MODULE module_bl_boulac 2
!USE module_model_constants
!------------------------------------------------------------------------
! Calculation of the tendency due to momentum, heat
! and moisture turbulent fluxes follwing the approach
! of Bougeault and Lacarrere, 1989 (MWR, 117, 1872-1890).
! The scheme computes a prognostic ecuation for TKE and derives
! dissipation and turbulent coefficients using length scales.
!
! Subroutine written by Alberto Martilli, CIEMAT, Spain,
! e-mail:alberto_martilli@ciemat.es
! August 2006.
!------------------------------------------------------------------------
! IN THIS VERSION TKE IS NOT ADVECTED!!!!
! TO BE CHANGED IN THE FUTURE
!
! -----------------------------------------------------------------------
! Constant used in the module
! ck_b=constant used in the compuation of diffusion coefficients
! ceps_b=constant used inthe computation of dissipation
! temin= minimum value allowed for TKE
! vk=von karman constant
! -----------------------------------------------------------------------
real ck_b,ceps_b,vk,temin ! constant for Bougeault and Lacarrere
parameter(ceps_b=1/1.4,ck_b=0.4,temin=0.0001,vk=0.4) ! impose minimum values for tke similar to those of MYJ
! -----------------------------------------------------------------------
CONTAINS
subroutine boulac(frc_urb2d,idiff,flag_bep,dz8w,dt,u_phy,v_phy & 1,7
,th_phy,rho,qv_curr,qc_curr,hfx &
,qfx,ustar,cp,g &
,rublten,rvblten,rthblten &
,rqvblten,rqcblten &
,tke,dlk,wu,wv,wt,wq,exch_h,exch_m,pblh &
,a_u_bep,a_v_bep,a_t_bep,a_q_bep &
,a_e_bep,b_u_bep,b_v_bep &
,b_t_bep,b_q_bep,b_e_bep,dlg_bep &
,dl_u_bep,sf_bep,vl_bep &
,ids,ide, jds,jde, kds,kde &
,ims,ime, jms,jme, kms,kme &
,its,ite, jts,jte, kts,kte)
implicit none
!-----------------------------------------------------------------------
! Input
!------------------------------------------------------------------------
INTEGER:: ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte
integer, INTENT(IN) :: idiff
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) :: DZ8W !vertical resolution
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) :: qv_curr !moisture
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) :: qc_curr !liquid water
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) :: RHO !air density
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) :: TH_PHY !potential temperature
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) :: U_PHY !x-component of wind
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) :: V_PHY !y-component of wind
REAL, DIMENSION( ims:ime, jms:jme ), INTENT(IN ) :: ustar !friction velocity
REAL, DIMENSION( ims:ime, jms:jme ), INTENT(IN ) :: hfx !sensible heat flux (W/m2) at surface
REAL, DIMENSION( ims:ime, jms:jme ), INTENT(IN ) :: qfx !moisture flux at surface
real, INTENT(IN ) :: g,cp !gravity and Cp
REAL, INTENT(IN ):: DT ! Time step
REAL, DIMENSION( ims:ime, jms:jme ), INTENT(IN ) :: FRC_URB2D !fraction cover urban
REAL, DIMENSION( ims:ime, jms:jme ), INTENT(INOUT) :: PBLH !PBL height
!
! variable added for urban
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::a_u_bep ! Implicit component for the momemtum in X-direction
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::a_v_bep ! Implicit component for the momemtum in Y-direction
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::a_t_bep ! Implicit component for the Pot. Temp.
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::a_q_bep ! Implicit component for Moisture
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::a_e_bep ! Implicit component for the TKE
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::b_u_bep ! Explicit component for the momemtum in X-direction
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::b_v_bep ! Explicit component for the momemtum in Y-direction
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::b_t_bep ! Explicit component for the Pot. Temp.
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::b_q_bep ! Explicit component for Moisture
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::b_e_bep ! Explicit component for the TKE
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(INOUT) ::dlg_bep ! Height above ground (L_ground in formula (24) of the BLM paper).
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::dl_u_bep ! Length scale (lb in formula (22) ofthe BLM paper).
! urban surface and volumes
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::sf_bep ! surface of the urban grid cells
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::vl_bep ! volume of the urban grid cells
LOGICAL, INTENT(IN) :: flag_bep !flag for BEP
!
!-----------------------------------------------------------------------
! Local, carried on from one timestep to the other
!------------------------------------------------------------------------
! real, save, allocatable, dimension (:,:,:)::TKE ! Turbulent kinetic energy
real, dimension (ims:ime, kms:kme, jms:jme) ::th_0 ! reference state for potential temperature
!------------------------------------------------------------------------
! Output
!------------------------------------------------------------------------
real, dimension( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: exch_h ! exchange coefficient for heat
real, dimension( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: exch_m ! exchange coefficient for momentum
real, dimension( ims:ime, kms:kme, jms:jme ), INTENT(INOUT ) :: tke ! Turbulence Kinetic Energy
real, dimension( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: wu ! Turbulent flux of momentum (x)
real, dimension( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: wv ! Turbulent flux of momentum (y)
real, dimension( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: wt ! Turbulent flux of temperature
real, dimension( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: wq ! Turbulent flux of water vapor
real, dimension( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: dlk ! Turbulent flux of water vapor
! only if idiff not equal 1:
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: RUBLTEN !tendency for U_phy
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: RVBLTEN !tendency for V_phy
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: RTHBLTEN !tendency for TH_phy
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: RQVBLTEN !tendency for QV_curr
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: RQCBLTEN !tendency for QV_curr
!--------------------------------------------------------------
! Local
!--------------------------------------------------------------
! 1D array used for the input and output of the routine boulac1D
real z1D(kms:kme) ! vertical coordinates (faces of the grid)
real dz1D(kms:kme) ! vertical resolution
real u1D(kms:kme) ! wind speed in the x directions
real v1D(kms:kme) ! wind speed in the y directions
real th1D(kms:kme) ! potential temperature
real q1D(kms:kme) ! moisture
real qc1D(kms:kme) ! liquid water
real rho1D(kms:kme) ! air density
real rhoz1D(kms:kme) ! air density at the faces
real tke1D(kms:kme) ! air pressure
real th01D(kms:kme) ! reference potential temperature
real dlk1D(kms:kme) ! dlk
real dls1D(kms:kme) ! dls
real exch1D(kms:kme) ! exch
real sf1D(kms:kme) ! surface of the grid cells
real vl1D(kms:kme) ! volume of the grid cells
real a_u1D(kms:kme) ! Implicit component of the momentum sources or sinks in the X-direction
real a_v1D(kms:kme) ! Implicit component of the momentum sources or sinks in the Y-direction
real a_t1D(kms:kme) ! Implicit component of the heat sources or sinks
real a_q1D(kms:kme) ! Implicit component of the moisture sources or sinks
real a_qc1D(kms:kme) ! Implicit component of the liquid water sources or sinks
real a_e1D(kms:kme) ! Implicit component of the TKE sources or sinks
real b_u1D(kms:kme) ! Explicit component of the momentum sources or sinks in the X-direction
real b_v1D(kms:kme) ! Explicit component of the momentum sources or sinks in the Y-direction
real b_t1D(kms:kme) ! Explicit component of the heat sources or sinks
real b_q1D(kms:kme) ! Explicit component of the moisture sources or sinks
real b_qc1D(kms:kme) ! Explicit component of the liquid water sources or sinks
real b_e1D(kms:kme) ! Explicit component of the TKE sources or sinks
real dlg1D(kms:kme) ! Height above ground (L_ground in formula (24) of the BLM paper).
real dl_u1D(kms:kme) ! Length scale (lb in formula (22) ofthe BLM paper)
real sh1D(kms:kme) ! shear
real bu1D(kms:kme) ! buoyancy
real wu1D(kms:kme) ! turbulent flux of momentum (x component)
real wv1D(kms:kme) ! turbulent flux of momentum (y component)
real wt1D(kms:kme) ! turbulent flux of temperature
real wq1D(kms:kme) ! turbulent flux of water vapor
real wqc1D(kms:kme) ! turbulent flux of liquid water
real gamma1D(kms:kme) ! non local term
real t2_1D(kms:kme) ! temperature variance
real w2_1D(kms:kme) ! vertical velocity variance
! local added only for diagnostic output
real a_e(ims:ime,kms:kme,jms:jme) ! implicit term in TKE
real b_e(ims:ime,kms:kme,jms:jme) ! explicit term in TKE
real bu(ims:ime,kms:kme,jms:jme) ! buoyancy term in TKE
real sh(ims:ime,kms:kme,jms:jme) ! shear term in TKE
real wrk(ims:ime) ! working array
integer ix,iy,iz,id,iz_u,iw_u,ig,ir_u,ix1,iy1,igamma
real ufrac_int ! urban fraction
real vect,time_tke,hour,zzz
real ustarf,wstar,wts,t2,w2,tstar_w,zzi
real summ1,summ2,summ3
save time_tke,hour
!
!
!here I fix the value of the reference state equal to the value of the potnetial temperature
! the only use of this variable in the code is to compute the paramter BETA = g/th0
! I fix it to 300K.
do ix=its,ite
do iy=jts,jte
do iz=kts,kte
! th_0(ix,iz,iy)=th_phy(ix,iz,iy)
th_0(ix,iz,iy)=300.
enddo
enddo
enddo
! initialization
z1D=0.
dz1D=0.
u1D =0.
v1D =0.
th1D=0.
q1D=0.
rho1D=0.
rhoz1D=0.
tke1D =0.
th01D =0.
dlk1D =0.
dls1D =0.
exch1D=0.
sf1D =1.
vl1D =1.
a_u1D =0.
a_v1D =0.
a_t1D =0.
a_q1D =0.
a_qc1D =0.
a_e1D =0.
b_u1D =0.
b_v1D =0.
b_t1D =0.
b_q1D =0.
b_qc1D =0.
b_e1D =0.
dlg1D =0.
dl_u1D=0.
sh1D =0.
bu1D =0.
wu1D =0.
wv1D =0.
wt1D =0.
wq1D =0.
! flag to choose the method for the calcaulation of the gamma non local term:
! igamma=0 - no term
! igamma=1 Troen and Mahrt
! igamma=2 Deardroff and Therry-Lacarrere
! igamma=3 Holstag and Moeng
igamma=1
! loop over the columns.
! put variables in 1D temporary arrays
!
do ix=its,ite
do iy=jts,jte
z1d(kts)=0.
do iz= kts,kte
u1D(iz)=u_phy(ix,iz,iy)
v1D(iz)=v_phy(ix,iz,iy)
th1D(iz)=th_phy(ix,iz,iy)
q1D(iz)=qv_curr(ix,iz,iy)
qc1D(iz)=qc_curr(ix,iz,iy)
tke1D(iz)=tke(ix,iz,iy)
rho1D(iz)=rho(ix,iz,iy)
th01D(iz)=th_0(ix,iz,iy)
dz1D(iz)=dz8w(ix,iz,iy)
z1D(iz+1)=z1D(iz)+dz1D(iz)
enddo
rhoz1D(kts)=rho1D(kts)
do iz=kts+1,kte
rhoz1D(iz)=(rho1D(iz)*dz1D(iz-1)+rho1D(iz-1)*dz1D(iz))/(dz1D(iz-1)+dz1D(iz))
enddo
rhoz1D(kte+1)=rho1D(kte)
if(flag_bep)then
do iz=kts,kte
a_e1D(iz)=a_e_bep(ix,iz,iy)
b_e1D(iz)=b_e_bep(ix,iz,iy)
dlg1D(iz)=(z1D(iz)+z1D(iz+1))/2.*(1.-frc_urb2d(ix,iy))+dlg_bep(ix,iz,iy)*frc_urb2d(ix,iy)
dl_u1D(iz)=dl_u_bep(ix,iz,iy)
if((1.-frc_urb2d(ix,iy)).lt.1.)dl_u1D(iz)=dl_u1D(iz)/frc_urb2d(ix,iy)
vl1D(iz)=vl_bep(ix,iz,iy)
sf1D(iz)=sf_bep(ix,iz,iy)
enddo
ufrac_int=frc_urb2d(ix,iy)
sf1D(kte+1)=sf_bep(ix,1,iy)
else
do iz=kts,kte
a_e1D(iz)=0.
b_e1D(iz)=0.
dlg1D(iz)=(z1D(iz)+z1D(iz+1))/2.
dl_u1D(iz)=0.
vl1D(iz)=1.
sf1D(iz)=1.
enddo
ufrac_int=0.
sf1D(kte+1)=1.
endif
! compute the pbl_height
call pbl_height
(kms,kme,kts,kte,dz1d,z1d,th1D,q1D,pblh(ix,iy))
! compute the values of wstar
wts=max(0.,hfx(ix,iy)/rho1D(1)/cp)
wstar=(g*wts*pblh(ix,iy)/th01D(1))**(1./3.)
if (wts .ne. 0.0) then
tstar_w=wts/wstar
else
tstar_w=0.0
endif
t2_1D=0.
w2_1D=0.
gamma1D=0.
! compute the variances
do iz=kts+1,kte
zzi=z1D(iz)/pblh(ix,iy)
t2_1D(iz)=1.8*(zzi**(-2./3.))*(tstar_w**2.)
w2_1D(iz)=1.8*(zzi**(2./3.))*((1.-0.8*zzi)**2.)*(wstar**2.)
enddo
! compute gamma
if(igamma.eq.1)then
! (Troen and Mahrt)
do iz=kts+1,kte
if(z1D(iz).le.1.0*pblh(ix,iy).and.wts.gt.0.)then
gamma1D(iz)=10.*wts/wstar/pblh(ix,iy)
else
gamma1D(iz)=0.
endif
enddo
elseif(igamma.eq.2)then
! Deardorff, and Therry -Lacarrere
do iz=kts+1,kte
if(wts.gt.0)then
if(z1D(iz).le.(1.0*pblh(ix,iy)).and.z1D(iz).gt.(0.1*pblh(ix,iy)))then
gamma1D(iz)=g/th01D(iz)*t2_1D(iz)/w2_1D(iz)
else
gamma1D(iz)=0.
endif
endif
enddo
elseif(igamma.eq.3)then! (Holtslag and Moeng)
do iz=kts+1,kte
if(z1D(iz).le.(1.0*pblh(ix,iy)).and.wts.gt.0)then
gamma1D(iz)=2.*wstar*wts/w2_1D(iz)/pblh(ix,iy)
else
gamma1D(iz)=0.
endif
enddo
endif
call boulac1D
(ix,iy,ufrac_int,kms,kme,kts,kte,dz1d,z1D,dt,u1D,v1D,th1D,rho1D,rhoz1D,q1D,th01D,&
tke1D,ustar(ix,iy),hfx(ix,iy),qfx(ix,iy),cp,g, &
a_e1D,b_e1D, &
dlg1D,dl_u1D,sf1D,vl1D,dlk1D,dls1D,exch1D,sh1D,bu1D,gamma1D)
! store turbulent exchange coefficients, TKE, and other variables
do iz= kts,kte
a_e(ix,iz,iy)=a_e1D(iz)
b_e(ix,iz,iy)=b_e1D(iz)
if(flag_bep)then
dlg_bep(ix,iz,iy)=dlg1D(iz)
endif
tke(ix,iz,iy)=tke1D(iz)
dlk(ix,iz,iy)=dlk1D(iz)
sh(ix,iz,iy)=sh1D(iz)
bu(ix,iz,iy)=bu1D(iz)
exch_h(ix,iz,iy)=exch1D(iz)
exch_m(ix,iz,iy)=exch1D(iz)
enddo
if(idiff.ne.1)then
! estimate the tendencies
if(flag_bep)then
do iz=kts,kte
a_t1D(iz)=a_t_bep(ix,iz,iy)
b_t1D(iz)=b_t_bep(ix,iz,iy)
a_u1D(iz)=a_u_bep(ix,iz,iy)
b_u1D(iz)=b_u_bep(ix,iz,iy)
a_v1D(iz)=a_v_bep(ix,iz,iy)
b_v1D(iz)=b_v_bep(ix,iz,iy)
a_q1D(iz)=a_q_bep(ix,iz,iy)
b_q1D(iz)=b_q_bep(ix,iz,iy)
enddo
else
do iz=kts,kte
a_t1D(iz)=0.
b_t1D(iz)=0.
a_u1D(iz)=0.
b_u1D(iz)=0.
a_v1D(iz)=0.
b_v1D(iz)=0.
a_q1D(iz)=0.
b_q1D(iz)=0.
enddo
b_t1D(1)=hfx(ix,iy)/dz1D(1)/rho1D(1)/cp
b_q1D(1)=qfx(ix,iy)/dz1D(1)/rho1D(1)
a_u1D(1)=(-ustar(ix,iy)*ustar(ix,iy)/dz1D(1)/((u1D(1)**2.+v1D(1)**2.)**.5))
a_v1D(1)=(-ustar(ix,iy)*ustar(ix,iy)/dz1D(1)/((u1D(1)**2.+v1D(1)**2.)**.5))
endif
!
! compute the value of the extra term that will be added to b_t1D
do iz=kts+1,kte
if(z1D(iz).le.1.0*pblh(ix,iy).and.wts.gt.0.)then
b_t1D(iz)=b_t1D(iz)-(exch1D(iz+1)*gamma1D(iz+1)-exch1D(iz)*gamma1D(iz))/dz1D(iz)
endif
enddo
!
! solve diffusion equation for momentum x component
call diff
(kms,kme,kts,kte,1,1,dt,u1D,rho1D,rhoz1D,exch1D,a_u1D,b_u1D,sf1D,vl1D,dz1D,wu1D)
! solve diffusion equation for momentum y component
call diff
(kms,kme,kts,kte,1,1,dt,v1D,rho1D,rhoz1D,exch1D,a_v1D,b_v1D,sf1D,vl1D,dz1D,wv1D)
! solve diffusion equation for potential temperature
call diff
(kms,kme,kts,kte,1,1,dt,th1D,rho1D,rhoz1D,exch1D,a_t1D,b_t1D,sf1D,vl1D,dz1D,wt1D)
! solve diffusion equation for water vapor mixing ratio
call diff
(kms,kme,kts,kte,1,1,dt,q1D,rho1D,rhoz1D,exch1D,a_q1D,b_q1D,sf1D,vl1D,dz1D,wq1D)
! solve diffusion equation for liquid water mixing ratio
call diff
(kms,kme,kts,kte,1,1,dt,qc1D,rho1D,rhoz1D,exch1D,a_qc1D,b_qc1D,sf1D,vl1D,dz1D,wqc1D)
! compute the tendencies
do iz= kts,kte
rthblten(ix,iz,iy)=rthblten(ix,iz,iy)+(th1D(iz)-th_phy(ix,iz,iy))/dt
rqvblten(ix,iz,iy)=rqvblten(ix,iz,iy)+(q1D(iz)-qv_curr(ix,iz,iy))/dt
rqcblten(ix,iz,iy)=rqcblten(ix,iz,iy)+(qc1D(iz)-qc_curr(ix,iz,iy))/dt
rublten(ix,iz,iy)=rublten(ix,iz,iy)+(u1D(iz)-u_phy(ix,iz,iy))/dt
rvblten(ix,iz,iy)=rvblten(ix,iz,iy)+(v1D(iz)-v_phy(ix,iz,iy))/dt
wu(ix,iz,iy)=wu1D(iz)
wv(ix,iz,iy)=wv1D(iz)
wt(ix,iz,iy)=wt1D(iz)
wq(ix,iz,iy)=wq1D(iz)
enddo
endif
enddo ! iy
enddo ! ix
return
end subroutine boulac
! ===6=8===============================================================72
! ===6=8===============================================================72
subroutine boulac1D(ix,iy,ufrac_int,kms,kme,kts,kte,dz,z,dt,u,v,th,rho,rhoz,qa,th0,te, & 1,5
ustar,hfx,qfx,cp,g, &
a_e,b_e, &
dlg,dl_u,sf,vl,dlk,dls,exch,sh,bu,gamma)
! ----------------------------------------------------------------------
! 1D resolution of TKE following Bougeault and Lacarrere
! ----------------------------------------------------------------------
implicit none
integer iz,ix,iy
! ----------------------------------------------------------------------
! INPUT:
! ----------------------------------------------------------------------
integer kms,kme,kts,kte
real z(kms:kme) ! Altitude above the ground of the cell interfaces.
real dz(kms:kme) ! vertical resolution
real u(kms:kme) ! Wind speed in the x direction
real v(kms:kme) ! Wind speed in the y direction
real th(kms:kme) ! Potential temperature
real rho(kms:kme) ! Air density
real g ! gravity
real cp !
real te(kms:kme) ! turbulent kinetic energy
real qa(kms:kme) ! air humidity
real th0(kms:kme) ! Reference potential temperature
real dt ! Time step
real ustar ! ustar
real hfx ! sensbile heat flux
real qfx ! kinematic latent heat flux
real sf(kms:kme) ! surface of the urban grid cells
real vl(kms:kme) ! volume of the urban grid cells
real a_e(kms:kme) ! Implicit component of the TKE sources or sinks
real b_e(kms:kme) ! Explicit component of the TKE sources or sinks
real dlg(kms:kme) ! Height above ground (L_ground in formula (24) of the BLM paper).
real dl_u(kms:kme) ! Length scale (lb in formula (22) ofthe BLM paper)
real ufrac_int ! urban fraction
! local variables not needed in principle, but that can be used to estimate the budget and turbulent fluxes
real we(kms:kme),dwe(kms:kme)
! local variables
real sh(kms:kme) ! shear term in TKE eqn.
real bu(kms:kme) ! buoyancy term in TKE eqn.
real gamma(kms:kme) ! gamma term
real td(kms:kme) ! dissipation term in TKE eqn.
real exch(kms:kme) ! turbulent diffusion coefficients (defined at the faces)
real dls(kms:kme) ! dissipation length scale
real dlk(kms:kme) ! length scale used to estimate exch
real dlu(kms:kme) ! l_up
real dld(kms:kme) ! l_down
real rhoz(kms:kme) !air density at the faces of the cell
real tstar ! derived from hfx and ustar
real beta
real summ1,summ2,summ3,summ4
! interpolate air density at the faces
! estimation of tstar
tstar=-hfx/rho(1)/cp/ustar
! first compute values of dlu and dld (length scales up and down).
call dissip_bougeault
(ix,iy,g,kms,kme,kts,kte,z,dz,te,dlu,dld,th,th0)
!then average them to obtain dls and dlk (length scales for dissipation and eddy coefficients)
call length_bougeault
(ix,iy,kms,kme,kts,kte,dld,dlu,dlg,dl_u,dls,dlk)
! compute the turbulent diffusion coefficients exch
call cdtur_bougeault
(ix,iy,kms,kme,kts,kte,te,z,dz,exch,dlk)
! compute source and sink terms in the TKE equation (shear, buoyancy and dissipation)
call tke_bougeault
(ix,iy,g,kms,kme,kts,kte,z,dz,vl,u,v,th,te,th0,ustar,tstar,exch,dls,td,sh,bu,gamma,b_e,a_e,sf,ufrac_int)
! solve for tke
call diff
(kms,kme,kts,kte,1,1,dt,te,rho,rhoz,exch,a_e,b_e,sf,vl,dz,we)
! avoid negative values for tke
do iz=kts,kte
if(te(iz).lt.temin) te(iz)=temin
enddo
return
end subroutine boulac1d
!
! ===6=8===============================================================72
! ===6=8===============================================================72
subroutine dissip_bougeault(ix,iy,g,kms,kme,kts,kte,z,dz,te,dlu,dld,th,th0) 1
! compute the length scales up and down
implicit none
integer kms,kme,kts,kte,iz,izz,ix,iy
real dzt,zup,beta,zup_inf,bbb,tl,zdo,zdo_sup,zzz,g
real te(kms:kme),dlu(kms:kme),dld(kms:kme),dz(kms:kme)
real z(kms:kme),th(kms:kme),th0(kms:kme)
do iz=kts,kte
zup=0.
dlu(iz)=z(kte+1)-z(iz)-dz(iz)/2.
zzz=0.
zup_inf=0.
beta=g/th0(iz) !Buoyancy coefficient
do izz=iz,kte-1
dzt=(dz(izz+1)+dz(izz))/2.
zup=zup-beta*th(iz)*dzt
zup=zup+beta*(th(izz+1)+th(izz))*dzt/2.
zzz=zzz+dzt
if(te(iz).lt.zup.and.te(iz).ge.zup_inf)then
bbb=(th(izz+1)-th(izz))/dzt
if(bbb.ne.0)then
tl=(-beta*(th(izz)-th(iz))+sqrt( max(0.,(beta*(th(izz)-th(iz)))**2.+2.*bbb*beta*(te(iz)-zup_inf))))/bbb/beta
else
if(th(izz).ne.th(iz))then
tl=(te(iz)-zup_inf)/(beta*(th(izz)-th(iz)))
else
tl=0.
endif
endif
dlu(iz)=zzz-dzt+tl
endif
zup_inf=zup
enddo
zdo=0.
zdo_sup=0.
dld(iz)=z(iz)+dz(iz)/2.
zzz=0.
do izz=iz,kts+1,-1
dzt=(dz(izz-1)+dz(izz))/2.
zdo=zdo+beta*th(iz)*dzt
zdo=zdo-beta*(th(izz-1)+th(izz))*dzt/2.
zzz=zzz+dzt
if(te(iz).lt.zdo.and.te(iz).ge.zdo_sup)then
bbb=(th(izz)-th(izz-1))/dzt
if(bbb.ne.0.)then
tl=(beta*(th(izz)-th(iz))+sqrt( max(0.,(beta*(th(izz)-th(iz)))**2.+2.*bbb*beta*(te(iz)-zdo_sup))))/bbb/beta
else
if(th(izz).ne.th(iz))then
tl=(te(iz)-zdo_sup)/(beta*(th(izz)-th(iz)))
else
tl=0.
endif
endif
dld(iz)=zzz-dzt+tl
endif
zdo_sup=zdo
enddo
enddo
end subroutine dissip_bougeault
!
! ===6=8===============================================================72
! ===6=8===============================================================72
subroutine length_bougeault(ix,iy,kms,kme,kts,kte,dld,dlu,dlg,dl_u,dls,dlk) 1
! compute the length scales for dissipation and turbulent coefficients
implicit none
integer kms,kme,kts,kte,iz,ix,iy
real dlu(kms:kme),dld(kms:kme),dl_u(kms:kme)
real dls(kms:kme),dlk(kms:kme),dlg(kms:kme)
do iz=kts,kte
dld(iz)=min(dld(iz),dlg(iz))
dls(iz)=sqrt(dlu(iz)*dld(iz))
dlk(iz)=min(dlu(iz),dld(iz))
if(dl_u(iz).gt.0.)then
dls(iz)=1./(1./dls(iz)+1./dl_u(iz))
dlk(iz)=1./(1./dlk(iz)+1./dl_u(iz))
endif
enddo
return
end subroutine length_bougeault
!
! ===6=8===============================================================72
! ===6=8===============================================================72
subroutine cdtur_bougeault(ix,iy,kms,kme,kts,kte,te,z,dz,exch,dlk) 1
! compute turbulent coefficients
implicit none
integer iz,kms,kme,kts,kte,ix,iy
real te_m,dlk_m
real te(kms:kme),exch(kms:kme)
real dz(kms:kme),z(kms:kme)
real dlk(kms:kme)
real fact
exch(kts)=0.
! do iz=2,nz-1
do iz=kts+1,kte
te_m=(te(iz-1)*dz(iz)+te(iz)*dz(iz-1))/(dz(iz)+dz(iz-1))
dlk_m=(dlk(iz-1)*dz(iz)+dlk(iz)*dz(iz-1))/(dz(iz)+dz(iz-1))
exch(iz)=ck_b*dlk_m*sqrt(te_m)
! exch(iz)=max(exch(iz),0.0001)
exch(iz)=max(exch(iz),0.1)
enddo
exch(kte+1)=0.1
return
end subroutine cdtur_bougeault
! ===6=8===============================================================72
! ===6=8===============================================================72
subroutine diff(kms,kme,kts,kte,iz1,izf,dt,co,rho,rhoz,cd,aa,bb,sf,vl,dz,fc) 11,2
!------------------------------------------------------------------------
! Calculation of the diffusion in 1D
!------------------------------------------------------------------------
! - Input:
! nz : number of points
! iz1 : first calculated point
! co : concentration of the variable of interest
! dz : vertical levels
! cd : diffusion coefficients
! dtext : external time step
! rho : density of the air at the center
! rhoz : density of the air at the face
! itest : if itest eq 1 then update co, else store in a flux array
! - Output:
! co :concentration of the variable of interest
! - Internal:
! cddz : constant terms in the equations
! dt : diffusion time step
! nt : number of the diffusion time steps
! cstab : ratio of the stability condition for the time step
!---------------------------------------------------------------------
implicit none
integer iz,iz1,izf
integer kms,kme,kts,kte
real dt,dzv
real co(kms:kme),cd(kms:kme),dz(kms:kme)
real rho(kms:kme),rhoz(kms:kme)
real cddz(kms:kme+1),fc(kms:kme),df(kms:kme)
real a(kms:kme,3),c(kms:kme)
real sf(kms:kme),vl(kms:kme)
real aa(kms:kme),bb(kms:kme)
! Compute cddz=2*cd/dz
cddz(kts)=sf(kts)*rhoz(kts)*cd(kts)/dz(kts)
do iz=kts+1,kte
cddz(iz)=2.*sf(iz)*rhoz(iz)*cd(iz)/(dz(iz)+dz(iz-1))
enddo
cddz(kte+1)=sf(kte+1)*rhoz(kte+1)*cd(kte+1)/dz(kte)
do iz=kts,iz1-1
a(iz,1)=0.
a(iz,2)=1.
a(iz,3)=0.
c(iz)=co(iz)
enddo
do iz=iz1,kte-izf
dzv=vl(iz)*dz(iz)
a(iz,1)=-cddz(iz)*dt/dzv/rho(iz)
a(iz,2)=1+dt*(cddz(iz)+cddz(iz+1))/dzv/rho(iz)-aa(iz)*dt
a(iz,3)=-cddz(iz+1)*dt/dzv/rho(iz)
c(iz)=co(iz)+bb(iz)*dt
enddo
do iz=kte-(izf-1),kte
a(iz,1)=0.
a(iz,2)=1
a(iz,3)=0.
c(iz)=co(iz)
enddo
call invert
(kms,kme,kts,kte,a,c,co)
do iz=kts,iz1
fc(iz)=0.
enddo
do iz=iz1+1,kte
fc(iz)=-(cddz(iz)*(co(iz)-co(iz-1)))/rho(iz)
enddo
! do iz=1,iz1
! df(iz)=0.
! enddo
!
! do iz=iz1+1,nz-izf
! dzv=vl(iz)*dz(iz)
! df(iz)=+(co(iz-1)*cddz(iz)-co(iz)*(cddz(iz)+cddz(iz+1))+co(iz+1)*cddz(iz+1))/dzv/rho(iz)
! enddo
!
! do iz=nz-izf,nz
! df(iz)=0.
! enddo
return
end subroutine diff
! ===6=8===============================================================72
! ===6=8===============================================================72
subroutine buoy(ix,iy,g,kms,kme,kts,kte,th,th0,exch,dz,bu,gamma,ustar,tstar,ufrac_int) 1
! compute buoyancy term
implicit none
integer kms,kme,kts,kte,iz,ix,iy
real dtdz1,dtdz2,cdm,dtmdz,g
real th(kms:kme),exch(kms:kme),dz(kms:kme),bu(kms:kme),gamma(kms:kme)
real th0(kms:kme),ustar,tstar,ufrac_int,gammam
! bu(1)=-ustar*tstar*g/th0(1)*(1.-ufrac_int)
bu(kts)=0.
do iz=kts+1,kte-1
dtdz1=2.*(th(iz)-th(iz-1))/(dz(iz-1)+dz(iz))
dtdz2=2.*(th(iz+1)-th(iz))/(dz(iz+1)+dz(iz))
dtmdz=0.5*(dtdz1+dtdz2)
cdm=0.5*(exch(iz+1)+exch(iz))
gammam=0.5*(gamma(iz+1)+gamma(iz))
bu(iz)=-cdm*(dtmdz-gammam)*g/th0(iz)
enddo
!
bu(kte)=0.
return
end subroutine buoy
! ===6=8===============================================================72
! ===6=8===============================================================72
subroutine shear(ix,iy,g,kms,kme,kts,kte,u,v,cdua,dz,sh,ustar,tstar,th,ufrac_int) 1
! compute shear term
implicit none
integer kms,kme,kts,kte,iz,ix,iy
real dudz1,dudz2,dvdz1,dvdz2,cdm,dumdz,ustar
real tstar,th,al,phim,g
real u(kms:kme),v(kms:kme),cdua(kms:kme),dz(kms:kme),sh(kms:kme)
real u1,u2,v1,v2,ufrac_int
! al=vk*g*tstar/(th*(ustar**2.))
! if(al.ge.0.)phim=1.+4.7*dz(1)/2.*al
! if(al.lt.0.)phim=(1.-15*dz(1)/2.*al)**(-0.25)
!
! sh(1)=(ustar**3.)/vk/(dz(1)/2.)*(1.-ufrac_int)
sh(kts)=0.
do iz=kts+1,kte-1
u2=(dz(iz+1)*u(iz)+dz(iz)*u(iz+1))/(dz(iz)+dz(iz+1))
u1=(dz(iz)*u(iz-1)+dz(iz-1)*u(iz))/(dz(iz-1)+dz(iz))
v2=(dz(iz+1)*v(iz)+dz(iz)*v(iz+1))/(dz(iz)+dz(iz+1))
v1=(dz(iz)*v(iz-1)+dz(iz-1)*v(iz))/(dz(iz-1)+dz(iz))
cdm=0.5*(cdua(iz)+cdua(iz+1))
dumdz=((u2-u1)/dz(iz))**2.+((v2-v1)/dz(iz))**2.
sh(iz)=cdm*dumdz
enddo
!!!!!!!
sh(kte)=0.
return
end subroutine shear
! ===6=8===============================================================72
! ===6=8===============================================================72
subroutine invert(kms,kme,kts,kte,a,c,x) 4
!ccccccccccccccccccccccccccccccc
! Aim: Inversion and resolution of a tridiagonal matrix
! A X = C
! Input:
! a(*,1) lower diagonal (Ai,i-1)
! a(*,2) principal diagonal (Ai,i)
! a(*,3) upper diagonal (Ai,i+1)
! c
! Output
! x results
!ccccccccccccccccccccccccccccccc
implicit none
integer in
integer kts,kte,kms,kme
real a(kms:kme,3),c(kms:kme),x(kms:kme)
do in=kte-1,kts,-1
c(in)=c(in)-a(in,3)*c(in+1)/a(in+1,2)
a(in,2)=a(in,2)-a(in,3)*a(in+1,1)/a(in+1,2)
enddo
do in=kts+1,kte
c(in)=c(in)-a(in,1)*c(in-1)/a(in-1,2)
enddo
do in=kts,kte
x(in)=c(in)/a(in,2)
enddo
return
end subroutine invert
! ===6=8===============================================================72
! ===6=8===============================================================72
subroutine tke_bougeault(ix,iy,g,kms,kme,kts,kte,z,dz,vl,u,v,th,te,th0,ustar,tstar,exch, & 1,2
dls,td,sh,bu,gamma,b_e,a_e,sf,ufrac_int)
! in this routine the shear, buoyancy and part of the dissipation terms
! of the TKE equation are computed
implicit none
integer kms,kme,kts,kte,iz,ix,iy
real g,ustar,tstar,ufrac_int
real z(kms:kme),dz(kms:kme),u(kms:kme),v(kms:kme),th(kms:kme),th0(kms:kme),te(kms:kme)
real exch(kms:kme),dls(kms:kme),td(kms:kme),sh(kms:kme),bu(kms:kme),gamma(kms:kme)
real a_e(kms:kme),b_e(kms:kme)
real vl(kms:kme),sf(kms:kme)
real te1,dl1
call shear
(ix,iy,g,kms,kme,kts,kte,u,v,exch,dz,sh,ustar,tstar,th(kts),ufrac_int)
call buoy
(ix,iy,g,kms,kme,kts,kte,th,th0,exch,dz,bu,gamma,ustar,tstar,ufrac_int)
do iz=kts,kte
te1=max(te(iz),temin)
dl1=max(dls(iz),0.1)
td(iz)=-ceps_b*sqrt(te1)/dl1
sh(iz)=sh(iz)*sf(iz)
bu(iz)=bu(iz)*sf(iz)
a_e(iz)=a_e(iz)+td(iz)
b_e(iz)=b_e(iz)+sh(iz)+bu(iz)
enddo
return
end subroutine tke_bougeault
! ===6=8===============================================================72
SUBROUTINE BOULACINIT(RUBLTEN,RVBLTEN,RTHBLTEN,RQVBLTEN,RQCBLTEN, & 1
& TKE_PBL,EXCH_H,RESTART,ALLOWED_TO_READ, &
& IDS,IDE,JDS,JDE,KDS,KDE, &
& IMS,IME,JMS,JME,KMS,KME, &
& ITS,ITE,JTS,JTE,KTS,KTE )
!-----------------------------------------------------------------------
IMPLICIT NONE
!-----------------------------------------------------------------------
LOGICAL,INTENT(IN) :: ALLOWED_TO_READ,RESTART
INTEGER,INTENT(IN) :: IDS,IDE,JDS,JDE,KDS,KDE, &
& IMS,IME,JMS,JME,KMS,KME, &
& ITS,ITE,JTS,JTE,KTS,KTE
REAL,DIMENSION(IMS:IME,KMS:KME,JMS:JME),INTENT(OUT) :: EXCH_H, &
& RUBLTEN, &
& RVBLTEN, &
& RTHBLTEN, &
& RQVBLTEN, &
& RQCBLTEN, &
& TKE_PBL
INTEGER :: I,J,K,ITF,JTF,KTF
!-----------------------------------------------------------------------
!-----------------------------------------------------------------------
JTF=MIN0(JTE,JDE-1)
KTF=MIN0(KTE,KDE-1)
ITF=MIN0(ITE,IDE-1)
IF(.NOT.RESTART)THEN
DO J=JTS,JTF
DO K=KTS,KTF
DO I=ITS,ITF
TKE_PBL(I,K,J)=0.0001
RUBLTEN(I,K,J)=0.
RVBLTEN(I,K,J)=0.
RTHBLTEN(I,K,J)=0.
RQVBLTEN(I,K,J)=0.
RQCBLTEN(I,K,J)=0.
EXCH_H(I,K,J)=0.
ENDDO
ENDDO
ENDDO
ENDIF
END SUBROUTINE BOULACINIT
!######################################################################
subroutine pbl_height(kms,kme,kts,kte,dz,z,th,q,pblh) 1
! this routine computes the PBL height
! with an approach similar to MYNN
implicit none
integer kms,kme,kts,kte,iz
real z(kms:kme),dz(kms:kme),th(kms:kme),q(kms:kme)
real pblh
!Local
real thv(kms:kme),zc(kms:kme)
real thsfc
! compute the height of the center of the grid cells
do iz=kts,kte
zc(iz)=z(iz)+dz(iz)/2.
enddo
! compute the virtual potential temperature
do iz=kts,kte
thv(iz)=th(iz)*(1.+0.61*q(iz))
enddo
! now compute the PBL height
pblh=0.
thsfc=thv(kts)+0.5
do iz=kts+1,kte
if(pblh.eq.0.and.thv(iz).gt.thsfc)then
pblh=zc(iz-1)+(thsfc-thv(iz-1))/(max(0.01,thv(iz)-thv(iz-1)))*(zc(iz)-zc(iz-1))
! pblh=z(iz-1)+(thsfc-thv(iz-1))/(max(0.01,thv(iz)-thv(iz-1)))*(z(iz)-z(iz-1))
endif
enddo
return
end subroutine pbl_height
! ===6=8===============================================================72
END MODULE module_bl_boulac