MODULE module_bl_boulac 2 !USE module_model_constants !------------------------------------------------------------------------ ! Calculation of the tendency due to momentum, heat ! and moisture turbulent fluxes follwing the approach ! of Bougeault and Lacarrere, 1989 (MWR, 117, 1872-1890). ! The scheme computes a prognostic ecuation for TKE and derives ! dissipation and turbulent coefficients using length scales. ! ! Subroutine written by Alberto Martilli, CIEMAT, Spain, ! e-mail:alberto_martilli@ciemat.es ! August 2006. !------------------------------------------------------------------------ ! IN THIS VERSION TKE IS NOT ADVECTED!!!! ! TO BE CHANGED IN THE FUTURE ! ! ----------------------------------------------------------------------- ! Constant used in the module ! ck_b=constant used in the compuation of diffusion coefficients ! ceps_b=constant used inthe computation of dissipation ! temin= minimum value allowed for TKE ! vk=von karman constant ! ----------------------------------------------------------------------- real ck_b,ceps_b,vk,temin ! constant for Bougeault and Lacarrere parameter(ceps_b=1/1.4,ck_b=0.4,temin=0.0001,vk=0.4) ! impose minimum values for tke similar to those of MYJ ! ----------------------------------------------------------------------- CONTAINS subroutine boulac(frc_urb2d,idiff,flag_bep,dz8w,dt,u_phy,v_phy & 1,7 ,th_phy,rho,qv_curr,qc_curr,hfx & ,qfx,ustar,cp,g & ,rublten,rvblten,rthblten & ,rqvblten,rqcblten & ,tke,dlk,wu,wv,wt,wq,exch_h,exch_m,pblh & ,a_u_bep,a_v_bep,a_t_bep,a_q_bep & ,a_e_bep,b_u_bep,b_v_bep & ,b_t_bep,b_q_bep,b_e_bep,dlg_bep & ,dl_u_bep,sf_bep,vl_bep & ,ids,ide, jds,jde, kds,kde & ,ims,ime, jms,jme, kms,kme & ,its,ite, jts,jte, kts,kte) implicit none !----------------------------------------------------------------------- ! Input !------------------------------------------------------------------------ INTEGER:: ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte integer, INTENT(IN) :: idiff REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) :: DZ8W !vertical resolution REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) :: qv_curr !moisture REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) :: qc_curr !liquid water REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) :: RHO !air density REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) :: TH_PHY !potential temperature REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) :: U_PHY !x-component of wind REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) :: V_PHY !y-component of wind REAL, DIMENSION( ims:ime, jms:jme ), INTENT(IN ) :: ustar !friction velocity REAL, DIMENSION( ims:ime, jms:jme ), INTENT(IN ) :: hfx !sensible heat flux (W/m2) at surface REAL, DIMENSION( ims:ime, jms:jme ), INTENT(IN ) :: qfx !moisture flux at surface real, INTENT(IN ) :: g,cp !gravity and Cp REAL, INTENT(IN ):: DT ! Time step REAL, DIMENSION( ims:ime, jms:jme ), INTENT(IN ) :: FRC_URB2D !fraction cover urban REAL, DIMENSION( ims:ime, jms:jme ), INTENT(INOUT) :: PBLH !PBL height ! ! variable added for urban REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::a_u_bep ! Implicit component for the momemtum in X-direction REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::a_v_bep ! Implicit component for the momemtum in Y-direction REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::a_t_bep ! Implicit component for the Pot. Temp. REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::a_q_bep ! Implicit component for Moisture REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::a_e_bep ! Implicit component for the TKE REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::b_u_bep ! Explicit component for the momemtum in X-direction REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::b_v_bep ! Explicit component for the momemtum in Y-direction REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::b_t_bep ! Explicit component for the Pot. Temp. REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::b_q_bep ! Explicit component for Moisture REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::b_e_bep ! Explicit component for the TKE REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(INOUT) ::dlg_bep ! Height above ground (L_ground in formula (24) of the BLM paper). REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::dl_u_bep ! Length scale (lb in formula (22) ofthe BLM paper). ! urban surface and volumes REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::sf_bep ! surface of the urban grid cells REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::vl_bep ! volume of the urban grid cells LOGICAL, INTENT(IN) :: flag_bep !flag for BEP ! !----------------------------------------------------------------------- ! Local, carried on from one timestep to the other !------------------------------------------------------------------------ ! real, save, allocatable, dimension (:,:,:)::TKE ! Turbulent kinetic energy real, dimension (ims:ime, kms:kme, jms:jme) ::th_0 ! reference state for potential temperature !------------------------------------------------------------------------ ! Output !------------------------------------------------------------------------ real, dimension( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: exch_h ! exchange coefficient for heat real, dimension( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: exch_m ! exchange coefficient for momentum real, dimension( ims:ime, kms:kme, jms:jme ), INTENT(INOUT ) :: tke ! Turbulence Kinetic Energy real, dimension( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: wu ! Turbulent flux of momentum (x) real, dimension( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: wv ! Turbulent flux of momentum (y) real, dimension( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: wt ! Turbulent flux of temperature real, dimension( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: wq ! Turbulent flux of water vapor real, dimension( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: dlk ! Turbulent flux of water vapor ! only if idiff not equal 1: REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: RUBLTEN !tendency for U_phy REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: RVBLTEN !tendency for V_phy REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: RTHBLTEN !tendency for TH_phy REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: RQVBLTEN !tendency for QV_curr REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: RQCBLTEN !tendency for QV_curr !-------------------------------------------------------------- ! Local !-------------------------------------------------------------- ! 1D array used for the input and output of the routine boulac1D real z1D(kms:kme) ! vertical coordinates (faces of the grid) real dz1D(kms:kme) ! vertical resolution real u1D(kms:kme) ! wind speed in the x directions real v1D(kms:kme) ! wind speed in the y directions real th1D(kms:kme) ! potential temperature real q1D(kms:kme) ! moisture real qc1D(kms:kme) ! liquid water real rho1D(kms:kme) ! air density real rhoz1D(kms:kme) ! air density at the faces real tke1D(kms:kme) ! air pressure real th01D(kms:kme) ! reference potential temperature real dlk1D(kms:kme) ! dlk real dls1D(kms:kme) ! dls real exch1D(kms:kme) ! exch real sf1D(kms:kme) ! surface of the grid cells real vl1D(kms:kme) ! volume of the grid cells real a_u1D(kms:kme) ! Implicit component of the momentum sources or sinks in the X-direction real a_v1D(kms:kme) ! Implicit component of the momentum sources or sinks in the Y-direction real a_t1D(kms:kme) ! Implicit component of the heat sources or sinks real a_q1D(kms:kme) ! Implicit component of the moisture sources or sinks real a_qc1D(kms:kme) ! Implicit component of the liquid water sources or sinks real a_e1D(kms:kme) ! Implicit component of the TKE sources or sinks real b_u1D(kms:kme) ! Explicit component of the momentum sources or sinks in the X-direction real b_v1D(kms:kme) ! Explicit component of the momentum sources or sinks in the Y-direction real b_t1D(kms:kme) ! Explicit component of the heat sources or sinks real b_q1D(kms:kme) ! Explicit component of the moisture sources or sinks real b_qc1D(kms:kme) ! Explicit component of the liquid water sources or sinks real b_e1D(kms:kme) ! Explicit component of the TKE sources or sinks real dlg1D(kms:kme) ! Height above ground (L_ground in formula (24) of the BLM paper). real dl_u1D(kms:kme) ! Length scale (lb in formula (22) ofthe BLM paper) real sh1D(kms:kme) ! shear real bu1D(kms:kme) ! buoyancy real wu1D(kms:kme) ! turbulent flux of momentum (x component) real wv1D(kms:kme) ! turbulent flux of momentum (y component) real wt1D(kms:kme) ! turbulent flux of temperature real wq1D(kms:kme) ! turbulent flux of water vapor real wqc1D(kms:kme) ! turbulent flux of liquid water real gamma1D(kms:kme) ! non local term real t2_1D(kms:kme) ! temperature variance real w2_1D(kms:kme) ! vertical velocity variance ! local added only for diagnostic output real a_e(ims:ime,kms:kme,jms:jme) ! implicit term in TKE real b_e(ims:ime,kms:kme,jms:jme) ! explicit term in TKE real bu(ims:ime,kms:kme,jms:jme) ! buoyancy term in TKE real sh(ims:ime,kms:kme,jms:jme) ! shear term in TKE real wrk(ims:ime) ! working array integer ix,iy,iz,id,iz_u,iw_u,ig,ir_u,ix1,iy1,igamma real ufrac_int ! urban fraction real vect,time_tke,hour,zzz real ustarf,wstar,wts,t2,w2,tstar_w,zzi real summ1,summ2,summ3 save time_tke,hour ! ! !here I fix the value of the reference state equal to the value of the potnetial temperature ! the only use of this variable in the code is to compute the paramter BETA = g/th0 ! I fix it to 300K. do ix=its,ite do iy=jts,jte do iz=kts,kte ! th_0(ix,iz,iy)=th_phy(ix,iz,iy) th_0(ix,iz,iy)=300. enddo enddo enddo ! initialization z1D=0. dz1D=0. u1D =0. v1D =0. th1D=0. q1D=0. rho1D=0. rhoz1D=0. tke1D =0. th01D =0. dlk1D =0. dls1D =0. exch1D=0. sf1D =1. vl1D =1. a_u1D =0. a_v1D =0. a_t1D =0. a_q1D =0. a_qc1D =0. a_e1D =0. b_u1D =0. b_v1D =0. b_t1D =0. b_q1D =0. b_qc1D =0. b_e1D =0. dlg1D =0. dl_u1D=0. sh1D =0. bu1D =0. wu1D =0. wv1D =0. wt1D =0. wq1D =0. ! flag to choose the method for the calcaulation of the gamma non local term: ! igamma=0 - no term ! igamma=1 Troen and Mahrt ! igamma=2 Deardroff and Therry-Lacarrere ! igamma=3 Holstag and Moeng igamma=1 ! loop over the columns. ! put variables in 1D temporary arrays ! do ix=its,ite do iy=jts,jte z1d(kts)=0. do iz= kts,kte u1D(iz)=u_phy(ix,iz,iy) v1D(iz)=v_phy(ix,iz,iy) th1D(iz)=th_phy(ix,iz,iy) q1D(iz)=qv_curr(ix,iz,iy) qc1D(iz)=qc_curr(ix,iz,iy) tke1D(iz)=tke(ix,iz,iy) rho1D(iz)=rho(ix,iz,iy) th01D(iz)=th_0(ix,iz,iy) dz1D(iz)=dz8w(ix,iz,iy) z1D(iz+1)=z1D(iz)+dz1D(iz) enddo rhoz1D(kts)=rho1D(kts) do iz=kts+1,kte rhoz1D(iz)=(rho1D(iz)*dz1D(iz-1)+rho1D(iz-1)*dz1D(iz))/(dz1D(iz-1)+dz1D(iz)) enddo rhoz1D(kte+1)=rho1D(kte) if(flag_bep)then do iz=kts,kte a_e1D(iz)=a_e_bep(ix,iz,iy) b_e1D(iz)=b_e_bep(ix,iz,iy) dlg1D(iz)=(z1D(iz)+z1D(iz+1))/2.*(1.-frc_urb2d(ix,iy))+dlg_bep(ix,iz,iy)*frc_urb2d(ix,iy) dl_u1D(iz)=dl_u_bep(ix,iz,iy) if((1.-frc_urb2d(ix,iy)).lt.1.)dl_u1D(iz)=dl_u1D(iz)/frc_urb2d(ix,iy) vl1D(iz)=vl_bep(ix,iz,iy) sf1D(iz)=sf_bep(ix,iz,iy) enddo ufrac_int=frc_urb2d(ix,iy) sf1D(kte+1)=sf_bep(ix,1,iy) else do iz=kts,kte a_e1D(iz)=0. b_e1D(iz)=0. dlg1D(iz)=(z1D(iz)+z1D(iz+1))/2. dl_u1D(iz)=0. vl1D(iz)=1. sf1D(iz)=1. enddo ufrac_int=0. sf1D(kte+1)=1. endif ! compute the pbl_height call pbl_height(kms,kme,kts,kte,dz1d,z1d,th1D,q1D,pblh(ix,iy)) ! compute the values of wstar wts=max(0.,hfx(ix,iy)/rho1D(1)/cp) wstar=(g*wts*pblh(ix,iy)/th01D(1))**(1./3.) if (wts .ne. 0.0) then tstar_w=wts/wstar else tstar_w=0.0 endif t2_1D=0. w2_1D=0. gamma1D=0. ! compute the variances do iz=kts+1,kte zzi=z1D(iz)/pblh(ix,iy) t2_1D(iz)=1.8*(zzi**(-2./3.))*(tstar_w**2.) w2_1D(iz)=1.8*(zzi**(2./3.))*((1.-0.8*zzi)**2.)*(wstar**2.) enddo ! compute gamma if(igamma.eq.1)then ! (Troen and Mahrt) do iz=kts+1,kte if(z1D(iz).le.1.0*pblh(ix,iy).and.wts.gt.0.)then gamma1D(iz)=10.*wts/wstar/pblh(ix,iy) else gamma1D(iz)=0. endif enddo elseif(igamma.eq.2)then ! Deardorff, and Therry -Lacarrere do iz=kts+1,kte if(wts.gt.0)then if(z1D(iz).le.(1.0*pblh(ix,iy)).and.z1D(iz).gt.(0.1*pblh(ix,iy)))then gamma1D(iz)=g/th01D(iz)*t2_1D(iz)/w2_1D(iz) else gamma1D(iz)=0. endif endif enddo elseif(igamma.eq.3)then! (Holtslag and Moeng) do iz=kts+1,kte if(z1D(iz).le.(1.0*pblh(ix,iy)).and.wts.gt.0)then gamma1D(iz)=2.*wstar*wts/w2_1D(iz)/pblh(ix,iy) else gamma1D(iz)=0. endif enddo endif call boulac1D(ix,iy,ufrac_int,kms,kme,kts,kte,dz1d,z1D,dt,u1D,v1D,th1D,rho1D,rhoz1D,q1D,th01D,& tke1D,ustar(ix,iy),hfx(ix,iy),qfx(ix,iy),cp,g, & a_e1D,b_e1D, & dlg1D,dl_u1D,sf1D,vl1D,dlk1D,dls1D,exch1D,sh1D,bu1D,gamma1D) ! store turbulent exchange coefficients, TKE, and other variables do iz= kts,kte a_e(ix,iz,iy)=a_e1D(iz) b_e(ix,iz,iy)=b_e1D(iz) if(flag_bep)then dlg_bep(ix,iz,iy)=dlg1D(iz) endif tke(ix,iz,iy)=tke1D(iz) dlk(ix,iz,iy)=dlk1D(iz) sh(ix,iz,iy)=sh1D(iz) bu(ix,iz,iy)=bu1D(iz) exch_h(ix,iz,iy)=exch1D(iz) exch_m(ix,iz,iy)=exch1D(iz) enddo if(idiff.ne.1)then ! estimate the tendencies if(flag_bep)then do iz=kts,kte a_t1D(iz)=a_t_bep(ix,iz,iy) b_t1D(iz)=b_t_bep(ix,iz,iy) a_u1D(iz)=a_u_bep(ix,iz,iy) b_u1D(iz)=b_u_bep(ix,iz,iy) a_v1D(iz)=a_v_bep(ix,iz,iy) b_v1D(iz)=b_v_bep(ix,iz,iy) a_q1D(iz)=a_q_bep(ix,iz,iy) b_q1D(iz)=b_q_bep(ix,iz,iy) enddo else do iz=kts,kte a_t1D(iz)=0. b_t1D(iz)=0. a_u1D(iz)=0. b_u1D(iz)=0. a_v1D(iz)=0. b_v1D(iz)=0. a_q1D(iz)=0. b_q1D(iz)=0. enddo b_t1D(1)=hfx(ix,iy)/dz1D(1)/rho1D(1)/cp b_q1D(1)=qfx(ix,iy)/dz1D(1)/rho1D(1) a_u1D(1)=(-ustar(ix,iy)*ustar(ix,iy)/dz1D(1)/((u1D(1)**2.+v1D(1)**2.)**.5)) a_v1D(1)=(-ustar(ix,iy)*ustar(ix,iy)/dz1D(1)/((u1D(1)**2.+v1D(1)**2.)**.5)) endif ! ! compute the value of the extra term that will be added to b_t1D do iz=kts+1,kte if(z1D(iz).le.1.0*pblh(ix,iy).and.wts.gt.0.)then b_t1D(iz)=b_t1D(iz)-(exch1D(iz+1)*gamma1D(iz+1)-exch1D(iz)*gamma1D(iz))/dz1D(iz) endif enddo ! ! solve diffusion equation for momentum x component call diff(kms,kme,kts,kte,1,1,dt,u1D,rho1D,rhoz1D,exch1D,a_u1D,b_u1D,sf1D,vl1D,dz1D,wu1D) ! solve diffusion equation for momentum y component call diff(kms,kme,kts,kte,1,1,dt,v1D,rho1D,rhoz1D,exch1D,a_v1D,b_v1D,sf1D,vl1D,dz1D,wv1D) ! solve diffusion equation for potential temperature call diff(kms,kme,kts,kte,1,1,dt,th1D,rho1D,rhoz1D,exch1D,a_t1D,b_t1D,sf1D,vl1D,dz1D,wt1D) ! solve diffusion equation for water vapor mixing ratio call diff(kms,kme,kts,kte,1,1,dt,q1D,rho1D,rhoz1D,exch1D,a_q1D,b_q1D,sf1D,vl1D,dz1D,wq1D) ! solve diffusion equation for liquid water mixing ratio call diff(kms,kme,kts,kte,1,1,dt,qc1D,rho1D,rhoz1D,exch1D,a_qc1D,b_qc1D,sf1D,vl1D,dz1D,wqc1D) ! compute the tendencies do iz= kts,kte rthblten(ix,iz,iy)=rthblten(ix,iz,iy)+(th1D(iz)-th_phy(ix,iz,iy))/dt rqvblten(ix,iz,iy)=rqvblten(ix,iz,iy)+(q1D(iz)-qv_curr(ix,iz,iy))/dt rqcblten(ix,iz,iy)=rqcblten(ix,iz,iy)+(qc1D(iz)-qc_curr(ix,iz,iy))/dt rublten(ix,iz,iy)=rublten(ix,iz,iy)+(u1D(iz)-u_phy(ix,iz,iy))/dt rvblten(ix,iz,iy)=rvblten(ix,iz,iy)+(v1D(iz)-v_phy(ix,iz,iy))/dt wu(ix,iz,iy)=wu1D(iz) wv(ix,iz,iy)=wv1D(iz) wt(ix,iz,iy)=wt1D(iz) wq(ix,iz,iy)=wq1D(iz) enddo endif enddo ! iy enddo ! ix return end subroutine boulac ! ===6=8===============================================================72 ! ===6=8===============================================================72 subroutine boulac1D(ix,iy,ufrac_int,kms,kme,kts,kte,dz,z,dt,u,v,th,rho,rhoz,qa,th0,te, & 1,5 ustar,hfx,qfx,cp,g, & a_e,b_e, & dlg,dl_u,sf,vl,dlk,dls,exch,sh,bu,gamma) ! ---------------------------------------------------------------------- ! 1D resolution of TKE following Bougeault and Lacarrere ! ---------------------------------------------------------------------- implicit none integer iz,ix,iy ! ---------------------------------------------------------------------- ! INPUT: ! ---------------------------------------------------------------------- integer kms,kme,kts,kte real z(kms:kme) ! Altitude above the ground of the cell interfaces. real dz(kms:kme) ! vertical resolution real u(kms:kme) ! Wind speed in the x direction real v(kms:kme) ! Wind speed in the y direction real th(kms:kme) ! Potential temperature real rho(kms:kme) ! Air density real g ! gravity real cp ! real te(kms:kme) ! turbulent kinetic energy real qa(kms:kme) ! air humidity real th0(kms:kme) ! Reference potential temperature real dt ! Time step real ustar ! ustar real hfx ! sensbile heat flux real qfx ! kinematic latent heat flux real sf(kms:kme) ! surface of the urban grid cells real vl(kms:kme) ! volume of the urban grid cells real a_e(kms:kme) ! Implicit component of the TKE sources or sinks real b_e(kms:kme) ! Explicit component of the TKE sources or sinks real dlg(kms:kme) ! Height above ground (L_ground in formula (24) of the BLM paper). real dl_u(kms:kme) ! Length scale (lb in formula (22) ofthe BLM paper) real ufrac_int ! urban fraction ! local variables not needed in principle, but that can be used to estimate the budget and turbulent fluxes real we(kms:kme),dwe(kms:kme) ! local variables real sh(kms:kme) ! shear term in TKE eqn. real bu(kms:kme) ! buoyancy term in TKE eqn. real gamma(kms:kme) ! gamma term real td(kms:kme) ! dissipation term in TKE eqn. real exch(kms:kme) ! turbulent diffusion coefficients (defined at the faces) real dls(kms:kme) ! dissipation length scale real dlk(kms:kme) ! length scale used to estimate exch real dlu(kms:kme) ! l_up real dld(kms:kme) ! l_down real rhoz(kms:kme) !air density at the faces of the cell real tstar ! derived from hfx and ustar real beta real summ1,summ2,summ3,summ4 ! interpolate air density at the faces ! estimation of tstar tstar=-hfx/rho(1)/cp/ustar ! first compute values of dlu and dld (length scales up and down). call dissip_bougeault(ix,iy,g,kms,kme,kts,kte,z,dz,te,dlu,dld,th,th0) !then average them to obtain dls and dlk (length scales for dissipation and eddy coefficients) call length_bougeault(ix,iy,kms,kme,kts,kte,dld,dlu,dlg,dl_u,dls,dlk) ! compute the turbulent diffusion coefficients exch call cdtur_bougeault(ix,iy,kms,kme,kts,kte,te,z,dz,exch,dlk) ! compute source and sink terms in the TKE equation (shear, buoyancy and dissipation) call tke_bougeault(ix,iy,g,kms,kme,kts,kte,z,dz,vl,u,v,th,te,th0,ustar,tstar,exch,dls,td,sh,bu,gamma,b_e,a_e,sf,ufrac_int) ! solve for tke call diff(kms,kme,kts,kte,1,1,dt,te,rho,rhoz,exch,a_e,b_e,sf,vl,dz,we) ! avoid negative values for tke do iz=kts,kte if(te(iz).lt.temin) te(iz)=temin enddo return end subroutine boulac1d ! ! ===6=8===============================================================72 ! ===6=8===============================================================72 subroutine dissip_bougeault(ix,iy,g,kms,kme,kts,kte,z,dz,te,dlu,dld,th,th0) 1 ! compute the length scales up and down implicit none integer kms,kme,kts,kte,iz,izz,ix,iy real dzt,zup,beta,zup_inf,bbb,tl,zdo,zdo_sup,zzz,g real te(kms:kme),dlu(kms:kme),dld(kms:kme),dz(kms:kme) real z(kms:kme),th(kms:kme),th0(kms:kme) do iz=kts,kte zup=0. dlu(iz)=z(kte+1)-z(iz)-dz(iz)/2. zzz=0. zup_inf=0. beta=g/th0(iz) !Buoyancy coefficient do izz=iz,kte-1 dzt=(dz(izz+1)+dz(izz))/2. zup=zup-beta*th(iz)*dzt zup=zup+beta*(th(izz+1)+th(izz))*dzt/2. zzz=zzz+dzt if(te(iz).lt.zup.and.te(iz).ge.zup_inf)then bbb=(th(izz+1)-th(izz))/dzt if(bbb.ne.0)then tl=(-beta*(th(izz)-th(iz))+sqrt( max(0.,(beta*(th(izz)-th(iz)))**2.+2.*bbb*beta*(te(iz)-zup_inf))))/bbb/beta else if(th(izz).ne.th(iz))then tl=(te(iz)-zup_inf)/(beta*(th(izz)-th(iz))) else tl=0. endif endif dlu(iz)=zzz-dzt+tl endif zup_inf=zup enddo zdo=0. zdo_sup=0. dld(iz)=z(iz)+dz(iz)/2. zzz=0. do izz=iz,kts+1,-1 dzt=(dz(izz-1)+dz(izz))/2. zdo=zdo+beta*th(iz)*dzt zdo=zdo-beta*(th(izz-1)+th(izz))*dzt/2. zzz=zzz+dzt if(te(iz).lt.zdo.and.te(iz).ge.zdo_sup)then bbb=(th(izz)-th(izz-1))/dzt if(bbb.ne.0.)then tl=(beta*(th(izz)-th(iz))+sqrt( max(0.,(beta*(th(izz)-th(iz)))**2.+2.*bbb*beta*(te(iz)-zdo_sup))))/bbb/beta else if(th(izz).ne.th(iz))then tl=(te(iz)-zdo_sup)/(beta*(th(izz)-th(iz))) else tl=0. endif endif dld(iz)=zzz-dzt+tl endif zdo_sup=zdo enddo enddo end subroutine dissip_bougeault ! ! ===6=8===============================================================72 ! ===6=8===============================================================72 subroutine length_bougeault(ix,iy,kms,kme,kts,kte,dld,dlu,dlg,dl_u,dls,dlk) 1 ! compute the length scales for dissipation and turbulent coefficients implicit none integer kms,kme,kts,kte,iz,ix,iy real dlu(kms:kme),dld(kms:kme),dl_u(kms:kme) real dls(kms:kme),dlk(kms:kme),dlg(kms:kme) do iz=kts,kte dld(iz)=min(dld(iz),dlg(iz)) dls(iz)=sqrt(dlu(iz)*dld(iz)) dlk(iz)=min(dlu(iz),dld(iz)) if(dl_u(iz).gt.0.)then dls(iz)=1./(1./dls(iz)+1./dl_u(iz)) dlk(iz)=1./(1./dlk(iz)+1./dl_u(iz)) endif enddo return end subroutine length_bougeault ! ! ===6=8===============================================================72 ! ===6=8===============================================================72 subroutine cdtur_bougeault(ix,iy,kms,kme,kts,kte,te,z,dz,exch,dlk) 1 ! compute turbulent coefficients implicit none integer iz,kms,kme,kts,kte,ix,iy real te_m,dlk_m real te(kms:kme),exch(kms:kme) real dz(kms:kme),z(kms:kme) real dlk(kms:kme) real fact exch(kts)=0. ! do iz=2,nz-1 do iz=kts+1,kte te_m=(te(iz-1)*dz(iz)+te(iz)*dz(iz-1))/(dz(iz)+dz(iz-1)) dlk_m=(dlk(iz-1)*dz(iz)+dlk(iz)*dz(iz-1))/(dz(iz)+dz(iz-1)) exch(iz)=ck_b*dlk_m*sqrt(te_m) ! exch(iz)=max(exch(iz),0.0001) exch(iz)=max(exch(iz),0.1) enddo exch(kte+1)=0.1 return end subroutine cdtur_bougeault ! ===6=8===============================================================72 ! ===6=8===============================================================72 subroutine diff(kms,kme,kts,kte,iz1,izf,dt,co,rho,rhoz,cd,aa,bb,sf,vl,dz,fc) 11,2 !------------------------------------------------------------------------ ! Calculation of the diffusion in 1D !------------------------------------------------------------------------ ! - Input: ! nz : number of points ! iz1 : first calculated point ! co : concentration of the variable of interest ! dz : vertical levels ! cd : diffusion coefficients ! dtext : external time step ! rho : density of the air at the center ! rhoz : density of the air at the face ! itest : if itest eq 1 then update co, else store in a flux array ! - Output: ! co :concentration of the variable of interest ! - Internal: ! cddz : constant terms in the equations ! dt : diffusion time step ! nt : number of the diffusion time steps ! cstab : ratio of the stability condition for the time step !--------------------------------------------------------------------- implicit none integer iz,iz1,izf integer kms,kme,kts,kte real dt,dzv real co(kms:kme),cd(kms:kme),dz(kms:kme) real rho(kms:kme),rhoz(kms:kme) real cddz(kms:kme+1),fc(kms:kme),df(kms:kme) real a(kms:kme,3),c(kms:kme) real sf(kms:kme),vl(kms:kme) real aa(kms:kme),bb(kms:kme) ! Compute cddz=2*cd/dz cddz(kts)=sf(kts)*rhoz(kts)*cd(kts)/dz(kts) do iz=kts+1,kte cddz(iz)=2.*sf(iz)*rhoz(iz)*cd(iz)/(dz(iz)+dz(iz-1)) enddo cddz(kte+1)=sf(kte+1)*rhoz(kte+1)*cd(kte+1)/dz(kte) do iz=kts,iz1-1 a(iz,1)=0. a(iz,2)=1. a(iz,3)=0. c(iz)=co(iz) enddo do iz=iz1,kte-izf dzv=vl(iz)*dz(iz) a(iz,1)=-cddz(iz)*dt/dzv/rho(iz) a(iz,2)=1+dt*(cddz(iz)+cddz(iz+1))/dzv/rho(iz)-aa(iz)*dt a(iz,3)=-cddz(iz+1)*dt/dzv/rho(iz) c(iz)=co(iz)+bb(iz)*dt enddo do iz=kte-(izf-1),kte a(iz,1)=0. a(iz,2)=1 a(iz,3)=0. c(iz)=co(iz) enddo call invert (kms,kme,kts,kte,a,c,co) do iz=kts,iz1 fc(iz)=0. enddo do iz=iz1+1,kte fc(iz)=-(cddz(iz)*(co(iz)-co(iz-1)))/rho(iz) enddo ! do iz=1,iz1 ! df(iz)=0. ! enddo ! ! do iz=iz1+1,nz-izf ! dzv=vl(iz)*dz(iz) ! df(iz)=+(co(iz-1)*cddz(iz)-co(iz)*(cddz(iz)+cddz(iz+1))+co(iz+1)*cddz(iz+1))/dzv/rho(iz) ! enddo ! ! do iz=nz-izf,nz ! df(iz)=0. ! enddo return end subroutine diff ! ===6=8===============================================================72 ! ===6=8===============================================================72 subroutine buoy(ix,iy,g,kms,kme,kts,kte,th,th0,exch,dz,bu,gamma,ustar,tstar,ufrac_int) 1 ! compute buoyancy term implicit none integer kms,kme,kts,kte,iz,ix,iy real dtdz1,dtdz2,cdm,dtmdz,g real th(kms:kme),exch(kms:kme),dz(kms:kme),bu(kms:kme),gamma(kms:kme) real th0(kms:kme),ustar,tstar,ufrac_int,gammam ! bu(1)=-ustar*tstar*g/th0(1)*(1.-ufrac_int) bu(kts)=0. do iz=kts+1,kte-1 dtdz1=2.*(th(iz)-th(iz-1))/(dz(iz-1)+dz(iz)) dtdz2=2.*(th(iz+1)-th(iz))/(dz(iz+1)+dz(iz)) dtmdz=0.5*(dtdz1+dtdz2) cdm=0.5*(exch(iz+1)+exch(iz)) gammam=0.5*(gamma(iz+1)+gamma(iz)) bu(iz)=-cdm*(dtmdz-gammam)*g/th0(iz) enddo ! bu(kte)=0. return end subroutine buoy ! ===6=8===============================================================72 ! ===6=8===============================================================72 subroutine shear(ix,iy,g,kms,kme,kts,kte,u,v,cdua,dz,sh,ustar,tstar,th,ufrac_int) 1 ! compute shear term implicit none integer kms,kme,kts,kte,iz,ix,iy real dudz1,dudz2,dvdz1,dvdz2,cdm,dumdz,ustar real tstar,th,al,phim,g real u(kms:kme),v(kms:kme),cdua(kms:kme),dz(kms:kme),sh(kms:kme) real u1,u2,v1,v2,ufrac_int ! al=vk*g*tstar/(th*(ustar**2.)) ! if(al.ge.0.)phim=1.+4.7*dz(1)/2.*al ! if(al.lt.0.)phim=(1.-15*dz(1)/2.*al)**(-0.25) ! ! sh(1)=(ustar**3.)/vk/(dz(1)/2.)*(1.-ufrac_int) sh(kts)=0. do iz=kts+1,kte-1 u2=(dz(iz+1)*u(iz)+dz(iz)*u(iz+1))/(dz(iz)+dz(iz+1)) u1=(dz(iz)*u(iz-1)+dz(iz-1)*u(iz))/(dz(iz-1)+dz(iz)) v2=(dz(iz+1)*v(iz)+dz(iz)*v(iz+1))/(dz(iz)+dz(iz+1)) v1=(dz(iz)*v(iz-1)+dz(iz-1)*v(iz))/(dz(iz-1)+dz(iz)) cdm=0.5*(cdua(iz)+cdua(iz+1)) dumdz=((u2-u1)/dz(iz))**2.+((v2-v1)/dz(iz))**2. sh(iz)=cdm*dumdz enddo !!!!!!! sh(kte)=0. return end subroutine shear ! ===6=8===============================================================72 ! ===6=8===============================================================72 subroutine invert(kms,kme,kts,kte,a,c,x) 4 !ccccccccccccccccccccccccccccccc ! Aim: Inversion and resolution of a tridiagonal matrix ! A X = C ! Input: ! a(*,1) lower diagonal (Ai,i-1) ! a(*,2) principal diagonal (Ai,i) ! a(*,3) upper diagonal (Ai,i+1) ! c ! Output ! x results !ccccccccccccccccccccccccccccccc implicit none integer in integer kts,kte,kms,kme real a(kms:kme,3),c(kms:kme),x(kms:kme) do in=kte-1,kts,-1 c(in)=c(in)-a(in,3)*c(in+1)/a(in+1,2) a(in,2)=a(in,2)-a(in,3)*a(in+1,1)/a(in+1,2) enddo do in=kts+1,kte c(in)=c(in)-a(in,1)*c(in-1)/a(in-1,2) enddo do in=kts,kte x(in)=c(in)/a(in,2) enddo return end subroutine invert ! ===6=8===============================================================72 ! ===6=8===============================================================72 subroutine tke_bougeault(ix,iy,g,kms,kme,kts,kte,z,dz,vl,u,v,th,te,th0,ustar,tstar,exch, & 1,2 dls,td,sh,bu,gamma,b_e,a_e,sf,ufrac_int) ! in this routine the shear, buoyancy and part of the dissipation terms ! of the TKE equation are computed implicit none integer kms,kme,kts,kte,iz,ix,iy real g,ustar,tstar,ufrac_int real z(kms:kme),dz(kms:kme),u(kms:kme),v(kms:kme),th(kms:kme),th0(kms:kme),te(kms:kme) real exch(kms:kme),dls(kms:kme),td(kms:kme),sh(kms:kme),bu(kms:kme),gamma(kms:kme) real a_e(kms:kme),b_e(kms:kme) real vl(kms:kme),sf(kms:kme) real te1,dl1 call shear(ix,iy,g,kms,kme,kts,kte,u,v,exch,dz,sh,ustar,tstar,th(kts),ufrac_int) call buoy(ix,iy,g,kms,kme,kts,kte,th,th0,exch,dz,bu,gamma,ustar,tstar,ufrac_int) do iz=kts,kte te1=max(te(iz),temin) dl1=max(dls(iz),0.1) td(iz)=-ceps_b*sqrt(te1)/dl1 sh(iz)=sh(iz)*sf(iz) bu(iz)=bu(iz)*sf(iz) a_e(iz)=a_e(iz)+td(iz) b_e(iz)=b_e(iz)+sh(iz)+bu(iz) enddo return end subroutine tke_bougeault ! ===6=8===============================================================72 SUBROUTINE BOULACINIT(RUBLTEN,RVBLTEN,RTHBLTEN,RQVBLTEN,RQCBLTEN, & 1 & TKE_PBL,EXCH_H,RESTART,ALLOWED_TO_READ, & & IDS,IDE,JDS,JDE,KDS,KDE, & & IMS,IME,JMS,JME,KMS,KME, & & ITS,ITE,JTS,JTE,KTS,KTE ) !----------------------------------------------------------------------- IMPLICIT NONE !----------------------------------------------------------------------- LOGICAL,INTENT(IN) :: ALLOWED_TO_READ,RESTART INTEGER,INTENT(IN) :: IDS,IDE,JDS,JDE,KDS,KDE, & & IMS,IME,JMS,JME,KMS,KME, & & ITS,ITE,JTS,JTE,KTS,KTE REAL,DIMENSION(IMS:IME,KMS:KME,JMS:JME),INTENT(OUT) :: EXCH_H, & & RUBLTEN, & & RVBLTEN, & & RTHBLTEN, & & RQVBLTEN, & & RQCBLTEN, & & TKE_PBL INTEGER :: I,J,K,ITF,JTF,KTF !----------------------------------------------------------------------- !----------------------------------------------------------------------- JTF=MIN0(JTE,JDE-1) KTF=MIN0(KTE,KDE-1) ITF=MIN0(ITE,IDE-1) IF(.NOT.RESTART)THEN DO J=JTS,JTF DO K=KTS,KTF DO I=ITS,ITF TKE_PBL(I,K,J)=0.0001 RUBLTEN(I,K,J)=0. RVBLTEN(I,K,J)=0. RTHBLTEN(I,K,J)=0. RQVBLTEN(I,K,J)=0. RQCBLTEN(I,K,J)=0. EXCH_H(I,K,J)=0. ENDDO ENDDO ENDDO ENDIF END SUBROUTINE BOULACINIT !###################################################################### subroutine pbl_height(kms,kme,kts,kte,dz,z,th,q,pblh) 1 ! this routine computes the PBL height ! with an approach similar to MYNN implicit none integer kms,kme,kts,kte,iz real z(kms:kme),dz(kms:kme),th(kms:kme),q(kms:kme) real pblh !Local real thv(kms:kme),zc(kms:kme) real thsfc ! compute the height of the center of the grid cells do iz=kts,kte zc(iz)=z(iz)+dz(iz)/2. enddo ! compute the virtual potential temperature do iz=kts,kte thv(iz)=th(iz)*(1.+0.61*q(iz)) enddo ! now compute the PBL height pblh=0. thsfc=thv(kts)+0.5 do iz=kts+1,kte if(pblh.eq.0.and.thv(iz).gt.thsfc)then pblh=zc(iz-1)+(thsfc-thv(iz-1))/(max(0.01,thv(iz)-thv(iz-1)))*(zc(iz)-zc(iz-1)) ! pblh=z(iz-1)+(thsfc-thv(iz-1))/(max(0.01,thv(iz)-thv(iz-1)))*(z(iz)-z(iz-1)) endif enddo return end subroutine pbl_height ! ===6=8===============================================================72 END MODULE module_bl_boulac