE rk_update_scalar_pd( scs, sce, & 5 scalar, sc_tend, & mu_old, mu_new, mu_base, & rk_step, dt, spec_zone, & config_flags, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) IMPLICIT NONE ! Input data. TYPE(grid_config_rec_type ) , INTENT(IN ) :: config_flags INTEGER , INTENT(IN ) :: scs, sce, rk_step, spec_zone INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte REAL, INTENT(IN ) :: dt REAL, DIMENSION(ims:ime, kms:kme, jms:jme , scs:sce), & INTENT(INOUT) :: scalar, & sc_tend REAL, DIMENSION(ims:ime, jms:jme ), INTENT(IN ) :: mu_old, & mu_new, & mu_base INTEGER :: i,j,k,im REAL :: sc_middle, msfsq REAL, DIMENSION(its:ite) :: muold, r_munew REAL, DIMENSION(its:ite, kts:kte, jts:jte ) :: tendency INTEGER :: i_start,i_end,j_start,j_end,k_start,k_end INTEGER :: i_start_spc,i_end_spc,j_start_spc,j_end_spc,k_start_spc,k_end_spc !<DESCRIPTION> ! ! rk_scalar_update advances the scalar equation given the time t value ! of the scalar and the scalar tendency. ! !</DESCRIPTION> ! ! set loop limits. i_start = its i_end = min(ite,ide-1) j_start = jts j_end = min(jte,jde-1) k_start = kts k_end = kte-1 i_start_spc = i_start i_end_spc = i_end j_start_spc = j_start j_end_spc = j_end k_start_spc = k_start k_end_spc = k_end IF( config_flags%nested .or. config_flags%specified ) THEN IF( .NOT. config_flags%periodic_x)i_start = max( its,ids+spec_zone ) IF( .NOT. config_flags%periodic_x)i_end = min( ite,ide-spec_zone-1 ) j_start = max( jts,jds+spec_zone ) j_end = min( jte,jde-spec_zone-1 ) k_start = kts k_end = min( kte, kde-1 ) ENDIF DO im = scs, sce DO j = jts, min(jte,jde-1) DO k = kts, min(kte,kde-1) DO i = its, min(ite,ide-1) tendency(i,k,j) = 0. ENDDO ENDDO ENDDO DO j = j_start_spc,j_end_spc DO k = k_start_spc,k_end_spc DO i = i_start_spc,i_end_spc tendency(i,k,j) = tendency(i,k,j) + sc_tend(i,k,j,im) sc_tend(i,k,j,im) = 0. ENDDO ENDDO ENDDO DO j = jts, min(jte,jde-1) DO i = its, min(ite,ide-1) muold(i) = mu_old(i,j) + mu_base(i,j) r_munew(i) = 1./(mu_new(i,j) + mu_base(i,j)) ENDDO DO k = kts, min(kte,kde-1) DO i = its, min(ite,ide-1) scalar(i,k,j,im) = (muold(i)*scalar(i,k,j,im) & + dt*tendency(i,k,j))*r_munew(i) ENDDO ENDDO ENDDO ENDDO END SUBROUTINE rk_update_scalar_pd !------------------------------------------------------------ SUBROUTINE init_zero_tendency(ru_tendf, rv_tendf, rw_tendf, ph_tendf, & 1,11 t_tendf, tke_tendf, mu_tendf, & moist_tendf,chem_tendf,scalar_tendf, & tracer_tendf,n_tracer, & n_moist,n_chem,n_scalar,rk_step, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) !----------------------------------------------------------------------- IMPLICIT NONE !----------------------------------------------------------------------- INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte INTEGER , INTENT(IN ) :: n_moist,n_chem,n_scalar,n_tracer,rk_step REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , INTENT(INOUT) :: & ru_tendf, & rv_tendf, & rw_tendf, & ph_tendf, & t_tendf, & tke_tendf REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(INOUT) :: mu_tendf REAL , DIMENSION(ims:ime, kms:kme, jms:jme, n_moist),INTENT(INOUT)::& moist_tendf REAL , DIMENSION(ims:ime, kms:kme, jms:jme, n_chem ),INTENT(INOUT)::& chem_tendf REAL , DIMENSION(ims:ime, kms:kme, jms:jme, n_tracer ),INTENT(INOUT)::& tracer_tendf REAL , DIMENSION(ims:ime, kms:kme, jms:jme, n_scalar ),INTENT(INOUT)::& scalar_tendf ! LOCAL VARS INTEGER :: im, ic, is !<DESCRIPTION> ! ! init_zero_tendency ! sets tendency arrays to zero for all prognostic variables. ! !</DESCRIPTION> CALL zero_tend ( ru_tendf, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend ( rv_tendf, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend ( rw_tendf, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend ( ph_tendf, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend ( t_tendf, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend ( tke_tendf, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) CALL zero_tend2d( mu_tendf, & ids, ide, jds, jde, kds, kds, & ims, ime, jms, jme, kms, kms, & its, ite, jts, jte, kts, kts ) ! DO im=PARAM_FIRST_SCALAR,n_moist DO im=1,n_moist ! make sure first one is zero too CALL zero_tend ( moist_tendf(ims,kms,jms,im), & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ENDDO ! DO ic=PARAM_FIRST_SCALAR,n_chem DO ic=1,n_chem ! make sure first one is zero too CALL zero_tend ( chem_tendf(ims,kms,jms,ic), & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ENDDO ! DO ic=PARAM_FIRST_SCALAR,n_tracer DO ic=1,n_tracer ! make sure first one is zero too CALL zero_tend ( tracer_tendf(ims,kms,jms,ic), & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ENDDO ! DO ic=PARAM_FIRST_SCALAR,n_scalar DO ic=1,n_scalar ! make sure first one is zero too CALL zero_tend ( scalar_tendf(ims,kms,jms,ic), & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) ENDDO END SUBROUTINE init_zero_tendency !=================================================================== SUBROUTINE dump_data( a, field, io_unit, & ims, ime, jms, jme, kms, kme, & ids, ide, jds, jde, kds, kde ) implicit none integer :: ims, ime, jms, jme, kms, kme, & ids, ide, jds, jde, kds, kde real, dimension(ims:ime, kms:kme, jds:jde) :: a character :: field integer :: io_unit integer :: is,ie,js,je,ks,ke !<DESCRIPTION ! ! quick and dirty debug io utility ! !</DESCRIPTION is = ids ie = ide-1 js = jds je = jde-1 ks = kds ke = kde-1 if(field == 'u') ie = ide if(field == 'v') je = jde if(field == 'w') ke = kde write(io_unit) is,ie,ks,ke,js,je write(io_unit) a(is:ie, ks:ke, js:je) end subroutine dump_data !----------------------------------------------------------------------- SUBROUTINE calculate_phy_tend (config_flags,mu,muu,muv,pi3d, & 1 RTHRATEN, & RUBLTEN,RVBLTEN,RTHBLTEN, & RQVBLTEN,RQCBLTEN,RQIBLTEN, & RUCUTEN,RVCUTEN,RTHCUTEN, & RQVCUTEN,RQCCUTEN,RQRCUTEN, & RQICUTEN,RQSCUTEN, & RUSHTEN,RVSHTEN,RTHSHTEN, & RQVSHTEN,RQCSHTEN,RQRSHTEN, & RQISHTEN,RQSSHTEN,RQGSHTEN, & RUNDGDTEN,RVNDGDTEN,RTHNDGDTEN,RQVNDGDTEN, & RMUNDGDTEN, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) !----------------------------------------------------------------------- IMPLICIT NONE TYPE(grid_config_rec_type), INTENT(IN) :: config_flags INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) , & INTENT(IN ) :: pi3d REAL, DIMENSION( ims:ime, jms:jme ) , & INTENT(IN ) :: mu, & muu, & muv ! radiation REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), & INTENT(INOUT) :: RTHRATEN ! cumulus REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & INTENT(INOUT) :: & RUCUTEN, & RVCUTEN, & RTHCUTEN, & RQVCUTEN, & RQCCUTEN, & RQRCUTEN, & RQICUTEN, & RQSCUTEN, & RUSHTEN, & RVSHTEN, & RTHSHTEN, & RQVSHTEN, & RQCSHTEN, & RQRSHTEN, & RQISHTEN, & RQSSHTEN, & RQGSHTEN ! pbl REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) , & INTENT(INOUT) :: RUBLTEN, & RVBLTEN, & RTHBLTEN, & RQVBLTEN, & RQCBLTEN, & RQIBLTEN ! fdda REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) , & INTENT(INOUT) :: RUNDGDTEN, & RVNDGDTEN, & RTHNDGDTEN, & RQVNDGDTEN REAL, DIMENSION( ims:ime, jms:jme ) , & INTENT(INOUT) :: RMUNDGDTEN INTEGER :: i,k,j INTEGER :: itf,ktf,jtf,itsu,jtsv !----------------------------------------------------------------------- !<DESCRIPTION> ! ! calculate_phy_tend couples the physics tendencies to the column mass (mu), ! because prognostic equations are in flux form, but physics tendencies are ! computed for uncoupled variables. ! !</DESCRIPTION> itf=MIN(ite,ide-1) jtf=MIN(jte,jde-1) ktf=MIN(kte,kde-1) itsu=MAX(its,ids+1) jtsv=MAX(jts,jds+1) ! radiation IF (config_flags%ra_lw_physics .gt. 0 .or. config_flags%ra_sw_physics .gt. 0) THEN DO J=jts,jtf DO K=kts,ktf DO I=its,itf RTHRATEN(I,K,J)=mu(I,J)*RTHRATEN(I,K,J) ENDDO ENDDO ENDDO ENDIF ! cumulus IF (config_flags%cu_physics .gt. 0) THEN DO J=jts,jtf DO I=its,itf DO K=kts,ktf RUCUTEN(I,K,J) =mu(I,J)*RUCUTEN(I,K,J) RVCUTEN(I,K,J) =mu(I,J)*RVCUTEN(I,K,J) RTHCUTEN(I,K,J)=mu(I,J)*RTHCUTEN(I,K,J) RQVCUTEN(I,K,J)=mu(I,J)*RQVCUTEN(I,K,J) ENDDO ENDDO ENDDO IF (P_QC .ge. PARAM_FIRST_SCALAR)THEN DO J=jts,jtf DO I=its,itf DO K=kts,ktf RQCCUTEN(I,K,J)=mu(I,J)*RQCCUTEN(I,K,J) ENDDO ENDDO ENDDO ENDIF IF (P_QR .ge. PARAM_FIRST_SCALAR)THEN DO J=jts,jtf DO I=its,itf DO K=kts,ktf RQRCUTEN(I,K,J)=mu(I,J)*RQRCUTEN(I,K,J) ENDDO ENDDO ENDDO ENDIF IF (P_QI .ge. PARAM_FIRST_SCALAR)THEN DO J=jts,jtf DO I=its,itf DO K=kts,ktf RQICUTEN(I,K,J)=mu(I,J)*RQICUTEN(I,K,J) ENDDO ENDDO ENDDO ENDIF IF(P_QS .ge. PARAM_FIRST_SCALAR)THEN DO J=jts,jtf DO I=its,itf DO K=kts,ktf RQSCUTEN(I,K,J)=mu(I,J)*RQSCUTEN(I,K,J) ENDDO ENDDO ENDDO ENDIF ENDIF ! shallow cumulus IF (config_flags%shcu_physics .gt. 0) THEN DO J=jts,jtf DO I=its,itf DO K=kts,ktf RUSHTEN(I,K,J) =mu(I,J)*RUSHTEN(I,K,J) RVSHTEN(I,K,J) =mu(I,J)*RVSHTEN(I,K,J) RTHSHTEN(I,K,J)=mu(I,J)*RTHSHTEN(I,K,J) RQVSHTEN(I,K,J)=mu(I,J)*RQVSHTEN(I,K,J) ENDDO ENDDO ENDDO IF (P_QC .ge. PARAM_FIRST_SCALAR)THEN DO J=jts,jtf DO I=its,itf DO K=kts,ktf RQCSHTEN(I,K,J)=mu(I,J)*RQCSHTEN(I,K,J) ENDDO ENDDO ENDDO ENDIF IF (P_QR .ge. PARAM_FIRST_SCALAR)THEN DO J=jts,jtf DO I=its,itf DO K=kts,ktf RQRSHTEN(I,K,J)=mu(I,J)*RQRSHTEN(I,K,J) ENDDO ENDDO ENDDO ENDIF IF (P_QI .ge. PARAM_FIRST_SCALAR)THEN DO J=jts,jtf DO I=its,itf DO K=kts,ktf RQISHTEN(I,K,J)=mu(I,J)*RQISHTEN(I,K,J) ENDDO ENDDO ENDDO ENDIF IF(P_QS .ge. PARAM_FIRST_SCALAR)THEN DO J=jts,jtf DO I=its,itf DO K=kts,ktf RQSSHTEN(I,K,J)=mu(I,J)*RQSSHTEN(I,K,J) ENDDO ENDDO ENDDO ENDIF IF(P_QG .ge. PARAM_FIRST_SCALAR)THEN DO J=jts,jtf DO I=its,itf DO K=kts,ktf RQGSHTEN(I,K,J)=mu(I,J)*RQGSHTEN(I,K,J) ENDDO ENDDO ENDDO ENDIF ENDIF ! pbl IF (config_flags%bl_pbl_physics .gt. 0) THEN DO J=jts,jtf DO K=kts,ktf DO I=its,itf RUBLTEN(I,K,J) =mu(I,J)*RUBLTEN(I,K,J) RVBLTEN(I,K,J) =mu(I,J)*RVBLTEN(I,K,J) RTHBLTEN(I,K,J)=mu(I,J)*RTHBLTEN(I,K,J) ENDDO ENDDO ENDDO IF (P_QV .ge. PARAM_FIRST_SCALAR) THEN DO J=jts,jtf DO K=kts,ktf DO I=its,itf RQVBLTEN(I,K,J)=mu(I,J)*RQVBLTEN(I,K,J) ENDDO ENDDO ENDDO ENDIF IF (P_QC .ge. PARAM_FIRST_SCALAR) THEN DO J=jts,jtf DO K=kts,ktf DO I=its,itf RQCBLTEN(I,K,J)=mu(I,J)*RQCBLTEN(I,K,J) ENDDO ENDDO ENDDO ENDIF IF (P_QI .ge. PARAM_FIRST_SCALAR) THEN DO J=jts,jtf DO K=kts,ktf DO I=its,itf RQIBLTEN(I,K,J)=mu(I,J)*RQIBLTEN(I,K,J) ENDDO ENDDO ENDDO ENDIF ENDIF ! fdda ! note fdda u and v tendencies are staggered, also only interior points have muu/muv, ! so only couple those IF (config_flags%grid_fdda .gt. 0) THEN DO J=jts,jtf DO K=kts,ktf DO I=itsu,itf ! if( i == itf/2 .AND. j == jtf/2 .AND. k == ktf/2 ) & ! write(*,'(a,3i6,e15.5)') 'u_ten before=',i,k,j, RUNDGDTEN(i,k,j) RUNDGDTEN(I,K,J) =muu(I,J)*RUNDGDTEN(I,K,J) ! if( i == itf/2 .AND. j == jtf/2 .AND. k==ktf/2 ) & ! write(*,'(a,2f15.5)') 'mu, muu=',mu(i,j), muu(i,j) ! if( i == itf/2 .AND. j == jtf/2 .AND. k == ktf/2 ) & ! write(*,'(a,3i6,e15.5)') 'u_ten after=',i,k,j, RUNDGDTEN(i,k,j) ! if( RUNDGDTEN(i,k,j) > 30.0 ) write(*,*) 'IKJ=',i,k,j ENDDO ENDDO ENDDO ! write(*,'(a,e15.5)') 'u_ten MAXIMUM after=', maxval(RUNDGDTEN) DO J=jtsv,jtf DO K=kts,ktf DO I=its,itf RVNDGDTEN(I,K,J) =muv(I,J)*RVNDGDTEN(I,K,J) ENDDO ENDDO ENDDO DO J=jts,jtf DO K=kts,ktf DO I=its,itf ! if( i == itf/2 .AND. j == jtf/2 .AND. k == ktf/2 ) & ! write(*,'(a,3i6,e15.5)') 'th before=',i,k,j, RTHNDGDTEN(I,K,J) RTHNDGDTEN(I,K,J)=mu(I,J)*RTHNDGDTEN(I,K,J) ! RMUNDGDTEN(I,J) - no coupling ! if( i == itf/2 .AND. j == jtf/2 .AND. k == ktf/2 ) & ! write(*,'(a,3i6,e15.5)') 'th after=',i,k,j, RTHNDGDTEN(I,K,J) ENDDO ENDDO ENDDO IF (P_QV .ge. PARAM_FIRST_SCALAR) THEN DO J=jts,jtf DO K=kts,ktf DO I=its,itf RQVNDGDTEN(I,K,J)=mu(I,J)*RQVNDGDTEN(I,K,J) ENDDO ENDDO ENDDO ENDIF ENDIF END SUBROUTINE calculate_phy_tend !----------------------------------------------------------------------- SUBROUTINE positive_definite_filter ( a, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) IMPLICIT NONE INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), INTENT(INOUT) :: a INTEGER :: i,k,j !<DESCRIPTION> ! ! debug and testing code for bounding a variable ! !</DESCRIPTION> DO j=jts,min(jte,jde-1) DO k=kts,kte-1 DO i=its,min(ite,ide-1) ! a(i,k,j) = max(a(i,k,j),0.) a(i,k,j) = min(1000.,max(a(i,k,j),0.)) ENDDO ENDDO ENDDO END SUBROUTINE positive_definite_filter !----------------------------------------------------------------------- SUBROUTINE bound_tke ( tke, tke_upper_bound, & 1 ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) IMPLICIT NONE INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), INTENT(INOUT) :: tke REAL, INTENT( IN) :: tke_upper_bound INTEGER :: i,k,j !<DESCRIPTION> ! ! bounds tke between zero and tke_upper_bound. ! !</DESCRIPTION> DO j=jts,min(jte,jde-1) DO k=kts,kte-1 DO i=its,min(ite,ide-1) tke(i,k,j) = min(tke_upper_bound,max(tke(i,k,j),0.)) ENDDO ENDDO ENDDO END SUBROUTINE bound_tke !---------------------------------------------------------------------------------- !cyl: Implement the forward Lagrangian trajectory calculation in WRF !Chiaying Lee RSMAS/UM !---------------------------------------------------------------------------------- subroutine trajectory ( grid,config_flags, & 1,8 dt,itimestep,ru_m, rv_m, ww_m, mut,muu,muv,& rdx, rdy, rdn, rdnw,rdzw, & traj_i,traj_j,traj_k, & traj_long,traj_lat, & xlong,xlat, & msft,msfu,msfv, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) !--------------------------------------------------------------------------------------------------- implicit none !--------------------------------------------------------------------------------------------------- ! Subroutine trajectory calculates forward Lagrangian trajectory ! of the selecting points. The trajectory of each point is subjected to u, v, and w. ! (Lee and Chen 2013, MWR). ! ! The trajectories is initialized with given longitude (degree), latitude (degree), and height(eta level). ! !--traj_i grid number in x direction (on mass grid), float !--traj_j grid number in y direction (on mass grid), float !--traj_k grid number in z direction (on mass grid), float !--traj_long longitude of trajectories, float !--traj_lat longitude of trajectories, float ! !-------------------------------------------------------------------------------------------------- TYPE(proj_info) :: proj TYPE(domain), INTENT(IN) :: grid TYPE (grid_config_rec_type) , INTENT(IN) :: config_flags INTEGER , INTENT(IN ) :: ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte INTEGER , INTENT(IN ) :: itimestep REAL , INTENT(IN ) :: rdx, & rdy, & dt REAL , DIMENSION( kms:kme ) , INTENT(IN ) :: rdn, & rdnw REAL , DIMENSION( ims:ime , kms:kme, jms:jme ) , & INTENT(IN ) :: ru_m, & rv_m, & ww_m REAL , DIMENSION( ims:ime , jms:jme ) , & INTENT(IN ) ::xlong, xlat real, dimension(kms:kme), intent(inout) :: traj_i,traj_j,traj_k real, dimension(kms:kme), intent(inout) :: traj_long,traj_lat real, dimension(ims:ime,kms:kme,jms:jme),intent(in) :: rdzw real, dimension(ims:ime,kms:kme,jms:jme)::u,v,w real, dimension(ims:ime,jms:jme),intent(in)::msft,msfu,msfv real, dimension(ims:ime,jms:jme),intent(in)::muu,muv,mut integer :: i_traj,j_traj,k_traj,tjk,k real :: traj_u,traj_v,traj_w real :: rdx_grid,rdy_grid,rdz_grid real :: deltx, delty, deltz,ax real :: const1 real :: temp_i,temp_j integer :: i_u,j_v,k_w real :: u_a,u_b,u_c,u_d,v_a,v_b,v_c,v_d,w_a,w_b,w_c,w_d real :: d_a,d_b,d_c,d_d real :: u_temp_upper,u_temp_lower real :: v_temp_upper,v_temp_lower real :: w_temp_upper,w_temp_lower real :: eta_old, eta_new integer :: keta, keta_temp ! varalbe for map projectory real:: known_lat, known_lon TYPE (grid_config_rec_type) :: config_flags_temp config_flags_temp = config_flags call trajmapproj(grid, config_flags_temp,proj) ! convert ru_m, rv_m and ww_m in u,v,w const1=1.0/2.0/sqrt(2.0) do k=kms,kme u(:,k,:)=ru_m(:,k,:)/muu(:,:)*msfu(:,:) v(:,k,:)=rv_m(:,k,:)/muv(:,:)*msfv(:,:) w(:,k,:)=ww_m(:,k,:)/mut(:,:)*msft(:,:) enddo do tjk = 1,config_flags%num_traj eta_old = 0.0 eta_new = 0.0 keta=0 keta_temp=0 if (traj_lat(tjk) .ne. -9999.0) then call latlon_to_ij (proj, traj_lat(tjk),traj_long(tjk),traj_i(tjk),traj_j(tjk)) i_traj=floor(traj_i(tjk)) ! find the lower_left_bottom corner for trajectory j_traj=floor(traj_j(tjk)) ! k_traj=floor(traj_k(tjk)) ! if ((i_traj .ge. its .and. i_traj .le. ite .and. i_traj .lt. ide) .and. & (j_traj .ge. jts .and. j_traj .le. jte .and. j_traj .lt. jde) .and. & (k_traj .le. kte .and. k_traj .lt. kde)) then ! for u : check x stagger if (traj_i(tjk)-real(floor(traj_i(tjk))) .ge. 0.5 ) then i_u=floor(traj_i(tjk)) + 1 else i_u=floor(traj_i(tjk)) endif ! for layer k_traj if (k_traj .ge. 1 ) then u_a=u(i_u ,k_traj,j_traj+1) u_b=u(i_u ,k_traj,j_traj ) u_c=u(i_u+1,k_traj,j_traj ) u_d=u(i_u+1,k_traj,j_traj+1) else u_a=0.0 u_b=0.0 u_c=0.0 u_d=0.0 endif d_a=abs((real(i_u+1)-(traj_i(tjk)+0.5))*(real(j_traj )-traj_j(tjk))) d_b=abs((real(i_u+1)-(traj_i(tjk)+0.5))*(real(j_traj+1)-traj_j(tjk))) d_c=abs((real(i_u )-(traj_i(tjk)+0.5))*(real(j_traj+1)-traj_j(tjk))) d_d=abs((real(i_u )-(traj_i(tjk)+0.5))*(real(j_traj )-traj_j(tjk))) u_temp_lower=(u_a*d_a+u_b*d_b+u_c*d_c+u_d*d_d)/(d_a+d_b+d_c+d_d) !for layer k_traj+1 u_a=u(i_u ,k_traj+1,j_traj+1) u_b=u(i_u ,k_traj+1,j_traj ) u_c=u(i_u+1,k_traj+1,j_traj ) u_d=u(i_u+1,k_traj+1,j_traj+1) d_a=abs((real(i_u+1)-(traj_i(tjk)+0.5))*(real(j_traj )-traj_j(tjk))) d_b=abs((real(i_u+1)-(traj_i(tjk)+0.5))*(real(j_traj+1)-traj_j(tjk))) d_c=abs((real(i_u )-(traj_i(tjk)+0.5))*(real(j_traj+1)-traj_j(tjk))) d_d=abs((real(i_u )-(traj_i(tjk)+0.5))*(real(j_traj )-traj_j(tjk))) u_temp_upper=(u_a*d_a+u_b*d_b+u_c*d_c+u_d*d_d)/(d_a+d_b+d_c+d_d) traj_u=u_temp_upper*abs(real(k_traj)-traj_k(tjk))+u_temp_lower*abs(real(k_traj+1)-traj_k(tjk)) ! for v: check y-stagger if (traj_j(tjk)-real(floor(traj_j(tjk))) .ge. 0.5 ) then j_v=floor(traj_j(tjk)) + 1 else j_v=floor(traj_j(tjk)) endif ! for layer k_traj if (k_traj .ge. 1 ) then v_a=v(i_traj ,k_traj,j_v+1) v_b=v(i_traj ,k_traj,j_v ) v_c=v(i_traj+1,k_traj,j_v ) v_d=v(i_traj+1,k_traj,j_v+1) else v_a=0.0 v_b=0.0 v_c=0.0 v_d=0.0 endif d_a=abs((real(i_traj+1)-traj_i(tjk))*(real(j_v )-(traj_j(tjk)+0.5))) d_b=abs((real(i_traj+1)-traj_i(tjk))*(real(j_v+1)-(traj_j(tjk)+0.5))) d_c=abs((real(i_traj )-traj_i(tjk))*(real(j_v+1)-(traj_j(tjk)+0.5))) d_d=abs((real(i_traj )-traj_i(tjk))*(real(j_v )-(traj_j(tjk)+0.5))) v_temp_lower=(v_a*d_a+v_b*d_b+v_c*d_c+v_d*d_d)/(d_a+d_b+d_c+d_d) !for layer k_traj+1 v_a=v(i_traj ,k_traj+1,j_v+1) v_b=v(i_traj ,k_traj+1,j_v ) v_c=v(i_traj+1,k_traj+1,j_v ) v_d=v(i_traj+1,k_traj+1,j_v+1) d_a=abs((real(i_traj+1)-traj_i(tjk))*(real(j_v )-(traj_j(tjk)+0.5))) d_b=abs((real(i_traj+1)-traj_i(tjk))*(real(j_v+1)-(traj_j(tjk)+0.5))) d_c=abs((real(i_traj )-traj_i(tjk))*(real(j_v+1)-(traj_j(tjk)+0.5))) d_d=abs((real(i_traj )-traj_i(tjk))*(real(j_v )-(traj_j(tjk)+0.5))) v_temp_upper=(v_a*d_a+v_b*d_b+v_c*d_c+v_d*d_d)/(d_a+d_b+d_c+d_d) traj_v=v_temp_upper*abs(real(k_traj)-traj_k(tjk))+v_temp_lower*abs(real(k_traj+1)-traj_k(tjk)) !for w: check for z-stagger if (traj_k(tjk)-real(floor(traj_k(tjk))) .ge. 0.5 ) then k_w=floor(traj_k(tjk)) + 1 else k_w=floor(traj_k(tjk)) endif !for layer j_traj if (k_w .ge. 1) then w_b=w(i_traj ,k_w ,j_traj) w_c=w(i_traj+1,k_w ,j_traj) else w_b=0.0 w_c=0.0 endif w_a=w(i_traj ,k_w+1,j_traj) w_d=w(i_traj+1,k_w+1,j_traj) d_a=abs((real(i_traj+1)-traj_i(tjk))*(real(k_w )-(traj_k(tjk)+0.5))) d_b=abs((real(i_traj+1)-traj_i(tjk))*(real(k_w+1)-(traj_k(tjk)+0.5))) d_c=abs((real(i_traj )-traj_i(tjk))*(real(k_w+1)-(traj_k(tjk)+0.5))) d_d=abs((real(i_traj )-traj_i(tjk))*(real(k_w )-(traj_k(tjk)+0.5))) w_temp_lower=(w_a*d_a+w_b*d_b+w_c*d_c+w_d*d_d)/(d_a+d_b+d_c+d_d) !for layer j_traj+1 if (k_w .ge. 1) then w_b=w(i_traj ,k_w ,j_traj+1) w_c=w(i_traj+1,k_w ,j_traj+1) else w_b=0.0 w_c=0.0 endif w_a=w(i_traj ,k_w+1,j_traj+1) w_d=w(i_traj+1,k_w+1,j_traj+1) d_a=abs((real(i_traj+1)-traj_i(tjk))*(real(k_w )-(traj_k(tjk)+0.5))) d_b=abs((real(i_traj+1)-traj_i(tjk))*(real(k_w+1)-(traj_k(tjk)+0.5))) d_c=abs((real(i_traj )-traj_i(tjk))*(real(k_w+1)-(traj_k(tjk)+0.5))) d_d=abs((real(i_traj )-traj_i(tjk))*(real(k_w )-(traj_k(tjk)+0.5))) w_temp_upper=(w_a*d_a+w_b*d_b+w_c*d_c+w_d*d_d)/(d_a+d_b+d_c+d_d) traj_w=w_temp_upper*abs(real(j_traj)-traj_j(tjk))+w_temp_lower*abs(real(j_traj+1)-traj_j(tjk)) !get old eta eta_old=grid%znw(k_w+1)*abs(traj_k(tjk)+0.5-real(k_w))+grid%znw(k_w)*abs(traj_k(tjk)+0.5-real(k_w+1)) rdx_grid=rdx*msft(i_traj,j_traj)! 1/(dx/msft) rdy_grid=rdy*msft(i_traj,j_traj) rdz_grid=rdnw(k_traj) deltx=traj_u*DT delty=traj_v*DT deltz=traj_w*DT traj_i(tjk)=traj_i(tjk)+deltx*rdx_grid traj_j(tjk)=traj_j(tjk)+delty*rdy_grid eta_new=eta_old+deltz ! get new traj_k(tjk) keta_temp = 0 do keta=1, kme-1 if (eta_new .le. grid%znw(keta) .and. eta_new .gt. grid%znw(keta+1)) then keta_temp=keta endif enddo if (keta_temp .eq. 0) then traj_k(tjk) = traj_k(tjk) else traj_k(tjk) = (real(keta_temp)*abs(eta_new-grid%znw(keta_temp+1))+ & real(keta_temp+1)*abs(eta_new-grid%znw(keta_temp))) & /(grid%znw(keta_temp)-grid%znw(keta_temp+1)) traj_k(tjk) = traj_k(tjk)-0.5 endif !! convert i,j,k into lon, lat call ij_to_latlon (proj, traj_i(tjk), traj_j(tjk),traj_lat(tjk),traj_long(tjk)) else traj_i(tjk) = -9999.0 traj_j(tjk) = -9999.0 traj_k(tjk) = -9999.0 traj_long(tjk) = -9999.0 traj_lat(tjk) = -9999.0 endif endif traj_i(tjk) = wrf_dm_max_real(traj_i(tjk))! save the information from highest fomain traj_j(tjk) = wrf_dm_max_real(traj_j(tjk)) traj_k(tjk) = wrf_dm_max_real(traj_k(tjk)) traj_long(tjk) = wrf_dm_max_real(traj_long(tjk)) traj_lat(tjk) = wrf_dm_max_real(traj_lat(tjk)) enddo !end trajectory END SUBROUTINE trajectory !------------------------------------------------------------------------ !cyl:Implement the map prpjection code for trajectory calculation ! Chiaying Lee RSMAS/UM !------------------------------------------------------------------------ subroutine trajmapproj (grid,config_flags,ts_proj) 1,10 !------------------------------------------------------------------------ !!! This code calculates map-projection of trajectories. It is from share/wrf_timeseries.F !------------------------------------------------------------------------ IMPLICIT NONE ! Arguments TYPE (domain), INTENT(IN) :: grid TYPE (grid_config_rec_type) , INTENT(IN) :: config_flags ! Externals LOGICAL, EXTERNAL :: wrf_dm_on_monitor INTEGER, EXTERNAL :: get_unused_unit ! Local variables INTEGER :: ntsloc_temp INTEGER :: i, k, iunit REAL :: ts_rx, ts_ry, ts_xlat, ts_xlong, ts_hgt REAL :: known_lat, known_lon CHARACTER (LEN=132) :: message TYPE (PROJ_INFO), INTENT(out) :: ts_proj INTEGER :: ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & ips, ipe, jps, jpe, kps, kpe, & imsx, imex, jmsx, jmex, kmsx, kmex, & ipsx, ipex, jpsx, jpex, kpsx, kpex, & imsy, imey, jmsy, jmey, kmsy, kmey, & ipsy, ipey, jpsy, jpey, kpsy, kpey TYPE (grid_config_rec_type) :: config_flags_temp config_flags_temp = config_flags CALL get_ijk_from_grid ( grid , & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & ips, ipe, jps, jpe, kps, kpe, & imsx, imex, jmsx, jmex, kmsx, kmex, & ipsx, ipex, jpsx, jpex, kpsx, kpex, & imsy, imey, jmsy, jmey, kmsy, kmey, & ipsy, ipey, jpsy, jpey, kpsy, kpey ) CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags_temp ) ! Set up map transformation structure CALL map_init(ts_proj) IF (ips <= 1 .AND. 1 <= ipe .AND. & jps <= 1 .AND. 1 <= jpe) THEN known_lat = grid%xlat(1,1) known_lon = grid%xlong(1,1) ELSE known_lat = 9999. known_lon = 9999. END IF known_lat = wrf_dm_min_real(known_lat) known_lon = wrf_dm_min_real(known_lon) ! Mercator IF (config_flags%map_proj == PROJ_MERC) THEN CALL map_set(PROJ_MERC, ts_proj, & truelat1 = config_flags%truelat1, & lat1 = known_lat, & lon1 = known_lon, & knowni = 1., & knownj = 1., & dx = config_flags%dx) ! Lambert conformal ELSE IF (config_flags%map_proj == PROJ_LC) THEN CALL map_set(PROJ_LC, ts_proj, & truelat1 = config_flags%truelat1, & truelat2 = config_flags%truelat2, & stdlon = config_flags%stand_lon, & lat1 = known_lat, & lon1 = known_lon, & knowni = 1., & knownj = 1., & dx = config_flags%dx) ! Polar stereographic ELSE IF (config_flags%map_proj == PROJ_PS) THEN CALL map_set(PROJ_PS, ts_proj, & truelat1 = config_flags%truelat1, & stdlon = config_flags%stand_lon, & lat1 = known_lat, & lon1 = known_lon, & knowni = 1., & knownj = 1., & dx = config_flags%dx) ! Cassini (global ARW) ELSE IF (config_flags%map_proj == PROJ_CASSINI) THEN CALL map_set(PROJ_CASSINI, ts_proj, & latinc = grid%dy*360.0/(2.0*EARTH_RADIUS_M*PI), & loninc = grid%dx*360.0/(2.0*EARTH_RADIUS_M*PI), & lat1 = known_lat, & lon1 = known_lon, & ! We still need to get POLE_LAT and POLE_LON metadata variables before ! this will work for rotated poles. lat0 = 90.0, & lon0 = 0.0, & knowni = 1., & knownj = 1., & stdlon = config_flags%stand_lon) ! Rotated latitude-longitude ELSE IF (config_flags%map_proj == PROJ_ROTLL) THEN CALL map_set(PROJ_ROTLL, ts_proj, & ! I have no idea how this should work for NMM nested domains ixdim = grid%e_we-1, & jydim = grid%e_sn-1, & phi = real(grid%e_sn-2)*grid%dy/2.0, & lambda = real(grid%e_we-2)*grid%dx, & lat1 = config_flags%cen_lat, & lon1 = config_flags%cen_lon, & latinc = grid%dy, & loninc = grid%dx, & stagger = HH) END IF end subroutine trajmapproj END MODULE module_em