!LWRF:MODEL_LAYER:PHYSICS
!
MODULE module_bl_gfs2011 2
CONTAINS
!-------------------------------------------------------------------
SUBROUTINE BL_GFS2011(U3D,V3D,TH3D,T3D,QV3D,QC3D,QI3D,P3D,PI3D, & 1,2
RUBLTEN,RVBLTEN,RTHBLTEN, &
RQVBLTEN,RQCBLTEN,RQIBLTEN, &
CP,G,ROVCP,R,ROVG,P_QI,P_FIRST_SCALAR, &
dz8w,z,PSFC, &
UST,PBL,PSIM,PSIH, &
HFX,QFX,TSK,GZ1OZ0,WSPD,BR, &
DT,KPBL2D,EP1,KARMAN, &
#if (NMM_CORE==1)
DISHEAT, &
#endif
RTHRATEN, & !Kwon add RTHRATEN
HPBL2D, EVAP2D, HEAT2D, & !Kwon add FOR SHAL. CON.
ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte )
!--------------------------------------------------------------------
USE MODULE_GFS_MACHINE
, ONLY : kind_phys
!-------------------------------------------------------------------
IMPLICIT NONE
!-------------------------------------------------------------------
!-- U3D 3D u-velocity interpolated to theta points (m/s)
!-- V3D 3D v-velocity interpolated to theta points (m/s)
!-- TH3D 3D potential temperature (K)
!-- T3D temperature (K)
!-- QV3D 3D water vapor mixing ratio (Kg/Kg)
!-- QC3D 3D cloud mixing ratio (Kg/Kg)
!-- QI3D 3D ice mixing ratio (Kg/Kg)
!-- P3D 3D pressure (Pa)
!-- PI3D 3D exner function (dimensionless)
!-- rr3D 3D dry air density (kg/m^3)
!-- RUBLTEN U tendency due to
! PBL parameterization (m/s^2)
!-- RVBLTEN V tendency due to
! PBL parameterization (m/s^2)
!-- RTHBLTEN Theta tendency due to
! PBL parameterization (K/s)
!-- RQVBLTEN Qv tendency due to
! PBL parameterization (kg/kg/s)
!-- RQCBLTEN Qc tendency due to
! PBL parameterization (kg/kg/s)
!-- RQIBLTEN Qi tendency due to
! PBL parameterization (kg/kg/s)
!-- CP heat capacity at constant pressure for dry air (J/kg/K)
!-- G acceleration due to gravity (m/s^2)
!-- ROVCP R/CP
!-- R gas constant for dry air (J/kg/K)
!-- ROVG R/G
!-- P_QI species index for cloud ice
!-- dz8w dz between full levels (m)
!-- z height above sea level (m)
!-- PSFC pressure at the surface (Pa)
!-- UST u* in similarity theory (m/s)
!-- PBL PBL height (m)
!-- PSIM similarity stability function for momentum
!-- PSIH similarity stability function for heat
!-- HFX upward heat flux at the surface (W/m^2)
!-- QFX upward moisture flux at the surface (kg/m^2/s)
!-- TSK surface temperature (K)
!-- GZ1OZ0 log(z/z0) where z0 is roughness length
!-- WSPD wind speed at lowest model level (m/s)
!-- BR bulk Richardson number in surface layer
!-- DT time step (s)
!-- rvovrd R_v divided by R_d (dimensionless)
!-- EP1 constant for virtual temperature (R_v/R_d - 1) (dimensionless)
!-- KARMAN Von Karman constant
!-- ids start index for i in domain
!-- ide end index for i in domain
!-- jds start index for j in domain
!-- jde end index for j in domain
!-- kds start index for k in domain
!-- kde end index for k in domain
!-- ims start index for i in memory
!-- ime end index for i in memory
!-- jms start index for j in memory
!-- jme end index for j in memory
!-- kms start index for k in memory
!-- kme end index for k in memory
!-- its start index for i in tile
!-- ite end index for i in tile
!-- jts start index for j in tile
!-- jte end index for j in tile
!-- kts start index for k in tile
!-- kte end index for k in tile
!-------------------------------------------------------------------
INTEGER, INTENT(IN) :: ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte, &
P_QI,P_FIRST_SCALAR
#if (NMM_CORE==1)
LOGICAL , INTENT(IN):: DISHEAT !gopal's doing
#endif
REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(IN) :: RTHRATEN !Kwon
REAL, DIMENSION(ims:ime, jms:jme), INTENT(OUT) :: &
HPBL2D, & !ADDED BY KWON FOR SHALLOW CONV.
EVAP2D, & !ADDED BY KWON FOR SHALLOW CONV.
HEAT2D !ADDED BY KWON FOR SHALLOW CONV.
REAL, INTENT(IN) :: &
CP, &
DT, &
EP1, &
G, &
KARMAN, &
R, &
ROVCP, &
ROVG
REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(IN) :: &
DZ8W, &
P3D, &
PI3D, &
QC3D, &
QI3D, &
QV3D, &
T3D, &
TH3D, &
U3D, &
V3D, &
Z
REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(INOUT) :: &
RTHBLTEN, &
RQCBLTEN, &
RQIBLTEN, &
RQVBLTEN, &
RUBLTEN, &
RVBLTEN
REAL, DIMENSION(ims:ime, jms:jme), INTENT(IN) :: &
BR, &
GZ1OZ0, &
HFX, &
PSFC, &
PSIM, &
PSIH, &
QFX, &
TSK
REAL, DIMENSION(ims:ime, jms:jme), INTENT(INOUT) :: &
PBL, &
UST, &
WSPD
INTEGER, DIMENSION(ims:ime, jms:jme), INTENT(OUT) :: &
KPBL2D
!--------------------------- LOCAL VARS ------------------------------
REAL (kind=kind_phys), DIMENSION(its:ite, kts:kte) :: &
DEL, &
DU, &
DV, &
PHIL, &
PRSL, &
PRSLK, &
T1, &
TAU, &
dishx, &
THRATEN, & !Kwon
U1, &
V1
REAL (kind=kind_phys), DIMENSION(its:ite, kts:kte+1) :: &
PHII, &
PRSI
REAL (kind=kind_phys), DIMENSION(its:ite, kts:kte, 3) :: &
Q1, &
RTG
REAL (kind=kind_phys), DIMENSION(its:ite) :: &
DQSFC, &
DTSFC, &
DUSFC, &
DVSFC, &
EVAP, &
FH, &
FM, &
HEAT, &
HGAMQ, &
HGAMT, &
HPBL, &
PSK, &
QSS, &
RBSOIL, &
RCL, &
SPD1, &
STRESS, &
TSEA
REAL (kind=kind_phys) :: &
CPM, &
cpmikj, &
DELTIM, &
FMTMP, &
RRHOX
INTEGER, DIMENSION( its:ite ) :: &
KPBL
INTEGER :: &
I, &
IM, &
J, &
K, &
KM, &
KTEM, &
KTEP, &
KX, &
L, &
NTRAC
IM=ITE-ITS+1
KX=KTE-KTS+1
KTEM=KTE-1
KTEP=KTE+1
NTRAC=2
DELTIM=DT
IF (P_QI.ge.P_FIRST_SCALAR) NTRAC=3
DO J=jts,jte
DO i=its,ite
RRHOX=(R*T3D(I,KTS,J)*(1.+EP1*QV3D(I,KTS,J)))/PSFC(I,J)
CPM=CP*(1.+0.8*QV3D(i,kts,j))
FMTMP=GZ1OZ0(i,j)-PSIM(i,j)
PSK(i)=(PSFC(i,j)*.00001)**ROVCP
FM(i)=FMTMP
FH(i)=GZ1OZ0(i,j)-PSIH(i,j)
TSEA(i)=TSK(i,j)
QSS(i)=QV3D(i,kts,j) ! not used in moninq so set to qv3d for now
HEAT(i)=HFX(i,j)/CPM*RRHOX
EVAP(i)=QFX(i,j)*RRHOX
! Kwon FOR NEW SHALLOW CONVECTION
HEAT2D(i,j)=HFX(i,j)/CPM*RRHOX
EVAP2D(i,j)=QFX(i,j)*RRHOX
!
STRESS(i)=KARMAN*KARMAN*WSPD(i,j)*WSPD(i,j)/(FMTMP*FMTMP)
SPD1(i)=WSPD(i,j)
PRSI(i,kts)=PSFC(i,j)*.001
PHII(I,kts)=0.
RCL(i)=1.
RBSOIL(I)=BR(i,j)
ENDDO
DO k=kts,kte
DO i=its,ite
DV(I,K) = 0.
DU(I,K) = 0.
TAU(I,K) = 0.
U1(I,K) = U3D(i,k,j)
V1(I,K) = V3D(i,k,j)
T1(I,K) = T3D(i,k,j)
#ifdef NMM_CORE
THRATEN(I,K) = RTHRATEN(I,K,J)
#else
THRATEN(I,K) = 0.0
#endif
Q1(I,K,1) = QV3D(i,k,j)/(1.+QV3D(i,k,j))
Q1(I,K,2) = QC3D(i,k,j)/(1.+QC3D(i,k,j))
PRSL(I,K)=P3D(i,k,j)*.001
ENDDO
ENDDO
DO k=kts,kte
DO i=its,ite
PRSLK(I,K)=(PRSL(i,k)*.01)**ROVCP
ENDDO
ENDDO
DO k=kts+1,kte
km=k-1
DO i=its,ite
DEL(i,km)=PRSL(i,km)/ROVG*dz8w(i,km,j)/T3D(i,km,j)
PRSI(i,k)=PRSI(i,km)-DEL(i,km)
PHII(I,K)=(Z(i,k,j)-Z(i,kts,j))*G
PHIL(I,KM)=0.5*(Z(i,k,j)+Z(i,km,j)-2.*Z(i,kts,j))*G
ENDDO
ENDDO
DO i=its,ite
DEL(i,kte)=DEL(i,ktem)
PRSI(i,ktep)=PRSI(i,kte)-DEL(i,ktem)
PHII(I,KTEP)=PHII(I,KTE)+dz8w(i,kte,j)*G
PHIL(I,KTE)=PHII(I,KTE)-PHIL(I,KTEM)+PHII(I,KTE)
ENDDO
IF (P_QI.ge.P_FIRST_SCALAR) THEN
DO k=kts,kte
DO i=its,ite
Q1(I,K,3) = QI3D(i,k,j)/(1.+QI3D(i,k,j))
ENDDO
ENDDO
ENDIF
DO l=1,ntrac
DO k=kts,kte
DO i=its,ite
RTG(I,K,L) = 0.
ENDDO
ENDDO
ENDDO
!
! 2010 new gfs pbl
!
call moninq
(im,im,km,ntrac,dv,du,tau,rtg, &
& u1,v1,t1,q1,thraten, & !kwon
& psk,rbsoil,fm,fh,tsea,qss,heat,evap,stress,spd1,kpbl, &
& prsi,del,prsl,prslk,phii,phil,rcl,deltim, &
& dusfc,dvsfc,dtsfc,dqsfc,hpbl,hgamt,hgamq)
!============================================================================
! ADD IN DISSIPATIVE HEATING .... v*dv. This is Bob's doing
!============================================================================
#if (NMM_CORE==1)
IF(DISHEAT)THEN
DO k=kts,kte
DO i=its,ite
dishx(i,k)=u1(i,k)*du(i,k) + v1(i,k)*dv(i,k)
cpmikj=CP*(1.+0.8*QV3D(i,k,j))
dishx(i,k)=-dishx(i,k)/cpmikj
! IF(k==1)WRITE(0,*)'ADDITIONAL DISSIPATIVE HEATING',tau(i,k),dishx(i,k)
tau(i,k)=tau(i,k)+dishx(i,k)
ENDDO
ENDDO
ENDIF
#endif
!=============================================================================
DO k=kts,kte
DO i=its,ite
RVBLTEN(I,K,J)=DV(I,K)
RUBLTEN(I,K,J)=DU(I,K)
RTHBLTEN(I,K,J)=TAU(I,K)/PI3D(I,K,J)
RQVBLTEN(I,K,J)=RTG(I,K,1)/(1.-Q1(I,K,1))**2
RQCBLTEN(I,K,J)=RTG(I,K,2)/(1.-Q1(I,K,2))**2
ENDDO
ENDDO
IF (P_QI.ge.P_FIRST_SCALAR) THEN
DO k=kts,kte
DO i=its,ite
RQIBLTEN(I,K,J)=RTG(I,K,3)/(1.-Q1(I,K,3))**2
ENDDO
ENDDO
ENDIF
DO i=its,ite
UST(i,j)=SQRT(STRESS(i))
WSPD(i,j)=SQRT(U3D(I,KTS,J)*U3D(I,KTS,J)+ &
V3D(I,KTS,J)*V3D(I,KTS,J))+1.E-9
PBL(i,j)=HPBL(i)
!Kwon For new shallow convection
HPBL2D(i,j)=HPBL(i)
!
KPBL2D(i,j)=kpbl(i)
ENDDO
ENDDO
END SUBROUTINE BL_GFS2011
!===================================================================
SUBROUTINE gfs2011init(RUBLTEN,RVBLTEN,RTHBLTEN,RQVBLTEN, & 1
RQCBLTEN,RQIBLTEN,P_QI,P_FIRST_SCALAR, &
restart, &
allowed_to_read, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
!-------------------------------------------------------------------
IMPLICIT NONE
!-------------------------------------------------------------------
LOGICAL , INTENT(IN) :: allowed_to_read,restart
INTEGER , INTENT(IN) :: ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte
INTEGER , INTENT(IN) :: P_QI,P_FIRST_SCALAR
REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(OUT) :: &
RUBLTEN, &
RVBLTEN, &
RTHBLTEN, &
RQVBLTEN, &
RQCBLTEN, &
RQIBLTEN
INTEGER :: i, j, k, itf, jtf, ktf
jtf=min0(jte,jde-1)
ktf=min0(kte,kde-1)
itf=min0(ite,ide-1)
IF(.not.restart)THEN
DO j=jts,jtf
DO k=kts,ktf
DO i=its,itf
RUBLTEN(i,k,j)=0.
RVBLTEN(i,k,j)=0.
RTHBLTEN(i,k,j)=0.
RQVBLTEN(i,k,j)=0.
RQCBLTEN(i,k,j)=0.
ENDDO
ENDDO
ENDDO
ENDIF
IF (P_QI .ge. P_FIRST_SCALAR .and. .not.restart) THEN
DO j=jts,jtf
DO k=kts,ktf
DO i=its,itf
RQIBLTEN(i,k,j)=0.
ENDDO
ENDDO
ENDDO
ENDIF
IF (P_QI .ge. P_FIRST_SCALAR) THEN
DO j=jts,jtf
DO k=kts,ktf
DO i=its,itf
RQIBLTEN(i,k,j)=0.
ENDDO
ENDDO
ENDDO
ENDIF
END SUBROUTINE gfs2011init
! --------------------------------------------------------------
!======================================================== 2010 NEW GFS PBL
!FPP$ NOCONCUR R
!-----------------------------------------------------------------------
subroutine moninq(ix,im,km,ntrac,dv,du,tau,rtg, & 1,4
& uo,vo,t1,q1,thraten, & !kwon
& psk,rbsoil,fm,fh,tsea,qss,heat,evap,stress,spd1,kpbl, &
& prsi,del,prsl,prslk,phii,phil,rcs,deltim, &
& dusfc,dvsfc,dtsfc,dqsfc,hpbl,hgamt,hgamq) !kwon
! & dusfc,dvsfc,dtsfc,dqsfc,hpbl,hgamt,hgamq,dkt)
!
! use machine , only : kind_phys
! use funcphys , only : fpvs
! use physcons, grav => con_g, rd => con_rd, cp => con_cp &
! &, hvap => con_hvap, fv => con_fvirt
!
USE MODULE_GFS_MACHINE
, ONLY : kind_phys !kwon
! USE MODULE_GFS_FUNCPHYS, ONLY : fpvs !kwon
USE MODULE_GFS_PHYSCONS
, grav => con_g, rd => con_rd, & !kwon
& cp => con_cp, hvap => con_hvap, fv => con_fvirt !kwon
!
implicit none
!
! include 'constant.h'
!
!
! arguments
!
integer ix, im, km, ntrac, kpbl(im), kpblx(im)
!
real(kind=kind_phys) deltim
real(kind=kind_phys) dv(im,km), du(im,km), &
& tau(im,km), rtg(im,km,ntrac), &
& uo(ix,km), vo(ix,km), &
& t1(ix,km), q1(ix,km,ntrac), &
& swh(ix,km), hlw(ix,km), &
& xmu(im), &
& psk(im), rbsoil(im), &
! & cd(im), ch(im), &
& fm(im), fh(im), &
& tsea(im), qss(im), &
& spd1(im), &
! & dphi(im), spd1(im), &
& prsi(ix,km+1), del(ix,km), &
& prsl(ix,km), prslk(ix,km), &
& phii(ix,km+1), phil(ix,km), &
& rcs(im), dusfc(im), &
& dvsfc(im), dtsfc(im), &
& dqsfc(im), hpbl(im), hpblx(im), &
& hgamt(im), hgamq(im)
! &, hgamu(im), hgamv(im), hgams(im)
!
! locals
!
integer i,iprt,is,iun,k,kk,km1,kmpbl,latd,lond
integer lcld(im),icld(im),kcld(im),krad(im)
integer kemx(im)
!
! real(kind=kind_phys) betaq(im), betat(im), betaw(im),
real(kind=kind_phys) evap(im), heat(im), phih(im), &
& phim(im), rbdn(im), rbup(im), &
& stress(im),beta(im), &
& ustar(im), wscale(im), thermal(im), &
& wstar3(im)
!
real(kind=kind_phys) thvx(im,km), thlvx(im,km),thraten(im,km), & !Kwon
& qlx(im,km), thetae(im,km), &
& qtx(im,km), bf(im,km-1), &
& u1(im,km), v1(im,km), radx(im,km-1), &
& govrth(im), hrad(im), cteit(im), &
! & hradm(im), radmin(im), vrad(im), &
& radmin(im), vrad(im), &
& zd(im), zdd(im), thlvx1(im)
!
real(kind=kind_phys) rdzt(im,km-1),dktx(im,km-1),dkux(im,km-1), &
& zi(im,km+1), zl(im,km), xkzo(im,km-1), &
& dku(im,km-1), dkt(im,km-1),xkzmo(im,km-1), &
& cku(im,km-1), ckt(im,km-1), &
& al(im,km-1), ad(im,km), &
& au(im,km-1), a1(im,km), &
& a2(im,km*ntrac), theta(im,km)
!
! real(kind=kind_phys) prinv(im), hpbl01(im), rent(im)
real(kind=kind_phys) prinv(im), rent(im)
!
logical pblflg(im), sfcflg(im), scuflg(im), flg(im)
!
real(kind=kind_phys) aphi16, aphi5, bvf2, wfac, &
& cfac, conq, cont, conw, &
& dk, dkmax, dkmin, &
& dq1, dsdz2, dsdzq, dsdzt, &
& dsdzu, dsdzv, sfac, &
& dsig, dt, dthe1, dtodsd, &
& dtodsu, dw2, dw2min, g, &
& gamcrq, gamcrt, gocp, gor, gravi, &
& hol, hol1, pfac, prmax, prmin, &
& prnum, qmin, tdzmin, qtend, rbcr, &
& rbint, rdt, rdz, qlmin, &
! & rbint, rdt, rdz, rdzt1, &
& ri, rimin, rl2, rlam, rlamun, &
& rone, rzero, sfcfrac,sflux, &
& shr2, spdk2, sri, &
& tem, ti, ttend, tvd, &
& tvu, utend, vk, vk2, &
& vtend, zfac, vpert, cpert, &
& rentf1, rentf2, radfac, &
& zfmin, zk, tem1, tem2, &
& xkzm, xkzmu, xkzminv, &
& ptem, ptem1, ptem2
!
real(kind=kind_phys) zstblmax,h1, h2, qlcr, actei, &
& cldtime, u01, v01, delu, delv
!
parameter(gravi=1.0/grav)
parameter(g=grav)
parameter(gor=g/rd,gocp=g/cp)
parameter(cont=1000.*cp/g,conq=1000.*hvap/g,conw=1000./g)
parameter(rlam=30.0,vk=0.4,vk2=vk*vk)
parameter(prmin=0.25,prmax=4.)
parameter(dw2min=0.0001,dkmin=0.0,dkmax=1000.,rimin=-100.)
parameter(rbcr=0.25,wfac=7.0,cfac=6.5,pfac=2.0,sfcfrac=0.1)
parameter(qmin=1.e-8,xkzm=1.0,zfmin=1.e-8,aphi5=5.,aphi16=16.)
parameter(tdzmin=1.e-3,qlmin=1.e-12,cpert=0.25,sfac=5.4)
parameter(h1=0.33333333,h2=0.66666667)
parameter(cldtime=500.,xkzmu=3.0,xkzminv=0.3)
! parameter(gamcrt=3.,gamcrq=2.e-3,rlamun=150.0)
parameter(gamcrt=3.,gamcrq=0.,rlamun=150.0)
parameter(rentf1=0.2,rentf2=1.0,radfac=0.85)
parameter(iun=84)
!
! parameter (zstblmax = 2500., qlcr=1.0e-5)
! parameter (zstblmax = 2500., qlcr=3.0e-5)
! parameter (zstblmax = 2500., qlcr=3.5e-5)
! parameter (zstblmax = 2500., qlcr=1.0e-4)
parameter (zstblmax = 2500., qlcr=3.5e-5)
! parameter (actei = 0.23)
parameter (actei = 0.7)
!
!-----------------------------------------------------------------------
!
601 format(1x,' moninp lat lon step hour ',3i6,f6.1)
602 format(1x,' k',' z',' t',' th', &
& ' tvh',' q',' u',' v', &
& ' sp')
603 format(1x,i5,8f9.1)
604 format(1x,' sfc',9x,f9.1,18x,f9.1)
605 format(1x,' k zl spd2 thekv the1v' &
& ,' thermal rbup')
606 format(1x,i5,6f8.2)
607 format(1x,' kpbl hpbl fm fh hgamt', &
& ' hgamq ws ustar cd ch')
608 format(1x,i5,9f8.2)
609 format(1x,' k pr dkt dku ',i5,3f8.2)
610 format(1x,' k pr dkt dku ',i5,3f8.2,' l2 ri t2', &
& ' sr2 ',2f8.2,2e10.2)
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
! compute preliminary variables
!
if (ix .lt. im) stop
!
! iprt = 0
! if(iprt.eq.1) then
!ccc latd = 0
! lond = 0
! else
!ccc latd = 0
! lond = 0
! endif
!c
dt = 2. * deltim
rdt = 1. / dt
km1 = km - 1
kmpbl = km / 2
!
do k=1,km
do i=1,im
zi(i,k) = phii(i,k) * gravi
zl(i,k) = phil(i,k) * gravi
u1(i,k) = uo(i,k) * rcs(i)
v1(i,k) = vo(i,k) * rcs(i)
enddo
enddo
do i=1,im
zi(i,km+1) = phii(i,km+1) * gravi
enddo
!c
do k = 1,km1
do i=1,im
rdzt(i,k) = 1.0 / (zl(i,k+1) - zl(i,k))
enddo
enddo
!c
!c vertical background diffusivity
!c
do k = 1,km1
do i=1,im
tem1 = 1.0 - prsi(i,k+1) / prsi(i,1)
tem1 = tem1 * tem1 * 10.0
xkzo(i,k) = xkzm * min(real(1.0,kind=kind_phys), exp(-tem1))
enddo
enddo
!c
!c vertical background diffusivity for momentum
!c
do k = 1,km1
do i=1,im
ptem = prsi(i,k+1) / prsi(i,1)
if(ptem.ge.0.2) then
xkzmo(i,k) = xkzmu
ptem1 = prsi(i,k+1)
else
tem1 = 1.0 - prsi(i,k+1) / ptem1
tem1 = tem1 * tem1 * 5.0
xkzmo(i,k) = xkzmu * min(real(1.0,kind=kind_phys), exp(-tem1))
endif
enddo
enddo
!c
!c diffusivity in the inversion layer is set to be xkzminv (m^2/s)
!c
do k = 1,kmpbl
do i=1,im
! if(zi(i,k+1).gt.200..and.zi(i,k+1).lt.zstblmax) then
if(zi(i,k+1).gt.250.) then
tem1 = (t1(i,k+1)-t1(i,k)) * rdzt(i,k)
if(tem1 .gt. 1.e-5) then
xkzo(i,k) = min(xkzo(i,k),xkzminv)
endif
endif
enddo
enddo
!c
do i = 1,im
dusfc(i) = 0.
dvsfc(i) = 0.
dtsfc(i) = 0.
dqsfc(i) = 0.
hgamt(i) = 0.
hgamq(i) = 0.
! hgamu(i) = 0.
! hgamv(i) = 0.
! hgams(i) = 0.
wscale(i)= 0.
kpbl(i) = 1
kpblx(i) = 1
hpbl(i) = zi(i,1)
hpblx(i) = zi(i,1)
pblflg(i)= .true.
sfcflg(i)= .true.
if(rbsoil(i).gt.0.0) sfcflg(i) = .false.
scuflg(i)= .true.
if(scuflg(i)) then
radmin(i)= 0.
cteit(i) = 0.
rent(i) = rentf1
hrad(i) = zi(i,1)
! hradm(i) = zi(i,1)
krad(i) = 1
icld(i) = 0
lcld(i) = km1
kcld(i) = km1
zd(i) = 0.
endif
enddo
!
do k = 1,km
do i = 1,im
theta(i,k) = t1(i,k) * psk(i) / prslk(i,k)
qlx(i,k) = max(q1(i,k,ntrac),qlmin)
qtx(i,k) = max(q1(i,k,1),qmin)+qlx(i,k)
ptem = qlx(i,k)
ptem1 = hvap*max(q1(i,k,1),qmin)/(cp*t1(i,k))
thetae(i,k)= theta(i,k)*(1.+ptem1)
thvx(i,k) = theta(i,k)*(1.+fv*max(q1(i,k,1),qmin)-ptem)
ptem2 = theta(i,k)-(hvap/cp)*ptem
thlvx(i,k) = ptem2*(1.+fv*qtx(i,k))
enddo
enddo
do k = 1,km1
do i = 1,im
dku(i,k) = 0.
dkt(i,k) = 0.
dktx(i,k) = 0.
dkux(i,k) = 0.
cku(i,k) = 0.
ckt(i,k) = 0.
tem = zi(i,k+1)-zi(i,k)
! radx(i,k) = tem*(swh(i,k)*xmu(i)+hlw(i,k))
radx(i,k) = tem*thraten(i,k) !Kwon
enddo
enddo
!c
do i=1,im
flg(i) = scuflg(i)
enddo
do k = 1, km1
do i=1,im
if(flg(i).and.zl(i,k).ge.zstblmax) then
lcld(i)=k
flg(i)=.false.
endif
enddo
enddo
!c
!c compute buoyancy flux
!c
do k = 1, km1
do i = 1, im
bf(i,k) = (thvx(i,k+1)-thvx(i,k))*rdzt(i,k)
enddo
enddo
!c
do i = 1,im
govrth(i) = g/theta(i,1)
enddo
!c
do i=1,im
beta(i) = dt / (zi(i,2)-zi(i,1))
enddo
!c
do i=1,im
ustar(i) = sqrt(stress(i))
thermal(i) = thvx(i,1)
enddo
!c
!c compute the first guess pbl height
!c
do i=1,im
flg(i) = .false.
rbup(i) = rbsoil(i)
enddo
do k = 2, kmpbl
do i = 1, im
if(.not.flg(i)) then
rbdn(i) = rbup(i)
spdk2 = max((u1(i,k)**2+v1(i,k)**2),real(1.0,kind=kind_phys))
rbup(i) = (thvx(i,k)-thermal(i))* &
& (g*zl(i,k)/thvx(i,1))/spdk2
kpbl(i) = k
flg(i) = rbup(i).gt.rbcr
endif
enddo
enddo
do i = 1,im
k = kpbl(i)
if(rbdn(i).ge.rbcr) then
rbint = 0.
elseif(rbup(i).le.rbcr) then
rbint = 1.
else
rbint = (rbcr-rbdn(i))/(rbup(i)-rbdn(i))
endif
hpbl(i) = zl(i,k-1) + rbint*(zl(i,k)-zl(i,k-1))
if(hpbl(i).lt.zi(i,kpbl(i))) kpbl(i) = kpbl(i) - 1
hpblx(i) = hpbl(i)
kpblx(i) = kpbl(i)
enddo
!c
!c compute similarity parameters
!c
do i=1,im
sflux = heat(i) + evap(i)*fv*theta(i,1)
if(sfcflg(i).and.sflux.gt.0.) then
hol = max(rbsoil(i)*fm(i)*fm(i)/fh(i),rimin)
hol = min(hol,-zfmin)
!c
hol1 = hol*hpbl(i)/zl(i,1)*sfcfrac
! phim(i) = (1.-aphi16*hol1)**(-1./4.)
! phih(i) = (1.-aphi16*hol1)**(-1./2.)
tem = 1.0 / (1. - aphi16*hol1)
phih(i) = sqrt(tem)
phim(i) = sqrt(phih(i))
wstar3(i) = govrth(i)*sflux*hpbl(i)
tem1 = ustar(i)**3.
wscale(i) = (tem1+wfac*vk*wstar3(i)*sfcfrac)**h1
! wscale(i) = ustar(i)/phim(i)
wscale(i) = min(wscale(i),ustar(i)*aphi16)
wscale(i) = max(wscale(i),ustar(i)/aphi5)
else
pblflg(i)=.false.
endif
enddo
!c
!c compute counter-gradient mixing term for heat and moisture
!c
do i = 1,im
if(pblflg(i)) then
hgamt(i) = min(cfac*heat(i)/wscale(i),gamcrt)
hgamq(i) = min(cfac*evap(i)/wscale(i),gamcrq)
vpert = hgamt(i) + hgamq(i)*fv*theta(i,1)
vpert = min(vpert,gamcrt)
thermal(i)= thermal(i)+max(vpert,real(0.0,kind=kind_phys))
hgamt(i) = max(hgamt(i),real(0.0,kind=kind_phys))
hgamq(i) = max(hgamq(i),real(0.0,kind=kind_phys))
endif
enddo
!c
!c compute large-scale mixing term for momentum
!c
! do i = 1,im
! flg(i) = pblflg(i)
! kemx(i)= 1
! hpbl01(i)= sfcfrac*hpbl(i)
! enddo
! do k = 1, kmpbl
! do i = 1, im
! if(flg(i).and.zl(i,k).gt.hpbl01(i)) then
! kemx(i) = k
! flg(i) = .false.
! endif
! enddo
! enddo
! do i = 1, im
! if(pblflg(i)) then
! kk = kpbl(i)
! if(kemx(i).le.1) then
! ptem = u1(i,1)/zl(i,1)
! ptem1 = v1(i,1)/zl(i,1)
! u01 = ptem*hpbl01(i)
! v01 = ptem1*hpbl01(i)
! else
! tem = zl(i,kemx(i))-zl(i,kemx(i)-1)
! ptem = (u1(i,kemx(i))-u1(i,kemx(i)-1))/tem
! ptem1 = (v1(i,kemx(i))-v1(i,kemx(i)-1))/tem
! tem1 = hpbl01(i)-zl(i,kemx(i)-1)
! u01 = u1(i,kemx(i)-1)+ptem*tem1
! v01 = v1(i,kemx(i)-1)+ptem1*tem1
! endif
! if(kk.gt.kemx(i)) then
! delu = u1(i,kk)-u01
! delv = v1(i,kk)-v01
! tem2 = sqrt(delu**2+delv**2)
! tem2 = max(tem2,0.1)
! ptem2 = -sfac*ustar(i)*ustar(i)*wstar3(i)
! 1 /(wscale(i)**4.)
! hgamu(i) = ptem2*delu/tem2
! hgamv(i) = ptem2*delv/tem2
! tem = sqrt(u1(i,kk)**2+v1(i,kk)**2)
! tem1 = sqrt(u01**2+v01**2)
! ptem = tem - tem1
! if(ptem.gt.0.) then
! hgams(i)=-sfac*vk*sfcfrac*wstar3(i)/(wscale(i)**3.)
! else
! hgams(i)=sfac*vk*sfcfrac*wstar3(i)/(wscale(i)**3.)
! endif
! else
! hgams(i) = 0.
! endif
! endif
! enddo
!c
!c enhance the pbl height by considering the thermal excess
!c
do i=1,im
flg(i) = .true.
if(pblflg(i)) then
flg(i) = .false.
rbup(i) = rbsoil(i)
endif
enddo
do k = 2, kmpbl
do i = 1, im
if(.not.flg(i)) then
rbdn(i) = rbup(i)
spdk2 = max((u1(i,k)**2+v1(i,k)**2),real(1.0,kind=kind_phys))
rbup(i) = (thvx(i,k)-thermal(i))* &
& (g*zl(i,k)/thvx(i,1))/spdk2
kpbl(i) = k
flg(i) = rbup(i).gt.rbcr
endif
enddo
enddo
do i = 1,im
if(pblflg(i)) then
k = kpbl(i)
if(rbdn(i).ge.rbcr) then
rbint = 0.
elseif(rbup(i).le.rbcr) then
rbint = 1.
else
rbint = (rbcr-rbdn(i))/(rbup(i)-rbdn(i))
endif
hpbl(i) = zl(i,k-1) + rbint*(zl(i,k)-zl(i,k-1))
if(hpbl(i).lt.zi(i,kpbl(i))) kpbl(i) = kpbl(i) - 1
if(kpbl(i).le.1) pblflg(i) = .false.
endif
enddo
!c
!c look for stratocumulus
!c
do i = 1, im
flg(i)=scuflg(i)
enddo
do k = kmpbl,1,-1
do i = 1, im
if(flg(i).and.k.le.lcld(i)) then
if(qlx(i,k).ge.qlcr) then
kcld(i)=k
flg(i)=.false.
endif
endif
enddo
enddo
do i = 1, im
if(scuflg(i).and.kcld(i).eq.km1) scuflg(i)=.false.
enddo
!c
do i = 1, im
flg(i)=scuflg(i)
enddo
do k = kmpbl,1,-1
do i = 1, im
if(flg(i).and.k.le.kcld(i)) then
if(qlx(i,k).ge.qlcr) then
if(radx(i,k).lt.radmin(i)) then
radmin(i)=radx(i,k)
krad(i)=k
endif
else
flg(i)=.false.
endif
endif
enddo
enddo
do i = 1, im
if(scuflg(i).and.krad(i).le.1) scuflg(i)=.false.
if(scuflg(i).and.radmin(i).ge.0.) scuflg(i)=.false.
enddo
!c
do i = 1, im
flg(i)=scuflg(i)
enddo
do k = kmpbl,2,-1
do i = 1, im
if(flg(i).and.k.le.krad(i)) then
if(qlx(i,k).ge.qlcr) then
icld(i)=icld(i)+1
else
flg(i)=.false.
endif
endif
enddo
enddo
do i = 1, im
if(scuflg(i).and.icld(i).lt.1) scuflg(i)=.false.
enddo
!c
do i = 1, im
if(scuflg(i)) then
hrad(i) = zi(i,krad(i)+1)
! hradm(i)= zl(i,krad(i))
endif
enddo
!c
do i = 1, im
if(scuflg(i).and.hrad(i).lt.zi(i,2)) scuflg(i)=.false.
enddo
!c
do i = 1, im
if(scuflg(i)) then
k = krad(i)
tem = zi(i,k+1)-zi(i,k)
tem1 = cldtime*radmin(i)/tem
thlvx1(i) = thlvx(i,k)+tem1
! if(thlvx1(i).gt.thlvx(i,k-1)) scuflg(i)=.false.
endif
enddo
!c
do i = 1, im
flg(i)=scuflg(i)
enddo
do k = kmpbl,1,-1
do i = 1, im
if(flg(i).and.k.le.krad(i))then
if(thlvx1(i).le.thlvx(i,k))then
tem=zi(i,k+1)-zi(i,k)
zd(i)=zd(i)+tem
else
flg(i)=.false.
endif
endif
enddo
enddo
do i = 1, im
if(scuflg(i))then
kk = max(1, krad(i)+1-icld(i))
zdd(i) = hrad(i)-zi(i,kk)
endif
enddo
do i = 1, im
if(scuflg(i))then
zd(i) = max(zd(i),zdd(i))
zd(i) = min(zd(i),hrad(i))
tem = govrth(i)*zd(i)*(-radmin(i))
vrad(i)= tem**h1
endif
enddo
!c
!c compute inverse Prandtl number
!c
do i = 1, im
if(pblflg(i)) then
tem = phih(i)/phim(i)+cfac*vk*sfcfrac
! prinv(i) = (1.0-hgams(i))/tem
prinv(i) = 1.0 / tem
prinv(i) = min(prinv(i),prmax)
prinv(i) = max(prinv(i),prmin)
endif
enddo
!c
!c compute diffusion coefficients below pbl
!c
do k = 1, kmpbl
do i=1,im
if(pblflg(i).and.k.lt.kpbl(i)) then
! zfac = max((1.-(zi(i,k+1)-zl(i,1))/
! 1 (hpbl(i)-zl(i,1))), zfmin)
zfac = max((1.-zi(i,k+1)/hpbl(i)), zfmin)
tem = wscale(i)*vk*zi(i,k+1)*zfac**pfac
! dku(i,k) = xkzo(i,k)+wscale(i)*vk*zi(i,k+1)
! 1 *zfac**pfac
dku(i,k) = xkzmo(i,k) + tem
dkt(i,k) = xkzo(i,k) + tem * prinv(i)
dku(i,k) = min(dku(i,k),dkmax)
! dku(i,k) = max(dku(i,k),xkzmo(i,k))
dkt(i,k) = min(dkt(i,k),dkmax)
! dkt(i,k) = max(dkt(i,k),xkzo(i,k))
dktx(i,k)= dkt(i,k)
dkux(i,k)= dku(i,k)
endif
enddo
enddo
!c
!c compute diffusion coefficients based on local scheme
!c
do i = 1, im
if(.not.pblflg(i)) then
kpbl(i) = 1
endif
enddo
do k = 1, km1
do i=1,im
if(k.ge.kpbl(i)) then
rdz = rdzt(i,k)
ti = 2./(t1(i,k)+t1(i,k+1))
dw2 = (u1(i,k)-u1(i,k+1))**2 &
& +(v1(i,k)-v1(i,k+1))**2
shr2 = max(dw2,dw2min)*rdz*rdz
bvf2 = g*bf(i,k)*ti
ri = max(bvf2/shr2,rimin)
zk = vk*zi(i,k+1)
if(ri.lt.0.) then ! unstable regime
rl2 = zk*rlamun/(rlamun+zk)
dk = rl2*rl2*sqrt(shr2)
sri = sqrt(-ri)
dku(i,k) = xkzmo(i,k) + dk*(1+8.*(-ri)/(1+1.746*sri))
dkt(i,k) = xkzo(i,k) + dk*(1+8.*(-ri)/(1+1.286*sri))
else ! stable regime
rl2 = zk*rlam/(rlam+zk)
!! tem = rlam * sqrt(0.01*prsi(i,k))
!! rl2 = zk*tem/(tem+zk)
dk = rl2*rl2*sqrt(shr2)
tem1 = dk/(1+5.*ri)**2
if(k.ge.kpblx(i)) then
prnum = 1.0 + 2.1*ri
prnum = min(prnum,prmax)
else
prnum = 1.0
endif
dkt(i,k) = xkzo(i,k) + tem1
dku(i,k) = xkzmo(i,k) + tem1 * prnum
endif
!c
dku(i,k) = min(dku(i,k),dkmax)
! dku(i,k) = max(dku(i,k),xkzmo(i,k))
dkt(i,k) = min(dkt(i,k),dkmax)
! dkt(i,k) = max(dkt(i,k),xkzo(i,k))
!c
endif
!c
enddo
enddo
!c
!c compute diffusion coefficients for cloud-top driven diffusion
!c if the condition for cloud-top instability is met,
!c increase entrainment flux at cloud top
!c
do i = 1, im
if(scuflg(i)) then
k = krad(i)
tem = thetae(i,k) - thetae(i,k+1)
tem1 = qtx(i,k) - qtx(i,k+1)
if (tem.gt.0..and.tem1.gt.0.) then
cteit(i)= cp*tem/(hvap*tem1)
if(cteit(i).gt.actei) rent(i) = rentf2
endif
endif
enddo
do i = 1, im
if(scuflg(i)) then
k = krad(i)
tem1 = max(bf(i,k),tdzmin)
ckt(i,k) = -rent(i)*radmin(i)/tem1
cku(i,k) = ckt(i,k)
endif
enddo
!c
do k = 1, kmpbl
do i=1,im
if(scuflg(i).and.k.lt.krad(i)) then
tem1=hrad(i)-zd(i)
tem2=zi(i,k+1)-tem1
if(tem2.gt.0.) then
ptem= tem2/zd(i)
if(ptem.ge.1.) ptem= 1.
ptem= tem2*ptem*sqrt(1.-ptem)
ckt(i,k) = radfac*vk*vrad(i)*ptem
cku(i,k) = 0.75*ckt(i,k)
ckt(i,k) = max(ckt(i,k),dkmin)
ckt(i,k) = min(ckt(i,k),dkmax)
cku(i,k) = max(cku(i,k),dkmin)
cku(i,k) = min(cku(i,k),dkmax)
endif
endif
enddo
enddo
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
do k = 1, kmpbl
do i=1,im
if(scuflg(i)) then
dkt(i,k) = dkt(i,k)+ckt(i,k)
dku(i,k) = dku(i,k)+cku(i,k)
dkt(i,k) = min(dkt(i,k),dkmax)
dku(i,k) = min(dku(i,k),dkmax)
endif
enddo
enddo
!c
!c compute tridiagonal matrix elements for heat and moisture
!c
do i=1,im
ad(i,1) = 1.
a1(i,1) = t1(i,1) + beta(i) * heat(i)
a2(i,1) = q1(i,1,1) + beta(i) * evap(i)
enddo
if(ntrac.ge.2) then
do k = 2, ntrac
is = (k-1) * km
do i = 1, im
a2(i,1+is) = q1(i,1,k)
enddo
enddo
endif
!c
do k = 1,km1
do i = 1,im
dtodsd = dt/del(i,k)
dtodsu = dt/del(i,k+1)
dsig = prsl(i,k)-prsl(i,k+1)
! rdz = rdzt(i,k)*2./(t1(i,k)+t1(i,k+1))
rdz = rdzt(i,k)
tem1 = dsig * dkt(i,k) * rdz
if(pblflg(i).and.k.lt.kpbl(i)) then
! dsdzt = dsig*dkt(i,k)*rdz*(gocp-hgamt(i)/hpbl(i))
! dsdzq = dsig*dkt(i,k)*rdz*(-hgamq(i)/hpbl(i))
ptem1 = dsig * dktx(i,k) * rdz
tem = 1.0 / hpbl(i)
dsdzt = tem1 * gocp - ptem1*hgamt(i)*tem
dsdzq = ptem1 * (-hgamq(i)*tem)
a2(i,k) = a2(i,k)+dtodsd*dsdzq
a2(i,k+1) = q1(i,k+1,1)-dtodsu*dsdzq
else
! dsdzt = dsig*dkt(i,k)*rdz*(gocp)
dsdzt = tem1 * gocp
a2(i,k+1) = q1(i,k+1,1)
endif
! dsdz2 = dsig*dkt(i,k)*rdz*rdz
dsdz2 = tem1 * rdz
au(i,k) = -dtodsd*dsdz2
al(i,k) = -dtodsu*dsdz2
ad(i,k) = ad(i,k)-au(i,k)
ad(i,k+1) = 1.-al(i,k)
a1(i,k) = a1(i,k)+dtodsd*dsdzt
a1(i,k+1) = t1(i,k+1)-dtodsu*dsdzt
enddo
enddo
if(ntrac.ge.2) then
do kk = 2, ntrac
is = (kk-1) * km
do k = 1, km1
do i = 1, im
a2(i,k+1+is) = q1(i,k+1,kk)
enddo
enddo
enddo
endif
!c
!c solve tridiagonal problem for heat and moisture
!c
call tridin
(im,km,ntrac,al,ad,au,a1,a2,au,a1,a2)
!c
!c recover tendencies of heat and moisture
!c
do k = 1,km
do i = 1,im
ttend = (a1(i,k)-t1(i,k))*rdt
qtend = (a2(i,k)-q1(i,k,1))*rdt
tau(i,k) = tau(i,k)+ttend
rtg(i,k,1) = rtg(i,k,1)+qtend
dtsfc(i) = dtsfc(i)+cont*del(i,k)*ttend
dqsfc(i) = dqsfc(i)+conq*del(i,k)*qtend
enddo
enddo
if(ntrac.ge.2) then
do kk = 2, ntrac
is = (kk-1) * km
do k = 1, km
do i = 1, im
qtend = (a2(i,k+is)-q1(i,k,kk))*rdt
rtg(i,k,kk) = rtg(i,k,kk)+qtend
enddo
enddo
enddo
endif
!c
!c compute tridiagonal matrix elements for momentum
!c
do i=1,im
ad(i,1) = 1.0 + beta(i) * stress(i) / spd1(i)
a1(i,1) = u1(i,1)
a2(i,1) = v1(i,1)
enddo
!c
do k = 1,km1
do i=1,im
dtodsd = dt/del(i,k)
dtodsu = dt/del(i,k+1)
dsig = prsl(i,k)-prsl(i,k+1)
rdz = rdzt(i,k)
tem1 = dsig*dku(i,k)*rdz
! if(pblflg(i).and.k.lt.kpbl(i))then
! ptem1 = dsig*dkux(i,k)*rdz
! dsdzu = ptem1*(-hgamu(i)/hpbl(i))
! dsdzv = ptem1*(-hgamv(i)/hpbl(i))
! a1(i,k) = a1(i,k)+dtodsd*dsdzu
! a1(i,k+1) = u1(i,k+1)-dtodsu*dsdzu
! a2(i,k) = a2(i,k)+dtodsd*dsdzv
! a2(i,k+1) = v1(i,k+1)-dtodsu*dsdzv
! else
a1(i,k+1) = u1(i,k+1)
a2(i,k+1) = v1(i,k+1)
! endif
! dsdz2 = dsig*dku(i,k)*rdz*rdz
dsdz2 = tem1*rdz
au(i,k) = -dtodsd*dsdz2
al(i,k) = -dtodsu*dsdz2
ad(i,k) = ad(i,k)-au(i,k)
ad(i,k+1) = 1.-al(i,k)
enddo
enddo
!c
!c solve tridiagonal problem for momentum
!c
call tridi2
(im,km,al,ad,au,a1,a2,au,a1,a2)
!c
!c recover tendencies of momentum
!c
do k = 1,km
do i = 1,im
ptem = 1./rcs(i)
utend = (a1(i,k)-u1(i,k))*rdt
vtend = (a2(i,k)-v1(i,k))*rdt
du(i,k) = du(i,k)+utend*ptem
dv(i,k) = dv(i,k)+vtend*ptem
dusfc(i) = dusfc(i)+conw*del(i,k)*utend
dvsfc(i) = dvsfc(i)+conw*del(i,k)*vtend
enddo
enddo
!c!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!c pbl height for diagnostic purpose
!c
do i = 1, im
hpbl(i) = hpblx(i)
kpbl(i) = kpblx(i)
enddo
!c
!c!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
return
end subroutine moninq
!FPP$ NOCONCUR R
!-----------------------------------------------------------------------
SUBROUTINE TRIDI2(L,N,CL,CM,CU,R1,R2,AU,A1,A2) 5,2
!sela %INCLUDE DBTRIDI2;
!
USE MODULE_GFS_MACHINE
, ONLY : kind_phys
implicit none
integer k,n,l,i
real(kind=kind_phys) fk
!
real(kind=kind_phys) CL(L,2:N),CM(L,N),CU(L,N-1),R1(L,N),R2(L,N), &
& AU(L,N-1),A1(L,N),A2(L,N)
!-----------------------------------------------------------------------
DO I=1,L
FK = 1./CM(I,1)
AU(I,1) = FK*CU(I,1)
A1(I,1) = FK*R1(I,1)
A2(I,1) = FK*R2(I,1)
ENDDO
DO K=2,N-1
DO I=1,L
FK = 1./(CM(I,K)-CL(I,K)*AU(I,K-1))
AU(I,K) = FK*CU(I,K)
A1(I,K) = FK*(R1(I,K)-CL(I,K)*A1(I,K-1))
A2(I,K) = FK*(R2(I,K)-CL(I,K)*A2(I,K-1))
ENDDO
ENDDO
DO I=1,L
FK = 1./(CM(I,N)-CL(I,N)*AU(I,N-1))
A1(I,N) = FK*(R1(I,N)-CL(I,N)*A1(I,N-1))
A2(I,N) = FK*(R2(I,N)-CL(I,N)*A2(I,N-1))
ENDDO
DO K=N-1,1,-1
DO I=1,L
A1(I,K) = A1(I,K)-AU(I,K)*A1(I,K+1)
A2(I,K) = A2(I,K)-AU(I,K)*A2(I,K+1)
ENDDO
ENDDO
!-----------------------------------------------------------------------
RETURN
END SUBROUTINE TRIDI2
!FPP$ NOCONCUR R
!-----------------------------------------------------------------------
SUBROUTINE TRIDIN(L,N,nt,CL,CM,CU,R1,R2,AU,A1,A2) 2,2
!sela %INCLUDE DBTRIDI2;
!
USE MODULE_GFS_MACHINE
, ONLY : kind_phys
implicit none
integer is,k,kk,n,nt,l,i
real(kind=kind_phys) fk(L)
!
real(kind=kind_phys) CL(L,2:N), CM(L,N), CU(L,N-1), &
& R1(L,N), R2(L,N*nt), &
& AU(L,N-1), A1(L,N), A2(L,N*nt), &
& FKK(L,2:N-1)
!-----------------------------------------------------------------------
DO I=1,L
FK(I) = 1./CM(I,1)
AU(I,1) = FK(I)*CU(I,1)
A1(I,1) = FK(I)*R1(I,1)
ENDDO
do k = 1, nt
is = (k-1) * n
do i = 1, l
a2(i,1+is) = fk(I) * r2(i,1+is)
enddo
enddo
DO K=2,N-1
DO I=1,L
FKK(I,K) = 1./(CM(I,K)-CL(I,K)*AU(I,K-1))
AU(I,K) = FKK(I,K)*CU(I,K)
A1(I,K) = FKK(I,K)*(R1(I,K)-CL(I,K)*A1(I,K-1))
ENDDO
ENDDO
do kk = 1, nt
is = (kk-1) * n
DO K=2,N-1
DO I=1,L
A2(I,K+is) = FKK(I,K)*(R2(I,K+is)-CL(I,K)*A2(I,K+is-1))
ENDDO
ENDDO
ENDDO
DO I=1,L
FK(I) = 1./(CM(I,N)-CL(I,N)*AU(I,N-1))
A1(I,N) = FK(I)*(R1(I,N)-CL(I,N)*A1(I,N-1))
ENDDO
do k = 1, nt
is = (k-1) * n
do i = 1, l
A2(I,N+is) = FK(I)*(R2(I,N+is)-CL(I,N)*A2(I,N+is-1))
enddo
enddo
DO K=N-1,1,-1
DO I=1,L
A1(I,K) = A1(I,K) - AU(I,K)*A1(I,K+1)
ENDDO
ENDDO
do kk = 1, nt
is = (kk-1) * n
DO K=n-1,1,-1
DO I=1,L
A2(I,K+is) = A2(I,K+is) - AU(I,K)*A2(I,K+is+1)
ENDDO
ENDDO
ENDDO
!-----------------------------------------------------------------------
RETURN
END SUBROUTINE TRIDIN
SUBROUTINE TRIDIT(L,N,nt,CL,CM,CU,RT,AU,AT) 1,2
!sela %INCLUDE DBTRIDI2;
!
USE MODULE_GFS_MACHINE
, ONLY : kind_phys
implicit none
integer is,k,kk,n,nt,l,i
real(kind=kind_phys) fk(L)
!
real(kind=kind_phys) CL(L,2:N), CM(L,N), CU(L,N-1), &
& RT(L,N*nt), &
& AU(L,N-1), AT(L,N*nt), &
& FKK(L,2:N-1)
!-----------------------------------------------------------------------
DO I=1,L
FK(I) = 1./CM(I,1)
AU(I,1) = FK(I)*CU(I,1)
ENDDO
do k = 1, nt
is = (k-1) * n
do i = 1, l
at(i,1+is) = fk(I) * rt(i,1+is)
enddo
enddo
DO K=2,N-1
DO I=1,L
FKK(I,K) = 1./(CM(I,K)-CL(I,K)*AU(I,K-1))
AU(I,K) = FKK(I,K)*CU(I,K)
ENDDO
ENDDO
do kk = 1, nt
is = (kk-1) * n
DO K=2,N-1
DO I=1,L
AT(I,K+is) = FKK(I,K)*(RT(I,K+is)-CL(I,K)*AT(I,K+is-1))
ENDDO
ENDDO
ENDDO
DO I=1,L
FK(I) = 1./(CM(I,N)-CL(I,N)*AU(I,N-1))
ENDDO
do k = 1, nt
is = (k-1) * n
do i = 1, l
AT(I,N+is) = FK(I)*(RT(I,N+is)-CL(I,N)*AT(I,N+is-1))
enddo
enddo
do kk = 1, nt
is = (kk-1) * n
DO K=n-1,1,-1
DO I=1,L
AT(I,K+is) = AT(I,K+is) - AU(I,K)*AT(I,K+is+1)
ENDDO
ENDDO
ENDDO
!-----------------------------------------------------------------------
RETURN
END SUBROUTINE TRIDIT
!-----------------------------------------------------------------------
END MODULE module_bl_gfs2011