!
!-- Module for Gravity Wave Drag (GWD) and Mountain Blocking (MB)
!
!-- Initially incorporated into the WRF NMM from the GFS by B. Ferrier
! in April/May 2007.
!
! Search for "ORIGINAL DOCUMENTATION BLOCK" for further description.
!
!#######################################################################
!
MODULE module_gwd 2
!
! USE MODULE_DM ! to get processor element
USE MODULE_EXT_INTERNAL ! to assign fortan unit number
!
!-- Contains subroutines GWD_init, GWD_driver, and GWD_col
!
!#######################################################################
!
INTEGER, PARAMETER :: KIND_PHYS=SELECTED_REAL_KIND(13,60) ! the '60' maps to 64-bit real
INTEGER,PRIVATE,SAVE :: IMX, NMTVR, IDBG, JDBG
REAL,PRIVATE,SAVE :: RAD_TO_DEG !-- Convert radians to degrees
REAL,PRIVATE,SAVE :: DEG_TO_RAD !-- Convert degrees to radians
REAL (KIND=KIND_PHYS),PRIVATE,SAVE :: DELTIM,RDELTIM
REAL(kind=kind_phys),PRIVATE,PARAMETER :: SIGFAC=0.0 !-- Key tunable parameter
!dbg real,private,save :: dumin,dumax,dvmin,dvmax !dbg
!
CONTAINS
!
!-- Initialize variables used in GWD + MB
!
SUBROUTINE GWD_init (DTPHS,DELX,DELY,CEN_LAT,CEN_LON,RESTRT & 1
& ,GLAT,GLON,CROT,SROT,HANGL &
& ,IDS,IDE,JDS,JDE,KDS,KDE &
& ,IMS,IME,JMS,JME,KMS,KME &
& ,ITS,ITE,JTS,JTE,KTS,KTE )
!
IMPLICIT NONE
!
!== INPUT:
!-- DELX, DELY - DX, DY grid resolutions in zonal, meridional directions (m)
!-- CEN_LAT, CEN_LON - central latitude, longitude (degrees)
!-- RESTRT - logical flag for restart file (true) or WRF input file (false)
!-- GLAT, GLON - central latitude, longitude at mass points (radians)
!-- CROT, SROT - cosine and sine of the angle between Earth and model coordinates
!-- HANGL - angle of the mountain range w/r/t east (convert to degrees)
!
!-- Saved variables within module:
!-- IMX - in the GFS it is an equivalent number of points along a latitude
! circle (e.g., IMX=3600 for a model resolution of 0.1 deg)
! => Calculated at start of model integration in GWD_init
!-- NMTVR - number of input 2D orographic fields
!-- GRAV = gravitational acceleration
!-- DELTIM - physics time step (s)
!-- RDELTIM - reciprocal of physics time step (s)
!
!== INPUT indices:
!-- ids start index for i in domain
!-- ide end index for i in domain
!-- jds start index for j in domain
!-- jde end index for j in domain
!-- kds start index for k in domain
!-- kde end index for k in domain
!-- ims start index for i in memory
!-- ime end index for i in memory
!-- jms start index for j in memory
!-- jme end index for j in memory
!-- kms start index for k in memory
!-- kme end index for k in memory
!-- its start index for i in tile
!-- ite end index for i in tile
!-- jts start index for j in tile
!-- jte end index for j in tile
!-- kts start index for k in tile
!-- kte end index for k in tile
!
REAL, INTENT(IN) :: DTPHS,DELX,DELY,CEN_LAT,CEN_LON
LOGICAL, INTENT(IN) :: RESTRT
REAL, INTENT(IN), DIMENSION (ims:ime,jms:jme) :: GLON,GLAT
REAL, INTENT(OUT), DIMENSION (ims:ime,jms:jme) :: CROT,SROT
REAL, INTENT(INOUT), DIMENSION (ims:ime,jms:jme) :: HANGL
INTEGER, INTENT(IN) :: IDS,IDE,JDS,JDE,KDS,KDE &
& ,IMS,IME,JMS,JME,KMS,KME &
& ,ITS,ITE,JTS,JTE,KTS,KTE
!
!-- Local variables:
!
REAL, PARAMETER :: POS1=1.,NEG1=-1.
REAL :: DX,DTR,LAT0,LoN0,CLAT0,SLAT0,CLAT,DLON,X,Y,TLON,ROT
INTEGER :: I,J
!dbg
!dbg real :: xdbg,ydbg,d_x,d_y,dist,dist_min
!dbg data xdbg,ydbg / -118.3,36 / ! 118.3W 36 N
!
!-----------------------------------------------------------------------
!
DX=SQRT((DELX)**2+(DELY)**2) !-- Model resolution in degrees
!-- IMX is the number of grid points along a latitude circle in the GFS
IMX=INT(360./DX+.5)
!dbg IMX=1152 !dbg -- Match the grid point printed from GFS run
NMTVR=14 !-- 14 input fields for orography
DELTIM=DTPHS
RDELTIM=1./DTPHS
!
!-- Calculate angle of rotation (ROT) between Earth and model coordinates,
! but pass back out cosine (CROT) and sine (SROT) of this angle
!
DTR=ACOS(-1.)/180. !-- convert from degrees to radians
DEG_TO_RAD=DTR !-- save conversion from degrees to radians
!
LAT0=DTR*CEN_LON !-- central latitude of grid in radians
LoN0=DTR*CEN_LAT !-- central longitude of grid in radians
!
DTR=1./DTR !-- convert from radians to degrees
RAD_TO_DEG=DTR !-- save conversion from radians to degrees
!
CLAT0=COS(LAT0)
SLAT0=SIN(LAT0)
DO J=JTS,JTE
DO I=ITS,ITE
CLAT=COS(GLAT(I,J))
DLON=GLON(I,J)-LoN0
X=CLAT0*CLAT*COS(DLON)+SLAT0*SIN(GLAT(I,J))
Y=-CLAT*SIN(DLON)
TLON=ATAN(Y/X) !-- model longitude
X=SLAT0*SIN(TLON)/CLAT
Y=MIN(POS1, MAX(NEG1, X) )
ROT=ASIN(Y) !-- angle between geodetic & model coordinates
CROT(I,J)=COS(ROT)
SROT(I,J)=SIN(ROT)
ENDDO !-- I
ENDDO !-- J
IF (.NOT.RESTRT) THEN
!-- Convert from radians to degrees for WRF input files only
DO J=JTS,JTE
DO I=ITS,ITE
HANGL(I,J)=DTR*HANGL(I,J) !-- convert to degrees (+/-90 deg)
ENDDO !-- I
ENDDO !-- J
ENDIF
!dbg
!dbg dumin=-1.
!dbg dumax=1.
!dbg dvmin=-1.
!dbg dvmax=1.
!dbg print *,'delx=',delx,' dely=',dely,' dx=',dx,' imx=',imx
!dbg dtr=1./dtr !-- convert from degrees back to radians
!dbg dist_min=dtr*DX !-- grid length in radians
!dbg xdbg=dtr*xdbg !-- convert xdbg to radians
!dbg ydbg=dtr*ydbg !-- convert ydbg to radians
!dbg idbg=-100
!dbg jdbg=-100
!dbg print *,'dtr,dx,dist_min,xdbg,ydbg=',dtr,dx,dist_min,xdbg,ydbg
!dbg do j=jts,jte
!dbg do i=its,ite
!dbg !-- Find i,j for xdbg, ydbg
!dbg d_x=cos(glat(i,j))*(glon(i,j)-xdbg)
!dbg d_y=(glat(i,j)-ydbg)
!dbg dist=sqrt(d_x*d_x+d_y*d_y)
!dbg !! print *,'i,j,glon,glat,d_x,d_y,dist=',i,j,glon(i,j),glat(i,j),d_x,d_y,dist
!dbg if (dist < dist_min) then
!dbg dist_min=dist
!dbg idbg=i
!dbg jdbg=j
!dbg print *,'dist_min,idbg,jdbg=',dist_min,idbg,jdbg
!dbg endif
!dbg enddo !-- I
!dbg enddo !-- J
!dbg if (idbg>0 .and. jdbg>0) print *,'idbg=',idbg,' jdbg=',jdbg
!
END SUBROUTINE GWD_init
!
!-----------------------------------------------------------------------
!
SUBROUTINE GWD_driver(U,V,T,Q,Z,DP,PINT,PMID,EXNR, KPBL, ITIME & 1,19
& ,HSTDV,HCNVX,HASYW,HASYS,HASYSW,HASYNW &
& ,HLENW,HLENS,HLENSW,HLENNW &
& ,HANGL,HANIS,HSLOP,HZMAX,CROT,SROT &
& ,DUDT,DVDT,UGWDsfc,VGWDsfc &
& ,IDS,IDE,JDS,JDE,KDS,KDE &
& ,IMS,IME,JMS,JME,KMS,KME &
& ,ITS,ITE,JTS,JTE,KTS,KTE )
!
!== INPUT:
!-- U, V - zonal (U), meridional (V) winds at mass points (m/s)
!-- T, Q - temperature (C), specific humidity (kg/kg)
!-- DP - pressure thickness (Pa)
!-- Z - geopotential height (m)
!-- PINT, PMID - interface and midlayer pressures, respectively (Pa)
!-- EXNR - (p/p0)**(Rd/Cp)
!-- KPBL - vertical index at PBL top
!-- ITIME - model time step (=NTSD)
!-- HSTDV - orographic standard deviation
!-- HCNVX - normalized 4th moment of the orographic convexity
!-- Template for the next two sets of 4 arrays:
! NWD 1 2 3 4 5 6 7 8
! WD W S SW NW E N NE SE
!-- Orographic asymmetry (HASYx, x=1-4) for upstream & downstream flow (4 planes)
!-- * HASYW - orographic asymmetry for upstream & downstream flow in W-E plane
!-- * HASYS - orographic asymmetry for upstream & downstream flow in S-N plane
!-- * HASYSW - orographic asymmetry for upstream & downstream flow in SW-NE plane
!-- * HASYNW - orographic asymmetry for upstream & downstream flow in NW-SE plane
!-- Orographic length scale or mountain width (4 planes)
!-- * HLENW - orographic length scale for upstream & downstream flow in W-E plane
!-- * HLENS - orographic length scale for upstream & downstream flow in S-N plane
!-- * HLENSW - orographic length scale for upstream & downstream flow in SW-NE plane
!-- * HLENNW - orographic length scale for upstream & downstream flow in NW-SE plane
!-- HANGL - angle (degrees) of the mountain range w/r/t east
!-- HANIS - anisotropy/aspect ratio of orography
!-- HSLOP - slope of orography
!-- HZMAX - max height above mean orography
!-- CROT, SROT - cosine & sine of the angle between Earth & model coordinates
!
!== OUTPUT:
!-- DUDT, DVDT - zonal, meridional wind tendencies
!-- UGWDsfc, VGWDsfc - zonal, meridional surface wind stresses (N/m**2)
!
!== INPUT indices:
!-- ids start index for i in domain
!-- ide end index for i in domain
!-- jds start index for j in domain
!-- jde end index for j in domain
!-- kds start index for k in domain
!-- kde end index for k in domain
!-- ims start index for i in memory
!-- ime end index for i in memory
!-- jms start index for j in memory
!-- jme end index for j in memory
!-- kms start index for k in memory
!-- kme end index for k in memory
!-- its start i index for tile
!-- ite end i index for tile
!-- jts start j index for tile
!-- jte end j index for tile
!-- kts start index for k in tile
!-- kte end index for k in tile
!
!-- INPUT variables:
!
REAL, INTENT(IN), DIMENSION (ims:ime, kms:kme, jms:jme) :: &
& U,V,T,Q,Z,DP,PINT,PMID,EXNR
REAL, INTENT(IN), DIMENSION (ims:ime, jms:jme) :: HSTDV,HCNVX &
& ,HASYW,HASYS,HASYSW,HASYNW,HLENW,HLENS,HLENSW,HLENNW,HANGL &
& ,HANIS,HSLOP,HZMAX,CROT,SROT
INTEGER, INTENT(IN), DIMENSION (ims:ime, jms:jme) :: KPBL
INTEGER, INTENT(IN) :: ids,ide,jds,jde,kds,kde &
&, ims,ime,jms,jme,kms,kme &
&, its,ite,jts,jte,kts,kte,ITIME
!
!-- OUTPUT variables:
!
REAL, INTENT(OUT), DIMENSION (ims:ime, kms:kme, jms:jme) :: &
& DUDT,DVDT
REAL, INTENT(OUT), DIMENSION (ims:ime, jms:jme) :: UGWDsfc,VGWDsfc
!
!-- Local variables
!-- DUsfc, DVsfc - zonal, meridional wind stresses (diagnostics)
!
INTEGER, PARAMETER :: IM=1 !-- Reduces changes in subroutine GWPDS
REAL(KIND=KIND_PHYS), PARAMETER :: G=9.806, GHALF=.5*G &
&, THRESH=1.E-6, dtlarge=1. !dbg
INTEGER, DIMENSION (IM) :: LPBL
REAL(KIND=KIND_PHYS), DIMENSION (IM,4) :: OA4,CLX4
REAL(KIND=KIND_PHYS), DIMENSION (IM) :: DUsfc,DVsfc &
&, HPRIME,OC,THETA,SIGMA,GAMMA,ELVMAX
REAL(KIND=KIND_PHYS), DIMENSION (IM,KTS:KTE) :: DUDTcol,DVDTcol &
&, Ucol,Vcol,Tcol,Qcol,DPcol,Pcol,EXNcol,PHIcol
REAL(KIND=KIND_PHYS), DIMENSION (IM,KTS:KTE+1) :: PINTcol,PHILIcol
INTEGER :: I,J,IJ,K,Imid,Jmid
REAL :: Ugeo,Vgeo,Umod,Vmod, TERRtest,TERRmin
REAL(KIND=KIND_PHYS) :: TEST
CHARACTER(LEN=255) :: message
!dbg
logical :: lprnt !dbg
character (len=26) :: label
integer :: kpblmin,kpblmax, mype, iunit
real :: hzmaxmin,hzmaxmax,hanglmin,hanglmax,hslopmin,hslopmax,hanismin,hanismax &
,hstdvmin,hstdvmax,hcnvxmin,hcnvxmax,hasywmin,hasywmax,hasysmin,hasysmax &
,hasyswmin,hasyswmax,hasynwmin,hasynwmax,hlenwmin,hlenwmax,hlensmin,hlensmax &
,hlenswmin,hlenswmax,hlennwmin,hlennwmax,zsmin,zsmax,delu,delv
! Added this declaration
real :: helvmin,helvmax
!dbg
!
!-------------------------- Executable below -------------------------
!
lprnt=.false.
!dbg
if (itime <= 1) then
CALL WRF_GET_MYPROC
(MYPE) !-- Get processor number
kpblmin=100
kpblmax=-100
hzmaxmin=1.e6
hzmaxmax=-1.e6
hanglmin=1.e6
hanglmax=-1.e6
hslopmin=1.e6
hslopmax=-1.e6
hanismin=1.e6
hanismax=-1.e6
hstdvmin=1.e6
hstdvmax=-1.e6
hcnvxmin=1.e6
hcnvxmax=-1.e6
hasywmin=1.e6
hasywmax=-1.e6
hasysmin=1.e6
hasysmax=-1.e6
hasyswmin=1.e6
hasyswmax=-1.e6
hasynwmin=1.e6
hasynwmax=-1.e6
hlenwmin=1.e6
hlenwmax=-1.e6
hlensmin=1.e6
hlensmax=-1.e6
hlenswmin=1.e6
hlenswmax=-1.e6
hlennwmin=1.e6
hlennwmax=-1.e6
zsmin=1.e6
zsmax=-1.e6
! Added initialization of helvmin and helvmax
helvmin=1.e6
helvmax=-1.e6
do j=jts,jte
do i=its,ite
kpblmin=min(kpblmin,kpbl(i,j))
kpblmax=max(kpblmax,kpbl(i,j))
helvmin=min(helvmin,hzmax(i,j))
helvmax=max(helvmax,hzmax(i,j))
hanglmin=min(hanglmin,hangl(i,j))
hanglmax=max(hanglmax,hangl(i,j))
hslopmin=min(hslopmin,hslop(i,j))
hslopmax=max(hslopmax,hslop(i,j))
hanismin=min(hanismin,hanis(i,j))
hanismax=max(hanismax,hanis(i,j))
hstdvmin=min(hstdvmin,hstdv(i,j))
hstdvmax=max(hstdvmax,hstdv(i,j))
hcnvxmin=min(hcnvxmin,hcnvx(i,j))
hcnvxmax=max(hcnvxmax,hcnvx(i,j))
hasywmin=min(hasywmin,hasyw(i,j))
hasywmax=max(hasywmax,hasyw(i,j))
hasysmin=min(hasysmin,hasys(i,j))
hasysmax=max(hasysmax,hasys(i,j))
hasyswmin=min(hasyswmin,hasysw(i,j))
hasyswmax=max(hasyswmax,hasysw(i,j))
hasynwmin=min(hasynwmin,hasynw(i,j))
hasynwmax=max(hasynwmax,hasynw(i,j))
hlenwmin=min(hlenwmin,hlenw(i,j))
hlenwmax=max(hlenwmax,hlenw(i,j))
hlensmin=min(hlensmin,hlens(i,j))
hlensmax=max(hlensmax,hlens(i,j))
hlenswmin=min(hlenswmin,hlensw(i,j))
hlenswmax=max(hlenswmax,hlensw(i,j))
hlennwmin=min(hlennwmin,hlennw(i,j))
hlennwmax=max(hlennwmax,hlennw(i,j))
zsmin=min(zsmin,z(i,1,j))
zsmax=max(zsmax,z(i,1,j))
enddo
enddo
write(message,*) 'Maximum and minimum values within GWD-driver for MYPE=',MYPE
write(message,"(i3,2(a,e12.5))") mype,': deltim=',deltim,' rdeltim=',rdeltim
CALL wrf_message
(trim(message))
write(message,"(i3,2(a,i3))") mype,': kpblmin=',kpblmin,' kpblmax=',kpblmax
CALL wrf_message
(trim(message))
write(message,"(i3,2(a,e12.5))") mype,': helvmin=',helvmin,' helvmax=',helvmax
CALL wrf_message
(trim(message))
write(message,"(i3,2(a,e12.5))") mype,': hanglmin=',hanglmin,' hanglmax=',hanglmax
CALL wrf_message
(trim(message))
write(message,"(i3,2(a,e12.5))") mype,': hslopmin=',hslopmin,' hslopmax=',hslopmax
CALL wrf_message
(trim(message))
write(message,"(i3,2(a,e12.5))") mype,': hanismin=',hanismin,' hanismax=',hanismax
CALL wrf_message
(trim(message))
write(message,"(i3,2(a,e12.5))") mype,': hstdvmin=',hstdvmin,' hstdvmax=',hstdvmax
CALL wrf_message
(trim(message))
write(message,"(i3,2(a,e12.5))") mype,': hcnvxmin=',hcnvxmin,' hcnvxmax=',hcnvxmax
CALL wrf_message
(trim(message))
write(message,"(i3,2(a,e12.5))") mype,': hasywmin=',hasywmin,' hasywmax=',hasywmax
CALL wrf_message
(trim(message))
write(message,"(i3,2(a,e12.5))") mype,': hasysmin=',hasysmin,' hasysmax=',hasysmax
CALL wrf_message
(trim(message))
write(message,"(i3,2(a,e12.5))") mype,': hasyswmin=',hasyswmin,' hasyswmax=',hasyswmax
CALL wrf_message
(trim(message))
write(message,"(i3,2(a,e12.5))") mype,': hasynwmin=',hasynwmin,' hasynwmax=',hasynwmax
CALL wrf_message
(trim(message))
write(message,"(i3,2(a,e12.5))") mype,': hlenwmin=',hlenwmin,' hlenwmax=',hlenwmax
CALL wrf_message
(trim(message))
write(message,"(i3,2(a,e12.5))") mype,': hlensmin=',hlensmin,' hlensmax=',hlensmax
CALL wrf_message
(trim(message))
write(message,"(i3,2(a,e12.5))") mype,': hlenswmin=',hlenswmin,' hlenswmax=',hlenswmax
CALL wrf_message
(trim(message))
write(message,"(i3,2(a,e12.5))") mype,': hlennwmin=',hlennwmin,' hlennwmax=',hlennwmax
CALL wrf_message
(trim(message))
write(message,"(i3,2(a,e12.5))") mype,': zsmin=',zsmin,' zsmax=',zsmax
CALL wrf_message
(trim(message))
endif ! if (itime <= 1) then
!dbg
!
!-- Initialize variables
!
DO J=JMS,JME
DO K=KMS,KME
DO I=IMS,IME
DUDT(I,K,J)=0.
DVDT(I,K,J)=0.
ENDDO
ENDDO
ENDDO
!
DO J=JMS,JME
DO I=IMS,IME
UGWDsfc(I,J)=0.
VGWDsfc(I,J)=0.
ENDDO
ENDDO
!
!-- For debugging, find approximate center point within each tile
!
!dbg Imid=.5*(ITS+ITE)
!dbg Jmid=.5*(JTS+JTE)
!
DO J=JTS,JTE
DO I=ITS,ITE
if (kpbl(i,j)<kts .or. kpbl(i,j)>kte) go to 100
!
!-- Initial test to see if GWD calculations should be made, otherwise skip
!
TERRtest=HZMAX(I,J)+SIGFAC*HSTDV(I,J)
TERRmin=Z(I,2,J)-Z(I,1,J)
IF (TERRtest < TERRmin) GO TO 100
!
!-- For debugging:
!
!dbg lprnt=.false.
!dbg if (i==idbg .and. j==jdbg .and. itime<=1) lprnt=.true.
!dbg ! 200 CONTINUE
!
DO K=KTS,KTE
DUDTcol(IM,K)=0.
DVDTcol(IM,K)=0.
!
!-- Transform/rotate winds from model to geodetic (Earth) coordinates
!
Ucol(IM,K)=U(I,K,J)*CROT(I,J)+V(I,K,J)*SROT(I,J)
Vcol(IM,K)=V(I,K,J)*CROT(I,J)-U(I,K,J)*SROT(I,J)
!
Tcol(IM,K)=T(I,K,J)
Qcol(IM,K)=Q(I,K,J)
!
!-- Convert from Pa to centibars, which is what's used in subroutine GWD_col
!
DPcol(IM,K)=.001*DP(I,K,J)
PINTcol(IM,K)=.001*PINT(I,K,J)
Pcol(IM,K)=.001*PMID(I,K,J)
EXNcol(IM,K)=EXNR(I,K,J)
!
!-- Next 2 fields are geopotential above the surface at the lower interface
! and at midlayer
!
PHILIcol(IM,K)=G*(Z(I,K,J)-Z(I,1,J))
PHIcol(IM,K)=GHALF*(Z(I,K,J)+Z(I,K+1,J))-G*Z(I,1,J)
ENDDO !- K
!
PINTcol(IM,KTE+1)=.001*PINT(I,KTE+1,J)
PHILIcol(IM,KTE+1)=G*(Z(I,KTE+1,J)-Z(I,1,J))
!
!-- Terrain-specific inputs:
!
HPRIME(IM)=HSTDV(I,J) !-- standard deviation of orography
OC(IM)=HCNVX(I,J) !-- Normalized convexity
OA4(IM,1)=HASYW(I,J) !-- orographic asymmetry in W-E plane
OA4(IM,2)=HASYS(I,J) !-- orographic asymmetry in S-N plane
OA4(IM,3)=HASYSW(I,J) !-- orographic asymmetry in SW-NE plane
OA4(IM,4)=HASYNW(I,J) !-- orographic asymmetry in NW-SE plane
CLX4(IM,1)=HLENW(I,J) !-- orographic length scale in W-E plane
CLX4(IM,2)=HLENS(I,J) !-- orographic length scale in S-N plane
CLX4(IM,3)=HLENSW(I,J) !-- orographic length scale in SW-NE plane
CLX4(IM,4)=HLENNW(I,J) !-- orographic length scale in NW-SE plane
THETA(IM)=HANGL(I,J) !
SIGMA(IM)=HSLOP(I,J) !
GAMMA(IM)=HANIS(I,J) !
ELVMAX(IM)=HZMAX(I,J) !
LPBL(IM)=KPBL(I,J) !
!dbg IF (LPBL(IM)<KTS .OR. LPBL(IM)>KTE) &
!dbg & print *,'Wacky values for KPBL: I,J,N,LPBL=',I,J,ITIME,LPBL(IM)
!
!-- Output (diagnostics)
!
DUsfc(IM)=0. !-- U wind stress
DVsfc(IM)=0. !-- V wind stress
!
!dbg
!dbg if (LPRNT) then
!dbg !
!dbg !-- Following code is for ingesting GFS-derived inputs for final testing
!dbg !
!dbg CALL INT_GET_FRESH_HANDLE(iunit)
!dbg close(iunit)
!dbg open(unit=iunit,file='gfs_gwd.input',form='formatted',iostat=ier)
!dbg read(iunit,*) ! skip line
!dbg read(iunit,*) (Ucol(im,k), k=kts,kte)
!dbg read(iunit,*) ! skip line
!dbg read(iunit,*) (Vcol(im,k), k=kts,kte)
!dbg read(iunit,*) ! skip line
!dbg read(iunit,*) (Tcol(im,k), k=kts,kte)
!dbg read(iunit,*) ! skip line
!dbg read(iunit,*) (Qcol(im,k), k=kts,kte)
!dbg read(iunit,*) ! skip line
!dbg read(iunit,*) (PINTcol(im,k), k=kts,kte+1)
!dbg read(iunit,*) ! skip line
!dbg read(iunit,*) (DPcol(im,k), k=kts,kte)
!dbg read(iunit,*) ! skip line
!dbg read(iunit,*) (Pcol(im,k), k=kts,kte)
!dbg read(iunit,*) ! skip line
!dbg read(iunit,*) (EXNcol(im,k), k=kts,kte)
!dbg read(iunit,*) ! skip line
!dbg read(iunit,*) (PHILIcol(im,k), k=kts,kte+1)
!dbg read(iunit,*) ! skip line
!dbg read(iunit,*) (PHIcol(im,k), k=kts,kte)
!dbg read(iunit,*) ! skip line
!dbg read(iunit,*) hprime(im)
!dbg read(iunit,*) ! skip line
!dbg read(iunit,*) oc(im)
!dbg read(iunit,*) ! skip line
!dbg read(iunit,*) (oa4(im,k), k=1,4)
!dbg read(iunit,*) ! skip line
!dbg read(iunit,*) (clx4(im,k), k=1,4)
!dbg read(iunit,*) ! skip line
!dbg read(iunit,*) theta(im)
!dbg read(iunit,*) ! skip line
!dbg read(iunit,*) sigma(im)
!dbg read(iunit,*) ! skip line
!dbg read(iunit,*) gamma(im)
!dbg read(iunit,*) ! skip line
!dbg read(iunit,*) elvmax(im)
!dbg read(iunit,*) ! skip line
!dbg read(iunit,*) lpbl(im)
!dbg close(iunit)
write(label,"('GWD:i,j,n=',2i5,i6)") I,J,ITIME
!dbg write(6,"(2a)") LABEL,' in GWD_driver: K U V T Q Pi DP P EX PHIi PHI'
!dbg do k=kts,kte
!dbg write(6,"(i3,10e12.4)") k,Ucol(im,k),Vcol(im,k),Tcol(im,k) &
!dbg ,Qcol(im,k),PINTcol(im,k),DPcol(im,k),Pcol(im,k),EXNcol(im,k) &
!dbg ,PHILIcol(im,k),PHIcol(im,k)
!dbg enddo
!dbg write(6,"(2(a,e12.4),2(a,4e12.4/),4(a,e12.4),a,i3) )") &
!dbg 'GWD_driver: hprime(im)=',hprime(im),' oc(im)=',oc(im) &
!dbg ,' oa4(im,1-4)=',(oa4(im,k),k=1,4) &
!dbg ,' clx4(im,1-4)=',(clx4(im,k),k=1,4) &
!dbg ,' theta=',theta(im),' sigma(im)=',sigma(im) &
!dbg ,' gamma(im)=',gamma(im),' elvmax(im)=',elvmax(im) &
!dbg ,' lpbl(im)=',lpbl(im)
!dbg endif
!dbg
!=======================================================================
!
CALL GWD_col
(DVDTcol,DUDTcol, DUsfc,DVsfc & ! Output
&, Ucol,Vcol,Tcol,Qcol,PINTcol,DPcol,Pcol,EXNcol & ! Met input
&, PHILIcol,PHIcol & ! Met input
&, HPRIME,OC,OA4,CLX4,THETA,SIGMA,GAMMA,ELVMAX & ! Topo input
&, LPBL,IM,KTS,KTE,LABEL,LPRNT ) ! Indices + debugging
!
!=======================================================================
!
!dbg
!dbg !
!dbg ! IF (.NOT.LPRNT) THEN
!dbg ! TEST=0.
!dbg ! DO K=KTS,KTE
!dbg ! TEST=MAX( TEST, ABS(DUDTcol(IM,K)), ABS(DVDTcol(IM,K)) )
!dbg ! if ( ABS(DUDTcol(IM,K)) > RDELTIM) print *,'k,DUDTcol=',k,DUDTcol(IM,K)
!dbg ! if ( ABS(DVDTcol(IM,K)) > RDELTIM) print *,'k,DVDTcol=',k,DVDTcol(IM,K)
!dbg ! ENDDO
!dbg ! IF (TEST>RDELTIM) THEN
!dbg ! LPRNT=.TRUE.
!dbg ! Imid=I
!dbg ! Jmid=J
!dbg ! GO TO 200
!dbg ! ENDIF
!dbg ! ENDIF
!dbg ! TEST=ABS(DUsfc(IM))+ABS(DVsfc(IM))
!dbg ! if (.not.lprnt) then
!dbg ! do k=kts,kte
!dbg ! du=DUDTcol(IM,K)*DELTIM
!dbg ! dv=DVDTcol(IM,K)*DELTIM
!dbg ! if (du < dumin) then
!dbg ! lprnt=.true.
!dbg ! dumin=1.5*du
!dbg ! endif
!dbg ! if (du > dumax) then
!dbg ! lprnt=.true.
!dbg ! dumax=1.5*du
!dbg ! endif
!dbg ! if (dv < dvmin) then
!dbg ! lprnt=.true.
!dbg ! dvmin=1.5*dv
!dbg ! endif
!dbg ! if (dv > dvmax) then
!dbg ! lprnt=.true.
!dbg ! dvmax=1.5*dv
!dbg ! endif
!dbg ! enddo
!dbg ! if (lprnt) go to 200
!dbg ! else
!dbg if (lprnt) then
!dbg print *,'DUsfc,DVsfc,CROT,SROT,DELTIM=',DUsfc(IM),DVsfc(IM) &
!dbg &,CROT(I,J),SROT(I,J),DELTIM
!dbg print *,' K P | Ucol Ugeo DUDTcol*DT U Umod DU=DUDT*DT ' &
!dbg ,'| Vcol Vgeo DVDTcol*DT V Vmod DV=DVDT*DT'
!dbg ENDIF
DO K=KTS,KTE
TEST=ABS(DUDTcol(IM,K))+ABS(DVDTcol(IM,K))
IF (TEST > THRESH) THEN
!dbg
!dbg if (lprnt) then
!dbg !dbg DUDTcol(IM,K)=0. !-- Test rotation
!dbg !dbg DVDTcol(IM,K)=0. !-- Test rotation
!dbg !-- Now replace with the original winds before they were written over by
!dbg ! the values from the GFS
!dbg Ucol(IM,K)=U(I,K,J)*CROT(I,J)+V(I,K,J)*SROT(I,J)
!dbg Vcol(IM,K)=V(I,K,J)*CROT(I,J)-U(I,K,J)*SROT(I,J)
!dbg endif
!
!-- First update winds in geodetic coordinates
!
Ugeo=Ucol(IM,K)+DUDTcol(IM,K)*DELTIM
Vgeo=Vcol(IM,K)+DVDTcol(IM,K)*DELTIM
!
!-- Transform/rotate winds from geodetic back to model coordinates
!
Umod=Ugeo*CROT(I,J)-Vgeo*SROT(I,J)
Vmod=Ugeo*SROT(I,J)+Vgeo*CROT(I,J)
!
!-- Calculate wind tendencies from the updated model winds
!
DUDT(I,K,J)=RDELTIM*(Umod-U(I,K,J))
DVDT(I,K,J)=RDELTIM*(Vmod-V(I,K,J))
!
!dbg
test=abs(dudt(i,k,j))+abs(dvdt(i,k,j))
if (test > dtlarge) write(6,"(2a,i2,2(a,e12.4))") &
label,' => k=',k,' dudt=',dudt(i,k,j),' dvdt=',dvdt(i,k,j)
!dbg if (lprnt) write(6,"(i2,f8.2,2(' | ',6f10.4)") K,10.*Pcol(IM,K) &
!dbg ,Ucol(IM,K),Ugeo,DUDTcol(IM,K)*DELTIM,U(I,K,J),Umod,DUDT(I,K,J)*DELTIM &
!dbg ,Vcol(IM,K),Vgeo,DVDTcol(IM,K)*DELTIM,V(I,K,J),Vmod,DVDT(I,K,J)*DELTIM
!dbg
ENDIF !- IF (TEST > THRESH) THEN
!
ENDDO !- K
!
!-- Transform/rotate surface wind stresses from geodetic to model coordinates
!
UGWDsfc(I,J)=DUsfc(IM)*CROT(I,J)-DVsfc(IM)*SROT(I,J)
VGWDsfc(I,J)=DUsfc(IM)*SROT(I,J)+DVsfc(IM)*CROT(I,J)
!
100 CONTINUE
ENDDO !- I
ENDDO !- J
!
END SUBROUTINE GWD_driver
!
!-----------------------------------------------------------------------
!
!-- "A", "B" (from GFS) in GWD_col are DVDTcol, DUDTcol, respectively in GWD_driver
!
SUBROUTINE GWD_col (A,B, DUsfc,DVsfc & !-- Output 1
&, U1,V1,T1,Q1, PRSI,DEL,PRSL,PRSLK, PHII,PHIL & !-- Met inputs
&, HPRIME,OC,OA4,CLX4,THETA,SIGMA,GAMMA,ELVMAX & !-- Topo inputs
&, KPBL,IM,KTS,KTE, LABEL,LPRNT ) !-- Input indices, debugging
!
!=== Output fields
!
!-- A (DUDT), B (DVDT) - output zonal & meridional wind tendencies in Earth coordinates (m s^-2)
!-- DUsfc, DVsfc - surface zonal meridional wind stresses in Earth coordinates (m s^-1?)
!
!=== Input fields
!
!-- U1, V1 - zonal, meridional wind (m/s)
!-- T1 - temperature (deg K)
!-- Q1 - specific humidity (kg/kg)
!-- PRSI - lower interface pressure in centibars (1000 Pa)
!-- DEL - pressure thickness of layer in centibars (1000 Pa)
!-- PRSL - midlayer pressure in centibars (1000 Pa)
!-- PRSLK - Exner function, (P/P0)**(Rd/CP)
!-- PHII - lower interface geopotential in mks units
!-- PHIL - midlayer geopotential in mks units
!-- KDT - number of time steps into integration for diagnostics
!-- HPRIME - orographic standard deviation
!-- OC - normalized 4th moment of the orographic convexity
!-- OA4 - orographic asymmetry for upstream & downstream flow measured
! along 4 vertical planes (W-E, S-N, SW-NE, NW-SE)
!-- CLX4 - orographic length scale or mountain width measured along
! 4 vertical planes (W-E, S-N, SW-NE, NW-SE)
!-- THETA - angle of the mountain range w/r/t east
!-- SIGMA - slope of orography
!-- GAMMA - anisotropy/aspect ratio
!-- ELVMAX - max height above mean orography
!-- KPBL(IM) - vertical index at the top of the PBL
!-- KM - number of vertical levels
!
!== For diagnostics
!-- LABEL - character string for diagnostic prints
!-- LPRNT - logical flag for prints
!
!#######################################################################
!################## ORIGINAL DOCUMENTATION BLOCK #####################
!###### The following comments are from the original GFS code ########
!#######################################################################
! ********************************************************************
! -----> I M P L E M E N T A T I O N V E R S I O N <----------
!
! --- Not in this code -- History of GWDP at NCEP----
! ---------------- -----------------------
! VERSION 3 MODIFIED FOR GRAVITY WAVES, LOCATION: .FR30(V3GWD) *J*
!--- 3.1 INCLUDES VARIABLE SATURATION FLUX PROFILE CF ISIGST
!--- 3.G INCLUDES PS COMBINED W/ PH (GLAS AND GFDL)
!----- ALSO INCLUDED IS RI SMOOTH OVER A THICK LOWER LAYER
!----- ALSO INCLUDED IS DECREASE IN DE-ACC AT TOP BY 1/2
!----- THE NMC GWD INCORPORATING BOTH GLAS(P&S) AND GFDL(MIGWD)
!----- MOUNTAIN INDUCED GRAVITY WAVE DRAG
!----- CODE FROM .FR30(V3MONNX) FOR MONIN3
!----- THIS VERSION (06 MAR 1987)
!----- THIS VERSION (26 APR 1987) 3.G
!----- THIS VERSION (01 MAY 1987) 3.9
!----- CHANGE TO FORTRAN 77 (FEB 1989) --- HANN-MING HENRY JUANG
!-----
!
! VERSION 4
! ----- This code -----
!
!----- MODIFIED TO IMPLEMENT THE ENHANCED LOW TROPOSPHERIC GRAVITY
!----- WAVE DRAG DEVELOPED BY KIM AND ARAKAWA(JAS, 1995).
! Orographic Std Dev (hprime), Convexity (OC), Asymmetry (OA4)
! and Lx (CLX4) are input topographic statistics needed.
!
!----- PROGRAMMED AND DEBUGGED BY HONG, ALPERT AND KIM --- JAN 1996.
!----- debugged again - moorthi and iredell --- may 1998.
!-----
! Further Cleanup, optimization and modification
! - S. Moorthi May 98, March 99.
!----- modified for usgs orography data (ncep office note 424)
! and with several bugs fixed - moorthi and hong --- july 1999.
!
!----- Modified & implemented into NRL NOGAPS
! - Young-Joon Kim, July 2000
!-----
! VERSION lm MB (6): oz fix 8/2003
! ----- This code -----
!
!------ Changed to include the Lott and Miller Mtn Blocking
! with some modifications by (*j*) 4/02
! From a Principal Coordinate calculation using the
! Hi Res 8 minute orography, the Angle of the
! mtn with that to the East (x) axis is THETA, the slope
! parameter SIGMA. The anisotropy is in GAMMA - all are input
! topographic statistics needed. These are calculated off-line
! as a function of model resolution in the fortran code ml01rg2.f,
! with script mlb2.sh. (*j*)
!----- gwdps_mb.f version (following lmi) elvmax < hncrit (*j*)
! MB3a expt to enhance elvmax mtn hgt see sigfac & hncrit
!-----
!----------------------------------------------------------------------C
!==== Below in "!GFS " are the original subroutine call and comments from
! /nwprod/sorc/global_fcst.fd/gwdps_v.f as of April 2007
!GFS SUBROUTINE GWDPS(IM,IX,IY,KM,A,B,U1,V1,T1,Q1,KPBL,
!GFS & PRSI,DEL,PRSL,PRSLK,PHII, PHIL,RCL,DELTIM,KDT,
!GFS & HPRIME,OC,OA4,CLX4,THETA,SIGMA,GAMMA,ELVMAX,
!GFS & DUsfc,DVsfc,G, CP, RD, RV, IMX,
!GFS & nmtvr, me, lprnt, ipr)
!GFS !------------------------------------------------------------------
!GFS ! USE
!GFS ! ROUTINE IS CALLED FROM GBPHYS (AFTER CALL TO MONNIN)
!GFS !
!GFS ! PURPOSE
!GFS ! USING THE GWD PARAMETERIZATIONS OF PS-GLAS AND PH-
!GFS ! GFDL TECHNIQUE. THE TIME TENDENCIES OF U V
!GFS ! ARE ALTERED TO INCLUDE THE EFFECT OF MOUNTAIN INDUCED
!GFS ! GRAVITY WAVE DRAG FROM SUB-GRID SCALE OROGRAPHY INCLUDING
!GFS ! CONVECTIVE BREAKING, SHEAR BREAKING AND THE PRESENCE OF
!GFS ! CRITICAL LEVELS
!GFS !
!GFS ! INPUT
!GFS ! A(IY,KM) NON-LIN TENDENCY FOR V WIND COMPONENT
!GFS ! B(IY,KM) NON-LIN TENDENCY FOR U WIND COMPONENT
!GFS ! U1(IX,KM) ZONAL WIND / SQRT(RCL) M/SEC AT T0-DT
!GFS ! V1(IX,KM) MERIDIONAL WIND / SQRT(RCL) M/SEC AT T0-DT
!GFS ! T1(IX,KM) TEMPERATURE DEG K AT T0-DT
!GFS ! Q1(IX,KM) SPECIFIC HUMIDITY AT T0-DT
!GFS !
!GFS ! RCL A scaling factor = RECIPROCAL OF SQUARE OF COS(LAT)
!GFS ! FOR MRF GFS.
!GFS ! DELTIM TIME STEP SECS
!GFS ! SI(N) P/PSFC AT BASE OF LAYER N
!GFS ! SL(N) P/PSFC AT MIDDLE OF LAYER N
!GFS ! DEL(N) POSITIVE INCREMENT OF P/PSFC ACROSS LAYER N
!GFS ! KPBL(IM) is the index of the top layer of the PBL
!GFS ! ipr & lprnt for diagnostics
!GFS !
!GFS ! OUTPUT
!GFS ! A, B AS AUGMENTED BY TENDENCY DUE TO GWDPS
!GFS ! OTHER INPUT VARIABLES UNMODIFIED.
!GFS ! ********************************************************************
!
IMPLICIT NONE
!
!-- INPUT:
!
INTEGER, INTENT(IN) :: IM,KTS,KTE
REAL(kind=kind_phys), INTENT(IN), DIMENSION(IM,KTS:KTE) :: &
& U1,V1,T1,Q1,DEL,PRSL,PRSLK,PHIL
REAL(kind=kind_phys), INTENT(IN), DIMENSION(IM,KTS:KTE+1) :: &
& PRSI,PHII
REAL(kind=kind_phys), INTENT(IN), DIMENSION(IM,4) :: OA4,CLX4
REAL(kind=kind_phys), INTENT(IN), DIMENSION(IM) :: &
& HPRIME,OC,THETA,SIGMA,GAMMA,ELVMAX
INTEGER, INTENT(IN), DIMENSION(IM) :: KPBL
CHARACTER (LEN=26), INTENT(IN) :: LABEL
LOGICAL, INTENT(IN) :: LPRNT
!
!-- OUTPUT:
!
REAL(kind=kind_phys), INTENT(INOUT), DIMENSION(IM,KTS:KTE) :: A,B
REAL(kind=kind_phys), INTENT(INOUT), DIMENSION(IM) :: DUsfc,DVsfc
!
!-----------------------------------------------------------------------
!-- LOCAL variables:
!-----------------------------------------------------------------------
!
! Some constants
!
!
REAL(kind=kind_phys), PARAMETER :: PI=3.1415926535897931 &
&, G=9.806, CP=1004.6, RD=287.04, RV=461.6 &
&, FV=RV/RD-1., RDI=1./RD, GOR=G/RD, GR2=G*GOR, GOCP=G/CP &
&, ROG=1./G, ROG2=ROG*ROG &
&, DW2MIN=1., RIMIN=-100., RIC=0.25, BNV2MIN=1.0E-5 &
&, EFMIN=0.0, EFMAX=10.0, hpmax=200.0 & ! or hpmax=2500.0
&, FRC=1.0, CE=0.8, CEOFRC=CE/FRC, frmax=100. &
&, CG=0.5, GMAX=1.0, CRITAC=5.0E-4, VELEPS=1.0 &
&, FACTOP=0.5, RLOLEV=500.0, HZERO=0., HONE=1. & ! or RLOLEV=0.5
&, HE_4=.0001, HE_2=.01 &
!
!-- Lott & Miller mountain blocking => aka "lm mtn blocking"
!
&, cdmb = 1.0 & ! non-dim sub grid mtn drag Amp (*j*)
! hncrit set to 8000m and sigfac added to enhance elvmax mtn hgt
&, hncrit=8000. & ! Max value in meters for ELVMAX (*j*)
!module top! &, sigfac=3.0 & ! MB3a expt test for ELVMAX factor (*j*) => control value is 0.1
!module top &, sigfac=0. & ! MB3a expt test for ELVMAX factor (*j*) => control value is 0.1
&, hminmt=50. & ! min mtn height (*j*)
&, hstdmin=25. & ! min orographic std dev in height
&, minwnd=0.1 & ! min wind component (*j*)
&, dpmin=5.0 ! Minimum thickness of the reference layer (centibars)
! values of dpmin=0, 20 have also been used
!
integer, parameter :: mdir=8
real(kind=kind_phys), parameter :: FDIR=mdir/(PI+PI)
!
!-- Template:
! NWD 1 2 3 4 5 6 7 8
! WD W S SW NW E N NE SE
!
integer,save :: nwdir(mdir)
data nwdir /6,7,5,8,2,3,1,4/
!
LOGICAL ICRILV(IM)
!
!---- MOUNTAIN INDUCED GRAVITY WAVE DRAG
!
!
! for lm mtn blocking
real(kind=kind_phys), DIMENSION(IM) :: WK,PE,EK,ZBK,UP,TAUB,XN &
& ,YN,UBAR,VBAR,ULOW,OA,CLX,ROLL,ULOI,DTFAC,XLINV,DELKS,DELKS1 &
& ,SCOR,BNV2bar, ELEVMX ! ,PSTAR
!
real(kind=kind_phys), DIMENSION(IM,KTS:KTE) :: &
& BNV2LM,DB,ANG,UDS,BNV2,RI_N,TAUD,RO,VTK,VTJ
real(kind=kind_phys), DIMENSION(IM,KTS:KTE-1) :: VELCO
real(kind=kind_phys), DIMENSION(IM,KTS:KTE+1) :: TAUP
real(kind=kind_phys), DIMENSION(KTE-1) :: VELKO
!
integer, DIMENSION(IM) :: &
& kref,kint,iwk,iwk2,ipt,kreflm,iwklm,iptlm,idxzb
!
! for lm mtn blocking
!
real(kind=kind_phys) :: ZLEN, DBTMP, R, PHIANG, DBIM &
&, xl, rcsks, bnv, fr &
&, brvf, cleff, tem, tem1, tem2, temc, temv &
&, wdir, ti, rdz, dw2, shr2, bvf2 &
&, rdelks, wtkbj, efact, coefm, gfobnv &
&, scork, rscor, hd, fro, rim, sira &
&, dtaux, dtauy, pkp1log, pklog
!
integer :: ncnt, kmm1, kmm2, lcap, lcapp1, kbps, kbpsp1,kbpsm1 &
&, kmps, kmpsp1, idir, nwd, i, j, k, klcap, kp1, kmpbl, npt, npr &
&, idxm1, ktrial, klevm1, kmll,kmds, KM &
! &, ihit,jhit &
&, ME !-- processor element for debugging
real :: rcl,rcs !dbg
!
!-----------------------------------------------------------------------
!
KM = KTE
npr = 0
DO I = 1, IM
DUsfc(I) = 0.
DVsfc(I) = 0.
!
!-- ELEVMX is a local array that could be changed below
!
ELEVMX(I) = ELVMAX(I)
ENDDO
!
!-- Note that A, B already set to zero as DUDTcol, DVDTcol in subroutine GWD_driver
!
ipt = 0
npt = 0
IF (NMTVR >= 14) then
DO I = 1,IM
IF (elvmax(i) > HMINMT .AND. hprime(i) > HE_4) then
npt = npt + 1
ipt(npt) = i
ENDIF
ENDDO
ELSE
DO I = 1,IM
IF (hprime(i) > HE_4) then
npt = npt + 1
ipt(npt) = i
ENDIF
ENDDO
ENDIF !-- IF (NMTVR >= 14) then
!
!dbg
rcl=1.
rcs=1.
!dbg if (lprnt) then
!dbg !-- Match what's in the GFS:
!dbg !dbg rcl=1.53028780126139008 ! match GFS point at 36N
!dbg !dbg rcs=sqrt(rcl)
!dbg i=im
!dbg write(6,"(a,a)") LABEL,' in GWD_col: K U V T Q Pi DP P EX PHIi PHI'
!dbg do k=kts,kte
!dbg write(6,"(i3,10e12.4)") k,U1(i,k),V1(i,k),T1(i,k),Q1(i,k),PRSI(i,k) &
!dbg ,DEL(i,k),PRSL(i,k),PRSLK(i,k),PHII(i,k),PHIL(i,k)
!dbg enddo
!dbg write(6,"(2(a,e12.4),2(a,4e12.4/),4(a,e12.4),a,i3) )") &
!dbg 'GWD_col: hprime(i)=',hprime(i),' oc(i)=',oc(i) &
!dbg ,' oa4(i,1-4)=',(oa4(i,k),k=1,4) &
!dbg ,' clx4(i,1-4)=',(clx4(i,k),k=1,4) &
!dbg ,' theta(i)=',theta(i),' sigma(i)=',sigma(i) &
!dbg ,' gamma(i)=',gamma(i),' elvmax(i)=',elvmax(i) &
!dbg ,' lpbl(i)=',kpbl(i)
!dbg endif
!dbg if (lprnt) CALL WRF_GET_MYPROC(ME)
!
!-- Note important criterion for immediately exiting routine!
!
IF (npt <= 0) RETURN ! No gwd/mb calculation done!
!
do i=1,npt
IDXZB(i) = 0
enddo
!
DO K = 1, KM
DO I = 1, IM
DB(I,K) = 0.
ANG(I,K) = 0.
UDS(I,K) = 0.
ENDDO
ENDDO
!
!
! NCNT = 0
KMM1 = KM - 1
KMM2 = KM - 2
LCAP = KM
LCAPP1 = LCAP + 1
!
!
IF (NMTVR .eq. 14) then
! ---- for lm and gwd calculation points
!
! --- iwklm is the level above the height of the mountain.
! --- idxzb is the level of the dividing streamline.
! INITIALIZE DIVIDING STREAMLINE (DS) CONTROL VECTOR
!
do i=1,npt
iwklm(i) = 2
kreflm(i) = 0
enddo
!
!
! start lm mtn blocking (mb) section
!
!..............................
!..............................
!
! (*j*) 11/03: test upper limit on KMLL=km - 1
! then do not need hncrit -- test with large hncrit first.
! KMLL = km / 2 ! maximum mtnlm height : # of vertical levels / 2
KMLL = kmm1
! --- No mtn should be as high as KMLL (so we do not have to start at
! --- the top of the model but could do calc for all levels).
!
!dbg
!dbg if (lprnt) print *,'k pkp1log pklog vtj(i,k) vtk(i,k) ro(i,k)'
DO I = 1, npt
j = ipt(i)
ELEVMX(J) = min (ELEVMX(J) + sigfac * hprime(j), hncrit)
!dbg
!dbg if (lprnt) print *,'k=',k,' elevmx(j)=',elevmx(j),' elvmax(j)=',elvmax(j) &
!dbg ,' sigfac*hprime(j)=',sigfac*hprime(j)
ENDDO
DO K = 1,KMLL
DO I = 1, npt
j = ipt(i)
! --- interpolate to max mtn height for index, iwklm(I) wk[gz]
! --- ELEVMX is limited to hncrit because to hi res topo30 orog.
pkp1log = phil(j,k+1) * ROG
pklog = phil(j,k) * ROG
if ( ( ELEVMX(j) .le. pkp1log ) .and. &
& ( ELEVMX(j) .ge. pklog ) ) THEN
! --- wk for diags but can be saved and reused.
wk(i) = G * ELEVMX(j) / ( phil(j,k+1) - phil(j,k) )
iwklm(I) = MAX(iwklm(I), k+1 )
!dbg if (lprnt) print *,'k,wk(i),iwklm(i)=',k,wk(i),iwklm(i) !dbg
endif
!
! --- find at prsl levels large scale environment variables
! --- these cover all possible mtn max heights
VTJ(I,K) = T1(J,K) * (1.+FV*Q1(J,K)) ! virtual temperature
VTK(I,K) = VTJ(I,K) / PRSLK(J,K) ! potential temperature
RO(I,K) = RDI * PRSL(J,K) / VTJ(I,K) ! DENSITY (1.e-3 kg m^-3)
!dbg if (lprnt) write(6,"(i2,5e12.4)") k,pkp1log,pklog,vtj(i,k),vtk(i,k),ro(i,k) !dbg
ENDDO !-- DO I = 1, npt
!
ENDDO !-- DO K = 1,KMLL
!
! testing for highest model level of mountain top
!
! ihit = 2
! jhit = 0
! do i = 1, npt
! j=ipt(i)
! if ( iwklm(i) .gt. ihit ) then
! ihit = iwklm(i)
! jhit = j
! endif
! enddo
! if (lprnt) print *, ' mb: kdt,max(iwklm),jhit,phil,me=', &
! & kdt,ihit,jhit,phil(jhit,ihit),me
!
!dbg if (lprnt) print *,'k rdz bnv2lm(i,k)' !dbg
klevm1 = KMLL - 1
DO K = 1, klevm1
DO I = 1, npt
j = ipt(i)
RDZ = g / ( phil(j,k+1) - phil(j,k) )
! --- Brunt-Vaisala Frequency
BNV2LM(I,K) = (G+G) * RDZ * ( VTK(I,K+1)-VTK(I,K) ) &
& / ( VTK(I,K+1)+VTK(I,K) )
bnv2lm(i,k) = max( bnv2lm(i,k), bnv2min )
!dbg if (lprnt) write(6,"(i2,2e12.4)") k,rdz,bnv2lm(i,k) !dbg
ENDDO
ENDDO
!
DO I = 1, npt
J = ipt(i)
DELKS(I) = 1.0 / (PRSI(J,1) - PRSI(J,iwklm(i)))
DELKS1(I) = 1.0 / (PRSL(J,1) - PRSL(J,iwklm(i)))
UBAR (I) = 0.0
VBAR (I) = 0.0
ROLL (I) = 0.0
PE (I) = 0.0
EK (I) = 0.0
BNV2bar(I) = (PRSL(J,1)-PRSL(J,2)) * DELKS1(I) * BNV2LM(I,1)
ENDDO
!
! --- find the dividing stream line height
! --- starting from the level above the max mtn downward
! --- iwklm(i) is the k-index of mtn elevmx elevation
!
DO Ktrial = KMLL, 1, -1
DO I = 1, npt
IF ( Ktrial .LT. iwklm(I) .and. kreflm(I) .eq. 0 ) then
kreflm(I) = Ktrial
if (lprnt) print *,'Ktrial,iwklm(i),kreflm(i)=',Ktrial,iwklm(i),kreflm(I)
ENDIF
ENDDO
ENDDO
!
! --- in the layer kreflm(I) to 1 find PE (which needs N, ELEVMX)
! --- make averages, guess dividing stream (DS) line layer.
! --- This is not used in the first cut except for testing and
! --- is the vert ave of quantities from the surface to mtn top.
!
!dbg
!dbg if (lprnt) print *,' k rdelks ubar vbar roll ' &
!dbg ,'bnv2bar rcsks rcs'
DO I = 1, npt
DO K = 1, Kreflm(I)
J = ipt(i)
RDELKS = DEL(J,K) * DELKS(I)
!dbg
RCSKS = RCS * RDELKS
UBAR(I) = UBAR(I) + RCSKS * U1(J,K) ! trial Mean U below
VBAR(I) = VBAR(I) + RCSKS * V1(J,K) ! trial Mean V below
ROLL(I) = ROLL(I) + RDELKS * RO(I,K) ! trial Mean RO below
RDELKS = (PRSL(J,K)-PRSL(J,K+1)) * DELKS1(I)
BNV2bar(I) = BNV2bar(I) + BNV2lm(I,K) * RDELKS
! --- these vert ave are for diags, testing and GWD to follow (*j*).
!dbg
!dbg if (lprnt) write(6,"(i2,7e12.4)") k,rdelks,ubar(i),vbar(i),roll(i) &
!dbg ,bnv2bar(i),rcsks,rcs
ENDDO
ENDDO
!dbg
!dbg if (lprnt) print *, 'kreflm(npt)=',kreflm(npt) &
!dbg ,' bnv2bar(npt)=',bnv2bar(npt) &
!dbg ,' ubar(npt)=',ubar(npt) &
!dbg ,' vbar(npt)=',vbar(npt) &
!dbg ,' roll(npt)=',roll(npt) &
!dbg ,' delks(npt)=',delks(npt) &
!dbg ,' delks1(npt)=',delks1(npt)
!
! --- integrate to get PE in the trial layer.
! --- Need the first layer where PE>EK - as soon as
! --- IDXZB is not 0 we have a hit and Zb is found.
!
DO I = 1, npt
J = ipt(i)
!dbg
!dbg if (lprnt) print *,'k phiang u1(j,k) v1(j,k) theta(j)' &
!dbg ,' ang(i,k) uds(i,k) pe(i) up(i) ek(i)'
DO K = iwklm(I), 1, -1
PHIANG = RAD_TO_DEG*atan2(V1(J,K),U1(J,K))
ANG(I,K) = ( THETA(J) - PHIANG )
if ( ANG(I,K) .gt. 90. ) ANG(I,K) = ANG(I,K) - 180.
if ( ANG(I,K) .lt. -90. ) ANG(I,K) = ANG(I,K) + 180.
!
!dbg UDS(I,K) = &
UDS(I,K) = rcs* &
& MAX(SQRT(U1(J,K)*U1(J,K) + V1(J,K)*V1(J,K)), minwnd)
! --- Test to see if we found Zb previously
IF (IDXZB(I) .eq. 0 ) then
PE(I) = PE(I) + BNV2lm(I,K) * &
& ( G * ELEVMX(J) - phil(J,K) ) * &
& ( PHII(J,K+1) - PHII(J,K) ) * ROG2
!dbg
!dbg & ( PHII(J,K+1) - PHII(J,K) ) / (G*G)
!dbg if (lprnt) print *, &
!dbg 'k=',k,' pe(i)=',pe(i),' bnv2lm(i,k)=',bnv2lm(i,k) &
!dbg ,' g=',g,' elevmx(j)=',elevmx(j) &
!dbg ,' g*elevmx(j)-phil(j,k)=',g*elevmx(j)-phil(j,k) &
!dbg ,' (phii(j,k+1)-phi(j,k))/(g*g)=',(PHII(J,K+1)-PHII(J,K) )*ROG2
! --- KE
! --- Wind projected on the line perpendicular to mtn range, U(Zb(K)).
! --- kinetic energy is at the layer Zb
! --- THETA ranges from -+90deg |_ to the mtn "largest topo variations"
UP(I) = UDS(I,K) * cos(DEG_TO_RAD*ANG(I,K))
EK(I) = 0.5 * UP(I) * UP(I)
! --- Dividing Stream lime is found when PE =exceeds EK.
IF ( PE(I) .ge. EK(I) ) IDXZB(I) = K
! --- Then mtn blocked flow is between Zb=k(IDXZB(I)) and surface
!
ENDIF !-- IF (IDXZB(I) .eq. 0 ) then
!dbg
!dbg if (lprnt) write(6,"(i2,9e12.4)") &
!dbg k,phiang,u1(j,k),v1(j,k),theta(j),ang(i,k),uds(i,k),pe(i),up(i),ek(i)
ENDDO !-- DO K = iwklm(I), 1, -1
ENDDO !-- DO I = 1, npt
!
DO I = 1, npt
J = ipt(i)
! --- Calc if N constant in layers (Zb guess) - a diagnostic only.
ZBK(I) = ELEVMX(J) - SQRT(UBAR(I)**2 + VBAR(I)**2)/BNV2bar(I)
ENDDO
!
!dbg
!dbg if (lprnt) print *,'iwklm=',iwklm(npt),' ZBK=',ZBK(npt)
!
! --- The drag for mtn blocked flow
!
!dbg
!dbg if (lprnt) print *,'k phil(j,k) g*hprime(j) ' &
!dbg ,'phil(j,idxzb(i))-phil(j,k) zlen r dbtmp db(i,k)'
!
DO I = 1, npt
J = ipt(i)
ZLEN = 0.
IF ( IDXZB(I) .gt. 0 ) then
DO K = IDXZB(I), 1, -1
IF (PHIL(J,IDXZB(I)) > PHIL(J,K)) THEN
ZLEN = SQRT( ( PHIL(J,IDXZB(I))-PHIL(J,K) ) / &
& ( PHIL(J,K ) + G * hprime(J) ) )
! --- lm eq 14:
R = (cos(DEG_TO_RAD*ANG(I,K))**2 + GAMMA(J) * sin(DEG_TO_RAD*ANG(I,K))**2) / &
& (gamma(J) * cos(DEG_TO_RAD*ANG(I,K))**2 + sin(DEG_TO_RAD*ANG(I,K))**2)
! --- (negative of DB -- see sign at tendency)
DBTMP = 0.25 * CDmb * &
& MAX( 2. - 1. / R, HZERO ) * sigma(J) * &
& MAX(cos(DEG_TO_RAD*ANG(I,K)), gamma(J)*sin(DEG_TO_RAD*ANG(I,K))) * &
& ZLEN / hprime(J)
DB(I,K) = DBTMP * UDS(I,K)
!
!dbg
!dbg if (lprnt) write(6,"(i3,7e12.4)") &
!dbg k,phil(j,k),g*hprime(j),phil(j,idxzb(i))-phil(j,k),zlen,r,dbtmp,db(i,k)
!
ENDIF !-- IF (PHIL(J,IDXZB(I)) > PHIL(J,K) .AND. DEN > 0.) THEN
ENDDO !-- DO K = IDXZB(I), 1, -1
endif
ENDDO !-- DO I = 1, npt
!
!.............................
!.............................
! end mtn blocking section
!
ENDIF !-- IF ( NMTVR .eq. 14) then
!
!.............................
!.............................
!
KMPBL = km / 2 ! maximum pbl height : # of vertical levels / 2
!
! Scale cleff between IM=384*2 and 192*2 for T126/T170 and T62
!
if (imx .gt. 0) then
! cleff = 1.0E-5 * SQRT(FLOAT(IMX)/384.0) ! this is inverse of CLEFF!
! cleff = 1.0E-5 * SQRT(FLOAT(IMX)/192.0) ! this is inverse of CLEFF!
cleff = 0.5E-5 * SQRT(FLOAT(IMX)/192.0) ! this is inverse of CLEFF!
! cleff = 2.0E-5 * SQRT(FLOAT(IMX)/192.0) ! this is inverse of CLEFF!
! cleff = 2.5E-5 * SQRT(FLOAT(IMX)/192.0) ! this is inverse of CLEFF!
endif
!dbg
!dbg if (lprnt) print *,'imx, cleff, rcl, rcs=',imx,cleff,rcl,rcs
!dbg if (lprnt) print *,' k vtj vtk ro'
DO K = 1,KM
DO I =1,npt
J = ipt(i)
VTJ(I,K) = T1(J,K) * (1.+FV*Q1(J,K))
VTK(I,K) = VTJ(I,K) / PRSLK(J,K)
RO(I,K) = RDI * PRSL(J,K) / VTJ(I,K) ! DENSITY
TAUP(I,K) = 0.0
!dbg
!dbg if (lprnt) write(6,"(i2,3e12.4)") k,vtj(i,k),vtk(i,k),ro(i,k) !dbg
ENDDO
ENDDO
!dbg
!dbg if (lprnt) print *,' k ti tem rdz tem1' &
!dbg ,' tem2 dw2 shr2 bvf2 ri_n(i,k) bnv2(i,k)'
DO K = 1,KMM1
DO I =1,npt
J = ipt(i)
TI = 2.0 / (T1(J,K)+T1(J,K+1))
TEM = TI / (PRSL(J,K)-PRSL(J,K+1))
! RDZ = GOR * PRSI(J,K+1) * TEM
RDZ = g / (phil(j,k+1) - phil(j,k))
TEM1 = U1(J,K) - U1(J,K+1)
TEM2 = V1(J,K) - V1(J,K+1)
!dbg
! DW2 = TEM1*TEM1 + TEM2*TEM2
DW2 = rcl*(TEM1*TEM1 + TEM2*TEM2)
SHR2 = MAX(DW2,DW2MIN) * RDZ * RDZ
BVF2 = G*(GOCP+RDZ*(VTJ(I,K+1)-VTJ(I,K))) * TI
ri_n(I,K) = MAX(BVF2/SHR2,RIMIN) ! Richardson number
! Brunt-Vaisala Frequency
! TEM = GR2 * (PRSL(J,K)+PRSL(J,K+1)) * TEM
! BNV2(I,K) = TEM * (VTK(I,K+1)-VTK(I,K))/(VTK(I,K+1)+VTK(I,K))
BNV2(I,K) = (G+G) * RDZ * (VTK(I,K+1)-VTK(I,K)) &
& / (VTK(I,K+1)+VTK(I,K))
bnv2(i,k) = max( bnv2(i,k), bnv2min )
!dbg
!dbg if (lprnt) write(6,"(i2,10e12.4)") &
!dbg k,ti,tem,rdz,tem1,tem2,dw2,shr2,bvf2,ri_n(i,k),bnv2(i,k)
!
ENDDO !-- DO K = 1,KMM1
ENDDO !-- DO I =1,npt
!
!dbg
!dbg if (lprnt) print *,'kmm1,bnv2=',kmm1,bnv2(npt,kmm1)
!
! Apply 3 point smoothing on BNV2
!
! do k=1,km
! do i=1,im
! vtk(i,k) = bnv2(i,k)
! enddo
! enddo
! do k=2,kmm1
! do i=1,im
! bnv2(i,k) = 0.25*(vtk(i,k-1)+vtk(i,k+1)) + 0.5*vtk(i,k)
! enddo
! enddo
!
! Finding the first interface index above 50 hPa level
!
do i=1,npt
iwk(i) = 2
enddo
!dbg if (lprnt) print *,'kmpbl=',kmpbl !dbg
DO K=3,KMPBL
DO I=1,npt
j = ipt(i)
tem = (prsi(j,1) - prsi(j,k))
if (tem .lt. dpmin) iwk(i) = k
enddo
enddo
!
KBPS = 1
KMPS = KM
DO I=1,npt
J = ipt(i)
kref(I) = MAX(IWK(I), KPBL(J)+1 ) ! reference level
DELKS(I) = 1.0 / (PRSI(J,1) - PRSI(J,kref(I)))
DELKS1(I) = 1.0 / (PRSL(J,1) - PRSL(J,kref(I)))
UBAR (I) = 0.0
VBAR (I) = 0.0
ROLL (I) = 0.0
KBPS = MAX(KBPS, kref(I))
KMPS = MIN(KMPS, kref(I))
!
BNV2bar(I) = (PRSL(J,1)-PRSL(J,2)) * DELKS1(I) * BNV2(I,1)
ENDDO
!
!
KBPSP1 = KBPS + 1
KBPSM1 = KBPS - 1
DO K = 1,KBPS
DO I = 1,npt
IF (K .LT. kref(I)) THEN
J = ipt(i)
RDELKS = DEL(J,K) * DELKS(I)
!dbg
! UBAR(I) = UBAR(I) + RDELKS * U1(J,K) ! Mean U below kref
! VBAR(I) = VBAR(I) + RDELKS * V1(J,K) ! Mean V below kref
RCSKS = RCS * RDELKS
UBAR(I) = UBAR(I) + RCSKS * U1(J,K) ! Mean U below kref
VBAR(I) = VBAR(I) + RCSKS * V1(J,K) ! Mean V below kref
!
ROLL(I) = ROLL(I) + RDELKS * RO(I,K) ! Mean RO below kref
RDELKS = (PRSL(J,K)-PRSL(J,K+1)) * DELKS1(I)
BNV2bar(I) = BNV2bar(I) + BNV2(I,K) * RDELKS
ENDIF
ENDDO
ENDDO
!
!dbg
!dbg if(lprnt) print *,'ubar(npt)=',ubar(npt) &
!dbg ,' vbar(npt)=',vbar(npt),' roll(npt)=',roll(npt) &
!dbg ,' bnv2bar(npt)=',bnv2bar(npt)
!
! FIGURE OUT LOW-LEVEL HORIZONTAL WIND DIRECTION AND FIND 'OA'
!
! NWD 1 2 3 4 5 6 7 8
! WD W S SW NW E N NE SE
!
DO I = 1,npt
J = ipt(i)
wdir = atan2(UBAR(I),VBAR(I)) + pi
idir = mod(nint(fdir*wdir),mdir) + 1
nwd = nwdir(idir)
OA(I) = (1-2*INT( (NWD-1)/4 )) * OA4(J,MOD(NWD-1,4)+1)
CLX(I) = CLX4(J,MOD(NWD-1,4)+1)
ENDDO
!
!-----XN,YN "LOW-LEVEL" WIND PROJECTIONS IN ZONAL
! & MERIDIONAL DIRECTIONS
!-----ULOW "LOW-LEVEL" WIND MAGNITUDE - (= U)
!-----BNV2 BNV2 = N**2
!-----TAUB BASE MOMENTUM FLUX
!-----= -(RO * U**3/(N*XL)*GF(FR) FOR N**2 > 0
!-----= 0. FOR N**2 < 0
!-----FR FROUDE = N*HPRIME / U
!-----G GMAX*FR**2/(FR**2+CG/OC)
!
!-----INITIALIZE SOME ARRAYS
!
DO I = 1,npt
XN(I) = 0.0
YN(I) = 0.0
TAUB (I) = 0.0
ULOW (I) = 0.0
DTFAC(I) = 1.0
ICRILV(I) = .FALSE. ! INITIALIZE CRITICAL LEVEL CONTROL VECTOR
!
!----COMPUTE THE "LOW LEVEL" WIND MAGNITUDE (M/S)
!
ULOW(I) = MAX(SQRT(UBAR(I)*UBAR(I) + VBAR(I)*VBAR(I)), HONE)
ULOI(I) = 1.0 / ULOW(I)
ENDDO
!dbg
!dbg if (lprnt) print *,'idir,nwd,wdir,oa,clx,ulow,uloi=' &
!dbg ,idir,nwd,wdir,oa(npt),clx(npt),ulow(npt),uloi(npt)
!
DO K = 1,KMM1
DO I = 1,npt
J = ipt(i)
!dbg
! VELCO(I,K) = 0.5* ((U1(J,K)+U1(J,K+1))*UBAR(I) &
VELCO(I,K) = 0.5*rcs*((U1(J,K)+U1(J,K+1))*UBAR(I) &
& + (V1(J,K)+V1(J,K+1))*VBAR(I))
VELCO(I,K) = VELCO(I,K) * ULOI(I)
!dbg if (lprnt) write(6,"(a,i2,a,e12.4)") 'k=',k,' velco(i,k)=',velco(i,k) !dbg
! IF ((VELCO(I,K).LT.VELEPS) .AND. (VELCO(I,K).GT.0.)) THEN
! VELCO(I,K) = VELEPS
! ENDIF
ENDDO
ENDDO
!
! find the interface level of the projected wind where
! low levels & upper levels meet above pbl
!
do i=1,npt
kint(i) = km
enddo
do k = 1,kmm1
do i = 1,npt
IF (K .GT. kref(I)) THEN
if(velco(i,k) .lt. veleps .and. kint(i) .eq. km) then
kint(i) = k+1
endif
endif
enddo
enddo
! WARNING KINT = KREF !!!!!!!!!
do i=1,npt
kint(i) = kref(i)
enddo
!
!
DO I = 1,npt
J = ipt(i)
BNV = SQRT( BNV2bar(I) )
FR = BNV * ULOI(I) * min(HPRIME(J),hpmax)
FR = MIN(FR, FRMAX)
XN(I) = UBAR(I) * ULOI(I)
YN(I) = VBAR(I) * ULOI(I)
!
! Compute the base level stress and store it in TAUB
! CALCULATE ENHANCEMENT FACTOR, NUMBER OF MOUNTAINS & ASPECT
! RATIO CONST. USE SIMPLIFIED RELATIONSHIP BETWEEN STANDARD
! DEVIATION & CRITICAL HGT
!
EFACT = (OA(I) + 2.) ** (CEOFRC*FR)
EFACT = MIN( MAX(EFACT,EFMIN), EFMAX )
!
COEFM = (1. + CLX(I)) ** (OA(I)+1.)
!
XLINV(I) = COEFM * CLEFF
!
TEM = FR * FR * OC(J)
GFOBNV = GMAX * TEM / ((TEM + CG)*BNV) ! G/N0
!
TAUB(I) = XLINV(I) * ROLL(I) * ULOW(I) * ULOW(I) &
& * ULOW(I) * GFOBNV * EFACT ! BASE FLUX Tau0
!
! tem = min(HPRIME(I),hpmax)
! TAUB(I) = XLINV(I) * ROLL(I) * ULOW(I) * BNV * tem * tem
!
K = MAX(1, kref(I)-1)
TEM = MAX(VELCO(I,K)*VELCO(I,K), HE_4)
SCOR(I) = BNV2(I,K) / TEM ! Scorer parameter below ref level
ENDDO !-- DO I = 1,npt
!
!dbg
!dbg if (lprnt) write(6,"(a,i2,10(a,e12.4))") &
!dbg 'kint=',kint(npt),' bnv=',bnv,' fr=',fr,' xn=',xn(npt) &
!dbg ,' yn=',yn(npt),' efact=',efact,' coefm=',coefm,' xlinv(npt)=',xlinv(npt) &
!dbg ,' gfobnv=',gfobnv,' taub(npt)=',taub(npt),' scor(npt)=',scor(npt)
!
!----SET UP BOTTOM VALUES OF STRESS
!
DO K = 1, KBPS
DO I = 1,npt
IF (K .LE. kref(I)) TAUP(I,K) = TAUB(I)
ENDDO
ENDDO
!
! Now compute vertical structure of the stress.
!
DO K = KMPS, KMM1 ! Vertical Level K Loop!
KP1 = K + 1
DO I = 1, npt
!
!-----UNSTABLE LAYER IF RI < RIC
!-----UNSTABLE LAYER IF UPPER AIR VEL COMP ALONG SURF VEL <=0 (CRIT LAY)
!---- AT (U-C)=0. CRIT LAYER EXISTS AND BIT VECTOR SHOULD BE SET (.LE.)
!
IF (K .GE. kref(I)) THEN
ICRILV(I) = ICRILV(I) .OR. ( ri_n(I,K) .LT. RIC) &
& .OR. (VELCO(I,K) .LE. 0.0)
ENDIF
ENDDO
!
DO I = 1,npt
IF (K .GE. kref(I)) THEN
!dbg
!dbg if (lprnt) write(6,"(2(a,i2),a,L1,3(a,e12.4))") 'k=',k,' kref(i)=',kref(i) &
!dbg ,' icrilv(i)=',icrilv(i),' taup(i,k)=',taup(i,k) &
!dbg ,' ri_n(i,k)=',ri_n(i,k),' velco(i,k)=',velco(i,k)
!
IF (.NOT.ICRILV(I) .AND. TAUP(I,K) .GT. 0.0 ) THEN
TEMV = 1.0 / max(VELCO(I,K), HE_2)
! IF (OA(I) .GT. 0. .AND. PRSI(ipt(i),KP1).GT.RLOLEV) THEN
IF (OA(I).GT.0. .AND. kp1 .lt. kint(i)) THEN
SCORK = BNV2(I,K) * TEMV * TEMV
RSCOR = MIN(HONE, SCORK / SCOR(I))
SCOR(I) = SCORK
ELSE
RSCOR = 1.
ENDIF
!
BRVF = SQRT(BNV2(I,K)) ! Brunt-Vaisala Frequency
! TEM1 = XLINV(I)*(RO(I,KP1)+RO(I,K))*BRVF*VELCO(I,K)*0.5
TEM1 = XLINV(I)*(RO(I,KP1)+RO(I,K))*BRVF*0.5 &
& * max(VELCO(I,K),HE_2)
HD = SQRT(TAUP(I,K) / TEM1)
FRO = BRVF * HD * TEMV
!
! RIM is the MINIMUM-RICHARDSON NUMBER BY SHUTTS (1985)
!
TEM2 = SQRT(ri_n(I,K))
TEM = 1. + TEM2 * FRO
RIM = ri_n(I,K) * (1.-FRO) / (TEM * TEM)
!
! CHECK STABILITY TO EMPLOY THE SATURATION HYPOTHESIS
! OF LINDZEN (1981) EXCEPT AT TROPOSPHERIC DOWNSTREAM REGIONS
!
! ----------------------
!dbg
!dbg if (lprnt) write(6,"(a,i2,10(a,e12.4))") &
!dbg 'k=',k,' brvf=',brvf,' tem1=',tem1,' xlinv(i)=',xlinv(i) &
!dbg ,'ROavg=',.5*(RO(I,KP1)+RO(I,K)),' hd=',hd,' temv=',temv,' fro=',fro &
!dbg ,' tem2=',tem2,' tem=',tem,' rim=',rim
!
IF (RIM .LE. RIC .AND. &
! & (OA(I) .LE. 0. .OR. PRSI(ipt(I),KP1).LE.RLOLEV )) THEN
& (OA(I) .LE. 0. .OR. kp1 .ge. kint(i) )) THEN
TEMC = 2.0 + 1.0 / TEM2
HD = VELCO(I,K) * (2.*SQRT(TEMC)-TEMC) / BRVF
TAUP(I,KP1) = TEM1 * HD * HD
ELSE
TAUP(I,KP1) = TAUP(I,K) * RSCOR
ENDIF
taup(i,kp1) = min(taup(i,kp1), taup(i,k))
!dbg
!dbg if (lprnt) write(6,"(a,i2,2(a,e12.4))") 'kp1=',kp1 &
!dbg ,' taup(i,kp1)=',taup(i,kp1),' taup(i,k)=',taup(i,k)
ENDIF !-- IF (.NOT.ICRILV(I) .AND. TAUP(I,K) .GT. 0.0 ) THEN
ENDIF !-- IF (K .GE. kref(I)) THEN
ENDDO !-- DO I = 1,npt
ENDDO !-- DO K = KMPS, KMM1
!
! DO I=1,IM
! taup(i,km+1) = taup(i,km)
! ENDDO
!
IF(LCAP .LE. KM) THEN
!dbg if (lprnt) print *,'lcap,lcapp1,km=',lcap,lcapp1,km !dbg
DO KLCAP = LCAPP1, KM+1
DO I = 1,npt
SIRA = PRSI(ipt(I),KLCAP) / PRSI(ipt(I),LCAP)
TAUP(I,KLCAP) = SIRA * TAUP(I,LCAP)
!dbg
!dbg if (lprnt) write(6,"(a,i2,5(a,e12.4))") &
!dbg 'klcap=',klcap,' sira=',sira,' prsi(ipt(i),klcap)=', prsi(ipt(i),klcap) &
!dbg ,' prsi(ipt(i),lcap)=',prsi(ipt(i),lcap),' taup(i,lcap)=',taup(i,lcap) &
!dbg ,' taup(i,klcap)=',taup(i,klcap)
!
ENDDO
ENDDO
ENDIF
!
! Calculate - (g/p*)*d(tau)/d(sigma) and Decel terms DTAUX, DTAUY
!
DO I=1,npt
! SCOR(I) = 1.0 / PSTAR(I)
!dbg
! SCOR(I) = 1.0
SCOR(I) = 1.0/RCS
ENDDO
DO K = 1,KM
DO I = 1,npt
TAUD(I,K) = G * (TAUP(I,K+1) - TAUP(I,K)) * SCOR(I) &
& / DEL(ipt(I),K)
!dbg
!dbg if (lprnt) write(6,"(a,i2,4(a,e12.4))") 'k=',k,' taud(i,k)=',taud(i,k) &
!dbg ,' D(taup)=',TAUP(I,K+1)-TAUP(I,K),' del(ipt(i),k)=',del(ipt(i),k) &
!dbg ,' scor(i)=',scor(i)
ENDDO
ENDDO
!
!------LIMIT DE-ACCELERATION (MOMENTUM DEPOSITION ) AT TOP TO 1/2 VALUE
!------THE IDEA IS SOME STUFF MUST GO OUT THE TOP
!
DO KLCAP = LCAP, KM
DO I = 1,npt
TAUD(I,KLCAP) = TAUD(I,KLCAP) * FACTOP
!dbg
!dbg if (lprnt) write(6,"(a,i2,a,e12.4)") 'klcap=',klcap,' taud(i,klcap)=',taud(i,klcap)
ENDDO
ENDDO
!
!------IF THE GRAVITY WAVE DRAG WOULD FORCE A CRITICAL LINE IN THE
!------LAYERS BELOW SIGMA=RLOLEV DURING THE NEXT DELTIM TIMESTEP,
!------THEN ONLY APPLY DRAG UNTIL THAT CRITICAL LINE IS REACHED.
!
DO K = 1,KMM1
DO I = 1,npt
IF (K .GT. kref(I) .and. PRSI(ipt(i),K) .GE. RLOLEV) THEN
IF(TAUD(I,K).NE.0.) THEN
!dbg
! TEM = DELTIM * TAUD(I,K)
TEM = rcs*DELTIM * TAUD(I,K)
DTFAC(I) = MIN(DTFAC(I),ABS(VELCO(I,K)/TEM))
!dbg
!dbg if (lprnt) write(6,"(a,i2,2(a,e12.4))") 'k=',k &
!dbg ,' tem=',tem,' dtfac(i)=',dtfac(i)
ENDIF
ENDIF
ENDDO
ENDDO
! if(lprnt .and. npr .gt. 0) then
! print *, before A=,A(npr,:)
! print *, before B=,B(npr,:)
! endif
!
!dbg
!dbg if (lprnt) write(6,"(a,i2,3(a,e12.4))") 'idxzb(npt)=',idxzb(npt) &
!dbg ,' dtfac=',dtfac(npt),' xn=',xn(npt),' yn=',yn(npt)
!
DO K = 1,KM
DO I = 1,npt
J = ipt(i)
TAUD(I,K) = TAUD(I,K) * DTFAC(I)
DTAUX = TAUD(I,K) * XN(I)
DTAUY = TAUD(I,K) * YN(I)
! --- lm mb (*j*) changes overwrite GWD
if ( K .lt. IDXZB(I) .AND. IDXZB(I) .ne. 0 ) then
DBIM = DB(I,K) / (1.+DB(I,K)*DELTIM)
A(J,K) = - DBIM * V1(J,K) + A(J,K)
B(J,K) = - DBIM * U1(J,K) + B(J,K)
DUsfc(J) = DUsfc(J) - DBIM * V1(J,K) * DEL(J,K)
DVsfc(J) = DVsfc(J) - DBIM * U1(J,K) * DEL(J,K)
!dbg
!dbg if (lprnt .and. dbim > 0.) write(6,"(a,i2,4(a,e12.4))") &
!dbg 'k=',k,' db(i,k)=',db(i,k),' dbim=',dbim &
!dbg ,' dudt=',-dbim*u1(j,k),' dvdt=',-dbim*v1(j,k)
!
else
!
A(J,K) = DTAUY + A(J,K)
B(J,K) = DTAUX + B(J,K)
DUsfc(J) = DUsfc(J) + DTAUX * DEL(J,K)
DVsfc(J) = DVsfc(J) + DTAUY * DEL(J,K)
!dbg
!dbg if (lprnt .and. dtaux+dtauy/=0.) write(6,"(a,i2,2(a,e12.4))") &
!dbg ',k=',k,' dudt=dtaux=',dtaux,' dvdt=dtauy=',dtauy
endif
!dbg
!dbg if (lprnt) write(6,"(a,i2,2(a,e12.4))") 'k=',k &
!dbg ,' dusfc(j)=',dusfc(j),' dvsfc(j)=',dvsfc(j)
ENDDO !-- DO I = 1,npt
ENDDO !-- DO K = 1,KM
! if (lprnt) then
! print *, in gwdps_lm.f after A=,A(ipr,:)
! print *, in gwdps_lm.f after B=,B(ipr,:)
! print *, DB=,DB(ipr,:)
! endif
DO I = 1,npt
J = ipt(i)
! TEM = (-1.E3/G) * PSTAR(I)
!dbg
! TEM = -1.E3/G
TEM = -1.E3*ROG*rcs
DUsfc(J) = TEM * DUsfc(J)
DVsfc(J) = TEM * DVsfc(J)
!dbg
!dbg if (lprnt .and. i.eq.npr) write(6,"(3(a,e12.4))") 'tem=',tem &
!dbg ,' dusfc(j)=',dusfc(j),' dvsfc(j)=',dvsfc(j)
ENDDO
!
END SUBROUTINE GWD_col
!
!#######################################################################
!
END MODULE module_gwd