!wrf:model_layer:physics ! ! ! ! module module_bl_temf 2 contains ! !------------------------------------------------------------------- ! subroutine temfpbl(u3d,v3d,th3d,t3d,qv3d,qc3d,qi3d,p3d,p3di,pi3d,rho, & 1,1 rublten,rvblten,rthblten, & rqvblten,rqcblten,rqiblten,flag_qi, & g,cp,rcp,r_d,r_v,cpv, & z,xlv,psfc, & mut,p_top, & znt,ht,ust,zol,hol,hpbl,psim,psih, & xland,hfx,qfx,tsk,qsfc,gz1oz0,wspd,br, & dt,dtmin,kpbl2d, & svp1,svp2,svp3,svpt0,ep1,ep2,karman,eomeg,stbolt, & kh_temf,km_temf, & u10,v10,t2, & te_temf,shf_temf,qf_temf,uw_temf,vw_temf, & wupd_temf,mf_temf,thup_temf,qtup_temf,qlup_temf, & cf3d_temf,cfm_temf, & hd_temf,lcl_temf,hct_temf, & flhc,flqc,exch_temf, & fCor, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte & ) !------------------------------------------------------------------- implicit none !------------------------------------------------------------------- ! New variables for TEMF !-- te_temf Total energy from this scheme !-- shf_temf Sensible heat flux profile from this scheme (kinematic) !-- qf_temf Moisture flux profile from this scheme (kinematic) !-- uw_temf U momentum flux component from this scheme !-- vw_temf V momentum flux component from this scheme !-- kh_temf Exchange coefficient for heat (3D) !-- km_temf Exchange coefficient for momentum (3D) !-- wupd_temf Updraft velocity from TEMF BL scheme !-- mf_temf Mass flux from TEMF BL scheme !-- thup_temf Updraft thetal from TEMF BL scheme !-- qtup_temf Updraft qt from TEMF BL scheme !-- qlup_temf Updraft ql from TEMF BL scheme !-- cf3d_temf 3D cloud fraction from TEMF BL scheme !-- cfm_temf Column cloud fraction from TEMF BL scheme !-- exch_temf Surface exchange coefficient (as for moisture) from TEMF surface layer scheme !-- flhc Surface exchange coefficient for heat (needed by surface scheme) !-- flqc Surface exchange coefficient for moisture (including moisture availablity) !-- fCor Coriolis parameter (from grid%f) ! !-- u3d 3d u-velocity interpolated to theta points (m/s) !-- v3d 3d v-velocity interpolated to theta points (m/s) !-- th3d 3d potential temperature (k) !-- t3d temperature (k) !-- qv3d 3d water vapor mixing ratio (kg/kg) !-- qc3d 3d cloud mixing ratio (kg/kg) !-- qi3d 3d ice mixing ratio (kg/kg) ! (note: if P_QI<PARAM_FIRST_SCALAR this should be zero filled) !-- p3d 3d pressure (pa) !-- p3di 3d pressure (pa) at interface level !-- pi3d 3d exner function (dimensionless) !-- rho 3d dry air density (kg/m^3) !-- rublten u tendency due to ! pbl parameterization (m/s/s) !-- rvblten v tendency due to ! pbl parameterization (m/s/s) !-- rthblten theta tendency due to ! pbl parameterization (K/s) !-- rqvblten qv tendency due to ! pbl parameterization (kg/kg/s) !-- rqcblten qc tendency due to ! pbl parameterization (kg/kg/s) !-- rqiblten qi tendency due to ! pbl parameterization (kg/kg/s) !-- cp heat capacity at constant pressure for dry air (j/kg/k) !-- g acceleration due to gravity (m/s^2) !-- rovcp r/cp !-- r_d gas constant for dry air (j/kg/k) !-- rovg r/g !-- z height above sea level (m) !-- xlv latent heat of vaporization (j/kg) !-- r_v gas constant for water vapor (j/kg/k) !-- psfc pressure at the surface (pa) !-- znt roughness length (m) !-- ht terrain height ASL (m) !-- ust u* in similarity theory (m/s) !-- zol z/l height over monin-obukhov length !-- hol pbl height over monin-obukhov length !-- hpbl pbl height (m) !-- psim similarity stability function for momentum !-- psih similarity stability function for heat !-- xland land mask (1 for land, 2 for water) !-- hfx upward heat flux at the surface (w/m^2) !-- qfx upward moisture flux at the surface (kg/m^2/s) !-- tsk surface temperature (k) !-- qsfc surface specific humidity (kg/kg) !-- gz1oz0 log(z/z0) where z0 is roughness length !-- wspd wind speed at lowest model level (m/s) !-- u10 u-wind speed at 10 m (m/s) !-- v10 v-wind speed at 10 m (m/s) !-- br bulk richardson number in surface layer !-- dt time step (s) !-- dtmin time step (minute) !-- rvovrd r_v divided by r_d (dimensionless) !-- svp1 constant for saturation vapor pressure (kpa) !-- svp2 constant for saturation vapor pressure (dimensionless) !-- svp3 constant for saturation vapor pressure (k) !-- svpt0 constant for saturation vapor pressure (k) !-- ep1 constant for virtual temperature (r_v/r_d - 1) (dimensionless) !-- ep2 constant for specific humidity calculation !-- karman von karman constant !-- eomeg angular velocity of earths rotation (rad/s) !-- stbolt stefan-boltzmann constant (w/m^2/k^4) !-- ids start index for i in domain !-- ide end index for i in domain !-- jds start index for j in domain !-- jde end index for j in domain !-- kds start index for k in domain !-- kde end index for k in domain !-- ims start index for i in memory !-- ime end index for i in memory !-- jms start index for j in memory !-- jme end index for j in memory !-- kms start index for k in memory !-- kme end index for k in memory !-- its start index for i in tile !-- ite end index for i in tile !-- jts start index for j in tile !-- jte end index for j in tile !-- kts start index for k in tile !-- kte end index for k in tile !------------------------------------------------------------------- ! Arguments ! integer, intent(in ) :: ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ! real, intent(in ) :: dt,dtmin,g,cp,rcp,r_d,r_v,xlv,cpv ! real, intent(in ) :: svp1,svp2,svp3,svpt0 real, intent(in ) :: ep1,ep2,karman,eomeg,stbolt ! real, dimension( ims:ime, kms:kme, jms:jme ) , & intent(in ) :: qv3d, qc3d, qi3d, & p3d, pi3d, th3d, t3d, & z, rho ! real, dimension( ims:ime, kms:kme, jms:jme ) , & intent(inout) :: te_temf real, dimension( ims:ime, kms:kme, jms:jme ) , & intent( out) :: shf_temf, qf_temf, uw_temf, vw_temf , & wupd_temf, mf_temf, thup_temf, qtup_temf, & qlup_temf,cf3d_temf real, dimension( ims:ime, jms:jme ) , & intent(inout) :: flhc, flqc, exch_temf real, dimension( ims:ime, jms:jme ) , & intent(in ) :: fCor real, dimension( ims:ime, jms:jme ) , & intent( out) :: hd_temf, lcl_temf, hct_temf, cfm_temf ! real, dimension( ims:ime, kms:kme, jms:jme ) , & intent(in ) :: p3di ! real, dimension( ims:ime, kms:kme, jms:jme ) , & intent(inout) :: rublten, rvblten, & rthblten, & rqvblten, rqcblten, rqiblten ! real, dimension( ims:ime, kms:kme, jms:jme ) , & intent(inout) :: kh_temf, km_temf real, dimension( ims:ime, jms:jme ) , & intent(inout) :: u10, v10, t2 ! real, dimension( ims:ime, jms:jme ) , & intent(in ) :: xland, & psim, psih, gz1oz0, br, & psfc, tsk, qsfc ! real, dimension( ims:ime, jms:jme ) , & intent(inout) :: hfx, qfx real, dimension( ims:ime, jms:jme ) , & intent(inout) :: hol, ust, hpbl, znt, wspd, zol real, dimension( ims:ime, jms:jme ) , & intent(in ) :: ht ! real, dimension( ims:ime, kms:kme, jms:jme ) , & intent(in ) :: u3d, v3d ! integer, dimension( ims:ime, jms:jme ) , & intent(out ) :: kpbl2d ! logical, intent(in) :: flag_qi ! ! real, dimension( ims:ime, kms:kme, jms:jme ), & ! optional , & ! intent(inout) :: rqiblten ! real, dimension( ims:ime, jms:jme ) , & optional , & intent(in ) :: mut ! real, optional, intent(in ) :: p_top ! !------------------------------------------------------- ! Local variables integer :: j do j = jts,jte call temf2d(J=j,ux=u3d(ims,kms,j),vx=v3d(ims,kms,j) & ,tx=t3d(ims,kms,j),thx=th3d(ims,kms,j) & ,qvx=qv3d(ims,kms,j),qcx=qc3d(ims,kms,j) & ,qix=qi3d(ims,kms,j) & ,p2d=p3d(ims,kms,j),p2di=p3di(ims,kms,j) & ,pi2d=pi3d(ims,kms,j),rho=rho(ims,kms,j) & ,rubltenx=rublten(ims,kms,j),rvbltenx=rvblten(ims,kms,j) & ,rthbltenx=rthblten(ims,kms,j),rqvbltenx=rqvblten(ims,kms,j) & ,rqcbltenx=rqcblten(ims,kms,j),rqibltenx=rqiblten(ims,kms,j) & ,g=g,cp=cp,rcp=rcp,r_d=r_d,r_v=r_v,cpv=cpv & ,z2d=z(ims,kms,j) & ,xlv=xlv & ,psfcpa=psfc(ims,j),znt=znt(ims,j),zsrf=ht(ims,j),ust=ust(ims,j) & ,zol=zol(ims,j),hol=hol(ims,j),hpbl=hpbl(ims,j) & ,psim=psim(ims,j) & ,psih=psih(ims,j),xland=xland(ims,j) & ,hfx=hfx(ims,j),qfx=qfx(ims,j) & ,tsk=tsk(ims,j),qsfc=qsfc(ims,j),gz1oz0=gz1oz0(ims,j) & ,wspd=wspd(ims,j),br=br(ims,j) & ,dt=dt,dtmin=dtmin,kpbl1d=kpbl2d(ims,j) & ,svp1=svp1,svp2=svp2,svp3=svp3,svpt0=svpt0 & ,ep1=ep1,ep2=ep2,karman=karman,eomeg=eomeg & ,stbolt=stbolt & ,kh_temfx=kh_temf(ims,kms,j),km_temfx=km_temf(ims,kms,j) & ,u10=u10(ims,j),v10=v10(ims,j),t2=t2(ims,j) & ,te_temfx=te_temf(ims,kms,j) & ,shf_temfx=shf_temf(ims,kms,j),qf_temfx=qf_temf(ims,kms,j) & ,uw_temfx=uw_temf(ims,kms,j),vw_temfx=vw_temf(ims,kms,j) & ,wupd_temfx=wupd_temf(ims,kms,j),mf_temfx=mf_temf(ims,kms,j) & ,thup_temfx=thup_temf(ims,kms,j),qtup_temfx=qtup_temf(ims,kms,j) & ,qlup_temfx=qlup_temf(ims,kms,j) & ,cf3d_temfx=cf3d_temf(ims,kms,j),cfm_temfx=cfm_temf(ims,j) & ,hd_temfx=hd_temf(ims,j),lcl_temfx=lcl_temf(ims,j) & ,hct_temfx=hct_temf(ims,j),exch_temfx=exch_temf(ims,j) & ,flhc=flhc(ims,j),flqc=flqc(ims,j) & ,fCor=fCor(ims,j) & ,ids=ids,ide=ide, jds=jds,jde=jde, kds=kds,kde=kde & ,ims=ims,ime=ime, jms=jms,jme=jme, kms=kms,kme=kme & ,its=its,ite=ite, jts=jts,jte=jte, kts=kts,kte=kte ) enddo ! end subroutine temfpbl ! !------------------------------------------------------------------- ! subroutine temf2d(j,ux,vx,tx,thx,qvx,qcx,qix,p2d,p2di,pi2d,rho, & 1,10 rubltenx,rvbltenx,rthbltenx, & rqvbltenx,rqcbltenx,rqibltenx, & g,cp,rcp,r_d,r_v,cpv, & z2d, & xlv,psfcpa, & znt,zsrf,ust,zol,hol,hpbl,psim,psih, & xland,hfx,qfx,tsk,qsfc,gz1oz0,wspd,br, & dt,dtmin,kpbl1d, & svp1,svp2,svp3,svpt0,ep1,ep2,karman,eomeg,stbolt, & kh_temfx,km_temfx, & u10,v10,t2, & te_temfx,shf_temfx,qf_temfx,uw_temfx,vw_temfx, & wupd_temfx,mf_temfx,thup_temfx,qtup_temfx,qlup_temfx, & cf3d_temfx,cfm_temfx, & hd_temfx,lcl_temfx,hct_temfx,exch_temfx, & flhc,flqc, & fCor, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte & ) !------------------------------------------------------------------- implicit none !------------------------------------------------------------------- ! ! This is the Total Energy - Mass Flux (TEMF) PBL scheme. ! Initial implementation 2010 by Wayne Angevine, CIRES/NOAA ESRL. ! References: ! Angevine et al., 2010, MWR ! Angevine, 2005, JAM ! Mauritsen et al., 2007, JAS ! !------------------------------------------------------------------- ! integer, intent(in ) :: ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte, j ! real, intent(in ) :: dt,dtmin,g,cp,rcp,r_d,r_v,cpv,xlv ! real, intent(in ) :: svp1,svp2,svp3,svpt0 real, intent(in ) :: ep1,ep2,karman,eomeg,stbolt ! real, dimension( ims:ime, kms:kme ), & intent(in) :: z2d ! real, dimension( ims:ime, kms:kme ) , & intent(in ) :: ux, vx real, dimension( ims:ime, kms:kme ) , & intent(inout) :: te_temfx real, dimension( ims:ime, kms:kme ) , & intent( out) :: shf_temfx, qf_temfx, uw_temfx, vw_temfx , & wupd_temfx, mf_temfx,thup_temfx, & qtup_temfx, qlup_temfx, cf3d_temfx real, dimension( ims:ime ) , & intent( out) :: hd_temfx, lcl_temfx, hct_temfx, cfm_temfx real, dimension( ims:ime ) , & intent(in ) :: fCor real, dimension( ims:ime ) , & intent(inout) :: flhc, flqc, exch_temfx real, dimension( ims:ime, kms:kme ) , & intent(in ) :: tx, thx, qvx, qcx, qix, pi2d, rho real, dimension( ims:ime, kms:kme ) , & intent(in ) :: p2di, p2d ! real, dimension( ims:ime, kms:kme ) , & intent(inout) :: rubltenx, rvbltenx, rthbltenx, & rqvbltenx, rqcbltenx, rqibltenx ! real, dimension( ims:ime ) , & intent(inout) :: hol, ust, hpbl, znt real, dimension( ims:ime ) , & intent(in ) :: xland, zsrf real, dimension( ims:ime ) , & intent(inout) :: hfx, qfx ! real, dimension( ims:ime ), intent(inout) :: wspd real, dimension( ims:ime ), intent(in ) :: br ! real, dimension( ims:ime ), intent(in ) :: psim, psih real, dimension( ims:ime ), intent(in ) :: gz1oz0 ! real, dimension( ims:ime ), intent(in ) :: psfcpa real, dimension( ims:ime ), intent(in ) :: tsk, qsfc real, dimension( ims:ime ), intent(inout) :: zol integer, dimension( ims:ime ), intent(out ) :: kpbl1d real, dimension( ims:ime, kms:kme ) , & intent(inout) :: kh_temfx, km_temfx ! real, dimension( ims:ime ) , & intent(inout) :: u10, v10, t2 ! ! !----------------------------------------------------------- ! Local variables ! ! TE model constants logical, parameter :: MFopt = .true. ! Use mass flux or not ! real, parameter :: visc_temf = 1.57e-5 ! real, parameter :: conduc_temf = 1.57e-5 / 0.733 real, parameter :: visc_temf = 1.57e-4 ! WA TEST bigger minimum K real, parameter :: conduc_temf = 1.57e-4 / 0.733 real, parameter :: Pr_temf = 0.733 real, parameter :: TEmin = 1e-3 real, parameter :: ftau0 = 0.17 real, parameter :: fth0 = 0.145 ! real, parameter :: fth0 = 0.12 ! WA 10/13/10 to make PrT0 ~= 1 real, parameter :: critRi = 0.25 real, parameter :: Cf = 0.185 real, parameter :: CN = 2.0 ! real, parameter :: Ceps = ftau0**1.5 real, parameter :: Ceps = 0.070 real, parameter :: Cgamma = Ceps real, parameter :: Cphi = Ceps ! real, parameter :: PrT0 = Cphi/Ceps * ftau0**2. / 2 / fth0**2. real, parameter :: PrT0 = Cphi/Ceps * ftau0**2 / 2. / fth0**2 ! EDMF constants real, parameter :: CM = 0.03 ! Proportionality constant for subcloud MF real, parameter :: Cdelt = 0.006 ! Prefactor for detrainment rate real, parameter :: Cw = 0.5 ! Prefactor for surface wUPD real, parameter :: Cc = 3.0 ! Prefactor for convective length scale real, parameter :: lasymp = 200.0 ! Asymptotic length scale WA 11/20/09 real, parameter :: hmax = 4000.0 ! Max hd,hct WA 11/20/09 ! integer :: i, k, kt ! Loop variable integer, dimension( its:ite) :: h0idx real, dimension( its:ite) :: h0 real, dimension( its:ite) :: wstr, ang, wm real, dimension( its:ite) :: hd,lcl,hct,ht real, dimension( its:ite) :: convection_TKE_surface_src, sfcFTE real, dimension( its:ite) :: sfcTHVF real, dimension( its:ite) :: z0t integer, dimension( its:ite) :: hdidx,lclidx,hctidx,htidx integer, dimension( its:ite) :: tval ! real, dimension( its:ite ) :: sfcHF, sfcQF real, dimension( its:ite, kts:kte) :: thetal, qt real, dimension( its:ite, kts:kte) :: u_temf, v_temf real, dimension( its:ite, kts:kte) :: rv, rl, rt real, dimension( its:ite, kts:kte) :: chi_poisson, gam real, dimension( its:ite, kts:kte) :: dthdz, dqtdz, dudz, dvdz real, dimension( its:ite, kts:kte) :: lepsmin real, dimension( its:ite, kts:kte) :: thetav real, dimension( its:ite, kts:kte) :: MFCth, MFCq, MFCu, MFCv real, dimension( its:ite, kts:kte) :: MFCql, MFCthv, MFCTE real, dimension( its:ite, kts:kte) :: epsmf, deltmf, dMdz real, dimension( its:ite, kts:kte) :: UUPD, VUPD real, dimension( its:ite, kts:kte) :: thetavUPD, qlUPD, TEUPD real, dimension( its:ite, kts:kte) :: thetavUPDmoist, wupd_dry real, dimension( its:ite, kts:kte) :: B, Bmoist real, dimension( its:ite, kts:kte) :: zm, zt, dzm, dzt real, dimension( its:ite, kts:kte) :: dthUPDdz, dqtup_temfxdz, dwUPDdz real, dimension( its:ite, kts:kte) :: dwUPDmoistdz real, dimension( its:ite, kts:kte) :: dUUPDdz, dVUPDdz, dTEUPDdz real, dimension( its:ite, kts:kte) :: TUPD, rstUPD, rUPD, rlUPD, qstUPD real, dimension( its:ite, kts:kte) :: N2, S, Ri, beta, ftau, fth, ratio real, dimension( its:ite, kts:kte) :: TKE, TE2 real, dimension( its:ite, kts:kte) :: ustrtilde, linv, leps real, dimension( its:ite, kts:kte) :: km, kh real, dimension( its:ite, kts:kte) :: Fz, QFK, uwk, vwk real, dimension( its:ite, kts:kte) :: km_conv, kh_conv, lconv real, dimension( its:ite, kts:kte) :: alpha2, beta2 ! For thetav flux calculation real, dimension( its:ite, kts:kte) :: THVF, buoy_src, srcs real, dimension( its:ite, kts:kte) :: u_new, v_new real, dimension( its:ite, kts:kte) :: thx_new, qvx_new, qcx_new real, dimension( its:ite, kts:kte) :: thup_new, qvup_new real, dimension( its:ite, kts:kte) :: beta1 ! For saturation humidity calculations real Cepsmf ! Prefactor for entrainment rate real red_fact ! WA TEST for reducing MF components logical is_convective ! Vars for cloud fraction calculation real, dimension( its:ite, kts:kte) :: au, sigq, qst, satdef real sigq2, rst !---------------------------------------------------------------------- ! Grid staggering: Matlab version has mass and turbulence levels. ! WRF has full levels (with w) and half levels (u,v,theta,q*). Both ! sets of levels use the same indices (kts:kte). See pbl_driver or ! WRF Physics doc for (a few) details. ! So *mass levels correspond to half levels.* ! WRF full levels are ignored, we define our own turbulence levels ! in order to put the first one below the first half level. ! Another difference is that ! the Matlab version (and the Mauritsen et al. paper) consider the ! first mass level to be at z0 (effectively the surface). WRF considers ! the first half level to be above the effective surface. The first half ! level, at k=1, has nonzero values of u,v for example. Here we convert ! all incoming variables to internal ones with the correct indexing ! in order to make the code consistent with the Matlab version. We ! already had to do this for thetal and qt anyway, so the only additional ! overhead is for u and v. ! I use suffixes m for mass and t for turbulence as in Matlab for things ! like indices. ! Note that zsrf is the terrain height ASL, from Registry variable ht. ! Translations (Matlab to WRF): ! dzt -> calculated below ! dzm -> not supplied, calculated below ! k -> karman ! z0 -> znt ! z0t -> not in WRF, calculated below ! zt -> calculated below ! zm -> (z2d - zsrf) but NOTE zm(1) is now z0 (znt) and zm(2) is ! z2d(1) - zsrf ! ! WA I take the temperature at z0 to be ! TSK. This isn't exactly robust. Also I pass out the surface ! exchange coefficients flhc, flqc for the surface scheme to use in the ! next timestep. ! WA 2/16/11 removed calculation of flhc, flqc which are not needed here. ! These should be removed from the calling sequence someday. ! ! Other notes: ! - I have often used 1 instead of kts below, because the scheme demands ! to know where the surface is. It won't work if kts .NE. 1. do i = its,ite ! Main loop ! Get incoming surface theta from TSK (WA for now) thetal(i,1) = tsk(i) / pi2d(i,1) ! WA really should use Exner func. at z0 if (exch_temfx(i) > 1.0e-12) then qt(i,1) = qfx(i) / exch_temfx(i) + qvx(i,1) ! WA assumes no liquid at z0 else qt(i,1) = qvx(i,1) end if rv(i,1) = qt(i,1) / (1.-qt(i,1)) ! Water vapor rl(i,1) = 0. rt(i,1) = rv(i,1) + rl(i,1) ! Total water (without ice) chi_poisson(i,1) = rcp * (1.+rv(i,1)/ep2) / (1.+rv(i,1)*cpv/cp) gam(i,1) = rv(i,1) * r_v / (cp + rv(i,1)*cpv) ! thetav(i,1) = thetal(i,1) * (1. + 0.608*qt(i,1)) ! WA Assumes ql(env)=0, what if it isn't? thetav(i,1) = thetal(i,1) * (1. + 0.608*qt(i,1) - qcx(i,1)) ! WA 4/6/10 allow environment liquid ! WA TEST (R5) set z0t = z0 ! z0t(i) = znt(i) / 10.0 ! WA this is hard coded in Matlab version z0t(i) = znt(i) ! Convert incoming theta to thetal and qv,qc to qt ! NOTE this is where the indexing gets changed from WRF to TEMF basis do k = kts+1,kte ! Convert specific humidities to mixing ratios rv(i,k) = qvx(i,k-1) / (1.-qvx(i,k-1)) ! Water vapor rl(i,k) = qcx(i,k-1) / (1.-qcx(i,k-1)) ! Liquid water rt(i,k) = rv(i,k) + rl(i,k) ! Total water (without ice) chi_poisson(i,k) = rcp * (1.+rv(i,k)/ep2) / (1.+rv(i,k)*cpv/cp) gam(i,k) = rt(i,k) * r_v / (cp + rt(i,k)*cpv) thetal(i,k) = thx(i,k-1) * ((ep2+rv(i,k))/(ep2+rt(i,k)))**chi_poisson(i,k) * (rv(i,k)/rt(i,k))**(-gam(i,k)) * exp( -xlv*rl(i,k) / ((cp + rt(i,k)*cpv) * tx(i,k))) qt(i,k) = qvx(i,k-1) + qcx(i,k-1) ! thetav(i,k) = thetal(i,k) * (1. + 0.608*qt(i,k)) ! WA Assumes ql(env)=0, what if it isn't? thetav(i,k) = thetal(i,k) * (1. + 0.608*qt(i,k) - qcx(i,k-1)) ! WA 4/6/10 allow environment liquid end do ! Convert incoming u,v to internal u_temf, v_temf ! NOTE this is where the indexing gets changed from WRF to TEMF basis u_temf(i,1) = 0. ! zero winds at z0 v_temf(i,1) = 0. do k = kts+1,kte u_temf(i,k) = ux(i,k-1) v_temf(i,k) = vx(i,k-1) end do ! Get delta height at half (mass) levels zm(i,1) = znt(i) dzt(i,1) = z2d(i,1) - zsrf(i) - zm(i,1) ! Get height and delta at turbulence levels zt(i,1) = (z2d(i,1) - zsrf(i) - znt(i)) / 2. do kt = kts+1,kte zm(i,kt) = z2d(i,kt-1) - zsrf(i) ! Convert indexing from WRF to TEMF zt(i,kt) = (zm(i,kt) + z2d(i,kt) - zsrf(i)) / 2. dzm(i,kt) = zt(i,kt) - zt(i,kt-1) dzt(i,kt) = z2d(i,kt+1) - z2d(i,kt) end do dzm(i,1) = dzm(i,2) ! WA why? dzt(i,kte) = dzt(i,kte-1) ! WA 12/23/09 ! Gradients at first level dthdz(i,1) = (thetal(i,2)-thetal(i,1)) / (zt(i,1) * log10(zm(i,2)/z0t(i))) dqtdz(i,1) = (qt(i,2)-qt(i,1)) / (zt(i,1) * log10(zm(i,2)/z0t(i))) dudz(i,1) = (u_temf(i,2)-u_temf(i,1)) / (zt(i,1) * log10(zm(i,2)/znt(i))) dvdz(i,1) = (v_temf(i,2)-v_temf(i,1)) / (zt(i,1) * log10(zm(i,2)/znt(i))) ! Surface thetaV flux from Stull p.147 sfcTHVF(i) = hfx(i)/(rho(i,1)*cp) * (1.+0.608*(qvx(i,1)+qcx(i,1))) + 0.608*thetav(i,1)*qf_temfx(i,1) ! WA use hd_temf to calculate w* instead of finding h0 here???? ! Watch initialization! h0idx(i) = 1 h0(i) = zm(i,1) ! WA TEST (R4) remove lower limit on leps ! lepsmin(i,kts) = min(0.4*zt(i,kts), 5.) lepsmin(i,kts) = 0. do k = kts+1,kte-1 ! WA TEST (R4) remove lower limit on leps ! lepsmin(i,k) = min(0.4*zt(i,k), 5.) lepsmin(i,k) = 0. ! lepsmin(i,k) = min(zt(i,k), 20.) ! WA to deal with runaway ! Mean gradients ! dthdz(i,k) = (thx(i,k) - thx(i,k-1)) / dzt(i,k) ! WA 1/12/10 dthdz(i,k) = (thetal(i,k+1) - thetal(i,k)) / dzt(i,k) dqtdz(i,k) = (qt(i,k+1) - qt(i,k)) / dzt(i,k) dudz(i,k) = (u_temf(i,k+1) - u_temf(i,k)) / dzt(i,k) dvdz(i,k) = (v_temf(i,k+1) - v_temf(i,k)) / dzt(i,k) ! Find h0 (should eventually be interpolated for smoothness) if (thetav(i,k) > thetav(i,1) .AND. h0idx(i) .EQ. 1) then ! WA 9/28/11 limit h0 as for hd and hct if (zm(i,k) < hmax) then h0idx(i) = k h0(i) = zm(i,k) else h0idx(i) = k h0(i) = hmax end if end if end do ! Gradients at top level dthdz(i,kte) = dthdz(i,kte-1) dqtdz(i,kte) = dqtdz(i,kte-1) dudz(i,kte) = dudz(i,kte-1) dvdz(i,kte) = dvdz(i,kte-1) if ( hfx(i) > 0.) then ! wstr(i) = (g * h0(i) / thetav(i,2) * shf_temfx(i,1) ) ** (1./3.) wstr(i) = (g * h0(i) / thetav(i,2) * hfx(i)/(rho(i,1)*cp) ) ** (1./3.) else wstr(i) = 0. end if ! Set flag convective or not for use below is_convective = wstr(i) > 0. .AND. MFopt .AND. dthdz(i,1)<0. .AND. dthdz(i,2)<0. ! WA 12/16/09 require two levels of negative (unstable) gradient ! Find stability parameters and length scale (on turbulence levels) do kt = 1,kte-1 N2(i,kt) = 2. * g / (thetav(i,kt) + thetav(i,kt+1))*dthdz(i,kt) S(i,kt) = sqrt(dudz(i,kt)**2. + dvdz(i,kt)**2.) Ri(i,kt) = N2(i,kt) / S(i,kt)**2. if (S(i,kt) < 1e-15) then if (N2(i,kt) >= 0) then Ri(i,kt) = 10. else Ri(i,kt) = -1. end if end if beta(i,kt) = 2. * g / (thetav(i,kt)+thetav(i,kt+1)) if (Ri(i,kt) > 0) then ratio(i,kt) = Ri(i,kt)/(Cphi**2.*ftau0**2./(2.*Ceps**2.*fth0**2.)+3.*Ri(i,kt)) ftau(i,kt) = ftau0 * ((3./4.) / (1.+4.*Ri(i,kt)) + 1./4.) fth(i,kt) = fth0 / (1.+4.*Ri(i,kt)) TE2(i,kt) = 2. * te_temfx(i,kt) * ratio(i,kt) * N2(i,kt) / beta(i,kt)**2. else ratio(i,kt) = Ri(i,kt)/(Cphi**2.*ftau0**2./(-2.*Ceps**2.*fth0**2.)+2.*Ri(i,kt)) ftau(i,kt) = ftau0 fth(i,kt) = fth0 TE2(i,kt) = 0. end if TKE(i,kt) = te_temfx(i,kt) * (1. - ratio(i,kt)) ustrtilde(i,kt) = sqrt(ftau(i,kt) * TKE(i,kt)) if (N2(i,kt) > 0.) then linv(i,kt) = 1./karman / zt(i,kt) + abs(fCor(i)) / (Cf*ustrtilde(i,kt)) + sqrt(N2(i,kt))/(CN*ustrtilde(i,kt)) + 1./lasymp ! WA Test 11/20/09 else linv(i,kt) = 1./karman / zt(i,kt) + abs(fCor(i)) / (Cf*ustrtilde(i,kt)) + 1./lasymp ! WA Test 11/20/09 end if leps(i,kt) = 1./linv(i,kt) leps(i,kt) = max(leps(i,kt),lepsmin(i,kt)) end do S(i,kte) = 0.0 N2(i,kte) = 0.0 TKE(i,kte) = 0.0 linv(i,kte) = linv(i,kte-1) leps(i,kte) = leps(i,kte-1) ! Find diffusion coefficients ! First use basic formulae for stable and neutral cases, ! then for convective conditions, and finally choose the larger ! WA 12/23/09 use convective form up to hd/2 always ! WA 12/28/09 after restructuring, this block is above MF block, ! so hd is not yet available for this timestep, must use h0, ! or use hd from previous timestep but be careful about initialization. do kt = 1,kte-1 ! WA 12/22/09 ! WA 4/8/10 remove beta term to avoid negative and huge values ! of km due to very small denominator. This is an interim fix ! until we find something better (more theoretically sound). ! km(i,kt) = TKE(i,kt)**1.5 * ftau(i,kt)**2. / (-beta(i,kt) * fth(i,kt) * sqrt(TE2(i,kt)) + Ceps * sqrt(TKE(i,kt)*te_temfx(i,kt)) / leps(i,kt)) km(i,kt) = TKE(i,kt)**1.5 * ftau(i,kt)**2. / (Ceps * sqrt(TKE(i,kt)*te_temfx(i,kt)) / leps(i,kt)) kh(i,kt) = 2. * leps(i,kt) * fth(i,kt)**2. * TKE(i,kt) / sqrt(te_temfx(i,kt)) / Cphi if ( is_convective) then if (kt <= h0idx(i)) then lconv(i,kt) = 1. / (1. / (karman*zt(i,kt)) + Cc / (karman * (h0(i) - zt(i,kt)))) else lconv(i,kt) = 0. end if ! WA 12/15/09 use appropriate coeffs to match kh_conv and kh at neutral kh_conv(i,kt) = ftau0**2. / Ceps / PrT0 * sqrt(TKE(i,kt)) * lconv(i,kt) if (kh_conv(i,kt) < 0.) then kh_conv(i,kt) = 0. end if km_conv(i,kt) = PrT0 * kh_conv(i,kt) if (zt(i,kt) <= h0(i)/2.) then km(i,kt) = km_conv(i,kt) kh(i,kt) = kh_conv(i,kt) end if ! WA TEST 1/11/10 go back to max in upper BL if (zt(i,kt) > h0(i)/2. .AND. kt <= h0idx(i)) then km(i,kt) = max(km(i,kt),km_conv(i,kt),visc_temf) kh(i,kt) = max(kh(i,kt),kh_conv(i,kt),conduc_temf) end if end if ! is_convective km(i,kt) = max(km(i,kt),visc_temf) kh(i,kt) = max(kh(i,kt),conduc_temf) Fz(i,kt) = -kh(i,kt) * dthdz(i,kt) ! Diffusive heat flux end do km(i,kte) = km(i,kte-1) ! WA 12/22/09 kh(i,kte) = kh(i,kte-1) Fz(i,kte) = 0.0 ! WA 4/2/10 !*** Mass flux block starts here *** if ( is_convective) then Cepsmf = 2. / max(200.,h0(i)) Cepsmf = max(Cepsmf,0.002) ! WA 7/20/10 do k = kts,kte ! Calculate lateral entrainment fraction for subcloud layer ! epsilon and delta are defined on mass grid (half levels) epsmf(i,k) = Cepsmf end do ! Initialize updraft thup_temfx(i,1) = thetal(i,1) ! No excess qtup_temfx(i,1) = qt(i,1) ! No excess rUPD(i,1) = qtup_temfx(i,1) / (1. - qtup_temfx(i,1)) wupd_temfx(i,1) = Cw * wstr(i) wupd_dry(i,1) = Cw * wstr(i) UUPD(i,1) = u_temf(i,1) VUPD(i,1) = v_temf(i,1) thetavUPD(i,1) = thup_temfx(i,1) * (1. + 0.608*qtup_temfx(i,1)) ! WA Assumes no liquid thetavUPDmoist(i,1) = thup_temfx(i,1) * (1. + 0.608*qtup_temfx(i,1)) ! WA Assumes no liquid TEUPD(i,1) = te_temfx(i,1) + g / thetav(i,1) * sfcTHVF(i) ! qlUPD(i,1) = 0. qlUPD(i,1) = qcx(i,1) ! WA allow environment liquid TUPD(i,1) = thup_temfx(i,1) * pi2d(i,1) rstUPD(i,1) = rsat(p2d(i,1),TUPD(i,1),ep2) rlUPD(i,1) = 0. ! Calculate updraft parameters counting up do k = 2,kte dthUPDdz(i,k-1) = -epsmf(i,k) * (thup_temfx(i,k-1) - thetal(i,k-1)) thup_temfx(i,k) = thup_temfx(i,k-1) + dthUPDdz(i,k-1) * dzm(i,k-1) dqtup_temfxdz(i,k-1) = -epsmf(i,k) * (qtup_temfx(i,k-1) - qt(i,k-1)) qtup_temfx(i,k) = qtup_temfx(i,k-1) + dqtup_temfxdz(i,k-1) * dzm(i,k-1) thetavUPD(i,k) = thup_temfx(i,k) * (1. + 0.608*qtup_temfx(i,k)) ! WA Assumes no liquid B(i,k-1) = g * (thetavUPD(i,k) - thetav(i,k)) / thetav(i,k) if ( wupd_dry(i,k-1) < 1e-15 ) then wupd_dry(i,k) = 0. else dwUPDdz(i,k-1) = -2. *epsmf(i,k)*wupd_dry(i,k-1) + 0.33*B(i,k-1)/wupd_dry(i,k-1) wupd_dry(i,k) = wupd_dry(i,k-1) + dwUPDdz(i,k-1) * dzm(i,k-1) end if dUUPDdz(i,k-1) = -epsmf(i,k) * (UUPD(i,k-1) - u_temf(i,k-1)) UUPD(i,k) = UUPD(i,k-1) + dUUPDdz(i,k-1) * dzm(i,k-1) dVUPDdz(i,k-1) = -epsmf(i,k) * (VUPD(i,k-1) - v_temf(i,k-1)) VUPD(i,k) = VUPD(i,k-1) + dVUPDdz(i,k-1) * dzm(i,k-1) dTEUPDdz(i,k-1) = -epsmf(i,k) * (TEUPD(i,k-1) - te_temfx(i,k-1)) TEUPD(i,k) = TEUPD(i,k-1) + dTEUPDdz(i,k-1) * dzm(i,k-1) ! Alternative updraft velocity based on moist thetav ! Need thetavUPDmoist, qlUPD rUPD(i,k) = qtup_temfx(i,k) / (1. - qtup_temfx(i,k)) ! WA Updraft temperature assuming no liquid TUPD(i,k) = thup_temfx(i,k) * pi2d(i,k) ! Updraft saturation mixing ratio ! rstUPD(i,k) = rsat(p2d(i,k),TUPD(i,k),ep2) ! WA 4/19/10 rstUPD(i,k) = rsat(p2d(i,k-1),TUPD(i,k),ep2) ! Correct to actual temperature (Sommeria & Deardorff 1977) beta1(i,k) = 0.622 * (xlv/(r_d*TUPD(i,k))) * (xlv/(cp*TUPD(i,k))) rstUPD(i,k) = rstUPD(i,k) * (1.0+beta1(i,k)*rUPD(i,k)) / (1.0+beta1(i,k)*rstUPD(i,k)) qstUPD(i,k) = rstUPD(i,k) / (1. + rstUPD(i,k)) if (rUPD(i,k) > rstUPD(i,k)) then rlUPD(i,k) = rUPD(i,k) - rstUPD(i,k) qlUPD(i,k) = rlUPD(i,k) / (1. + rlUPD(i,k)) thetavUPDmoist(i,k) = (thup_temfx(i,k) + ((xlv/cp)*qlUPD(i,k)/pi2d(i,k))) * (1. + 0.608*qstUPD(i,k) - qlUPD(i,k)) else rlUPD(i,k) = 0. ! qlUPD(i,k) = 0. qlUPD(i,k) = qcx(i,k-1) ! WA 4/6/10 allow environment liquid ! WA does this make sense? Should be covered above? thetavUPDmoist(i,k) = thup_temfx(i,k) * (1. + 0.608*qtup_temfx(i,k)) end if Bmoist(i,k-1) = g * (thetavUPDmoist(i,k) - thetav(i,k)) / thetav(i,k) if ( wupd_temfx(i,k-1) < 1e-15 ) then wupd_temfx(i,k) = 0. else dwUPDmoistdz(i,k-1) = -2. *epsmf(i,k)*wupd_temfx(i,k-1) + 0.33*Bmoist(i,k-1)/wupd_temfx(i,k-1) wupd_temfx(i,k) = wupd_temfx(i,k-1) + dwUPDmoistdz(i,k-1) * dzm(i,k-1) end if end do ! Find hd based on wUPD if (wupd_dry(i,1) == 0.) then hdidx(i) = 1 else hdidx(i) = kte ! In case wUPD <= 0 not found do k = 2,kte ! if (wupd_dry(i,k) <= 0.) then if (wupd_dry(i,k) <= 0. .OR. zm(i,k) > hmax) then ! WA Test hdidx(i) = k goto 100 ! FORTRAN made me do it! end if end do end if 100 hd(i) = zm(i,hdidx(i)) ! kpbl1d(i) = hd(i) ! WA not sure if this is what I want for diagnostic out to larger WRF universe....and it's not right if not convective kpbl1d(i) = hdidx(i) ! WA 5/11/10 kpbl should be index hpbl(i) = hd(i) ! WA 5/11/10 hpbl is height. Should still be replaced by something that works whether convective or not. ! Find LCL, hct, and ht lclidx(i) = kte ! In case LCL not found do k = kts,kte if (rUPD(i,k) > rstUPD(i,k)) then lclidx(i) = k goto 200 end if end do 200 lcl(i) = zm(i,lclidx(i)) if (hd(i) > lcl(i)) then ! Forced cloud (at least) occurs ! Find hct based on wUPDmoist if (wupd_temfx(i,1) == 0.) then hctidx(i) = 1 else hctidx(i) = kte ! In case wUPD <= 0 not found do k = 2,kte if (wupd_temfx(i,k) <= 0. .OR. zm(i,k) > hmax) then ! WA Test hctidx(i) = k goto 300 ! FORTRAN made me do it! end if end do end if 300 hct(i) = zm(i,hctidx(i)) if (hctidx(i) <= hdidx(i)+1) then ! No active cloud hct(i) = hd(i) hctidx(i) = hdidx(i) else end if else ! No cloud hct(i) = hd(i) hctidx(i) = hdidx(i) end if ht(i) = max(hd(i),hct(i)) htidx(i) = max(hdidx(i),hctidx(i)) ! Now truncate updraft at ht with taper do k = 1,kte if (zm(i,k) < 0.9*ht(i)) then ! Below taper region tval(i) = 1 else if (zm(i,k) >= 0.9*ht(i) .AND. zm(i,k) <= 1.0*ht(i)) then ! Within taper region tval(i) = 1. - ((zm(i,k) - 0.9*ht(i)) / (1.0*ht(i) - 0.9*ht(i))) else ! Above taper region tval(i) = 0. end if thup_temfx(i,k) = tval(i) * thup_temfx(i,k) + (1-tval(i))*thetal(i,k) thetavUPD(i,k) = tval(i) * thetavUPD(i,k) + (1-tval(i))*thetav(i,k) qtup_temfx(i,k) = tval(i) * qtup_temfx(i,k) + (1-tval(i)) * qt(i,k) qlUPD(i,k) = tval(i) * qlUPD(i,k) + (1-tval(i)) * qcx(i,k-1) UUPD(i,k) = tval(i) * UUPD(i,k) + (1-tval(i)) * u_temf(i,k) VUPD(i,k) = tval(i) * VUPD(i,k) + (1-tval(i)) * v_temf(i,k) TEUPD(i,k) = tval(i) * TEUPD(i,k) + (1-tval(i)) * te_temfx(i,k) if (zm(i,k) > ht(i)) then ! WA this is just for cleanliness wupd_temfx(i,k) = 0. dwUPDmoistdz(i,k) = 0. wupd_dry(i,k) = 0. dwUPDdz(i,k) = 0. end if end do ! Calculate lateral detrainment rate for cloud layer deltmf(i,1) = Cepsmf do k = 2,kte-1 if (hctidx(i) > hdidx(i)+1) then ! Some cloud deltmf(i,k) = 0.9 * Cepsmf + Cdelt * (atan((zm(i,k)-(lcl(i)+(hct(i)-lcl(i))/1.5))/((hct(i)-lcl(i))/8))+(3.1415926/2))/3.1415926 else if (k < hdidx(i)) then ! No cloud, below hd deltmf(i,k) = Cepsmf + 0.05 * 1. / (hd(i) - zm(i,k)) else if (k >= hdidx(i)) then ! No cloud, above hd deltmf(i,k) = deltmf(i,k-1) end if end do ! Calculate mass flux (defined on turbulence levels) mf_temfx(i,1) = CM * wstr(i) do kt = 2,kte-1 dMdz(i,kt) = (epsmf(i,kt) - deltmf(i,kt)) * mf_temfx(i,kt-1) * dzt(i,kt) mf_temfx(i,kt) = mf_temfx(i,kt-1) + dMdz(i,kt) end do ! WA 12/28/09 If mass flux component > diffusive ! component at second level, ! reduce M to prevent a stable layer MFCth(i,2) = mf_temfx(i,2) * (thup_temfx(i,2)-thetal(i,2) + thup_temfx(i,3)-thetal(i,3)) / 2. if (MFCth(i,2) > Fz(i,2)) then red_fact = Fz(i,2) / MFCth(i,2) do kt = 1,kte mf_temfx(i,kt) = mf_temfx(i,kt) * red_fact end do end if ! Reduce M to prevent stable layer at second level ! Calculate mass flux contributions to fluxes (defined on turb levels) ! Use log interpolation at first level MFCth(i,1) = mf_temfx(i,1) * (thup_temfx(i,1)-thetal(i,1) + (thup_temfx(i,2)-thetal(i,2) - (thup_temfx(i,1)-thetal(i,1))) * log(zt(i,1)/znt(i))/log(zm(i,2)/znt(i))) MFCq(i,1) = mf_temfx(i,1) * (qtup_temfx(i,1)-qt(i,1) + (qtup_temfx(i,2)-qt(i,2) - (qtup_temfx(i,1)-qt(i,1))) * log(zt(i,1)/znt(i))/log(zm(i,2)/znt(i))) MFCu(i,1) = mf_temfx(i,1) * (UUPD(i,1)-u_temf(i,1) + (UUPD(i,2)-u_temf(i,2) - (UUPD(i,1)-u_temf(i,1))) * log(zt(i,1)/znt(i))/log(zm(i,2)/znt(i))) MFCv(i,1) = mf_temfx(i,1) * (VUPD(i,1)-v_temf(i,1) + (VUPD(i,2)-v_temf(i,2) - (VUPD(i,1)-v_temf(i,1))) * log(zt(i,1)/znt(i))/log(zm(i,2)/znt(i))) MFCql(i,1) = mf_temfx(i,1) * (qlUPD(i,1)-qcx(i,1) + (qlUPD(i,2)-qcx(i,2) - (qlUPD(i,1)-qcx(i,1))) * log(zt(i,1)/znt(i))/log(zm(i,2)/znt(i))) MFCTE(i,1) = mf_temfx(i,1) * (TEUPD(i,1)-te_temfx(i,1) + (TEUPD(i,2)-te_temfx(i,2) - (TEUPD(i,1)-te_temfx(i,1))) * log(zt(i,1)/znt(i))/log(zm(i,2)/znt(i))) ! WA Check this do kt = 2,kte-1 MFCth(i,kt) = mf_temfx(i,kt) * (thup_temfx(i,kt)-thetal(i,kt) + thup_temfx(i,kt+1)-thetal(i,kt+1)) / 2. MFCq(i,kt) = mf_temfx(i,kt) * (qtup_temfx(i,kt)-qt(i,kt) + qtup_temfx(i,kt+1)-qt(i,kt+1)) / 2. MFCu(i,kt) = mf_temfx(i,kt) * (UUPD(i,kt)-u_temf(i,kt) + UUPD(i,kt+1)-u_temf(i,kt+1)) / 2. MFCv(i,kt) = mf_temfx(i,kt) * (VUPD(i,kt)-v_temf(i,kt) + VUPD(i,kt+1)-v_temf(i,kt+1)) / 2. MFCql(i,kt) = mf_temfx(i,kt) * (qlUPD(i,kt)-qcx(i,kt-1) + qlUPD(i,kt+1)-qcx(i,kt)) / 2. MFCTE(i,kt) = mf_temfx(i,kt) * (TEUPD(i,kt)-te_temfx(i,kt)) ! TE is on turb levels end do MFCth(i,kte) = 0 MFCq(i,kte) = 0 MFCu(i,kte) = 0 MFCv(i,kte) = 0 MFCql(i,kte) = 0 MFCTE(i,kte) = 0 ! Calculate cloud fraction (on mass levels) cf3d_temfx(i,1) = 0.0 cfm_temfx(i) = 0.0 do k = 2,kte ! if (wupd_temfx(i,k-1) >= 1.0e-15 .AND. wupd_temfx(i,k) >= 1.0e-15 .AND. .NOT. isnan(wupd_temfx(i,k-1)) .AND. .NOT. isnan(wupd_temfx(i,k))) then if (wupd_temfx(i,k-1) >= 1.0e-15 .AND. wupd_temfx(i,k) >= 1.0e-15) then au(i,k) = ((mf_temfx(i,k-1)+mf_temfx(i,k))/2.0) / ((wupd_temfx(i,k-1)+wupd_temfx(i,k))/2.0) ! WA average before divide, is that best? else au(i,k) = 0.0 end if sigq2 = au(i,k) * (qtup_temfx(i,k)-qt(i,k)) if (sigq2 > 0.0) then sigq(i,k) = sqrt(sigq2) else sigq(i,k) = 0.0 end if ! rst = rsat(p2d(i,k),thx(i,k)*pi2d(i,k),ep2) rst = rsat(p2d(i,k-1),thx(i,k-1)*pi2d(i,k-1),ep2) qst(i,k) = rst / (1. + rst) satdef(i,k) = qt(i,k) - qst(i,k) if (satdef(i,k) <= 0.0) then if (sigq(i,k) > 1.0e-15) then cf3d_temfx(i,k) = max(0.5 + 0.36 * atan(1.55*(satdef(i,k)/sigq(i,k))),0.0) else cf3d_temfx(i,k) = 0.0 end if else cf3d_temfx(i,k) = 1.0 end if if (zm(i,k) < lcl(i)) then cf3d_temfx(i,k) = 0.0 end if ! Put max value so far into cfm if (zt(i,k) <= hmax) then cfm_temfx(i) = max(cf3d_temfx(i,k),cfm_temfx(i)) end if end do else ! not is_convective, no MF components do kt = 1,kte MFCth(i,kt) = 0 MFCq(i,kt) = 0 MFCu(i,kt) = 0 MFCv(i,kt) = 0 MFCql(i,kt) = 0 MFCTE(i,kt) = 0 end do lcl(i) = zm(i,kte-1) hct(i) = zm(i,1) hctidx(i) = 1 hd(i) = zm(i,1) hdidx(i) = 1 ht(i) = hd(i) ! Cloud fraction calculations cf3d_temfx(i,1) = 0.0 cfm_temfx(i) = 0.0 do k = 2,kte if (qcx(i,k-1) > 1.0e-15) then cf3d_temfx(i,k) = 1.0 else cf3d_temfx(i,k) = 0.0 end if ! Put max value so far into cfm if (zt(i,k) <= hmax) then cfm_temfx(i) = max(cf3d_temfx(i,k),cfm_temfx(i)) end if end do end if ! MF components or not cf3d_temfx(i,kte) = 0.0 ! Mass flux block ends here ! Flux profiles do kt = 2,kte ! Fz(i,kt) = -kh(i,kt) * dthdz(i,kt) shf_temfx(i,kt) = Fz(i,kt) + MFCth(i,kt) QFK(i,kt) = -kh(i,kt) * dqtdz(i,kt) qf_temfx(i,kt) = QFK(i,kt) + MFCq(i,kt) uwk(i,kt) = -km(i,kt) * dudz(i,kt) uw_temfx(i,kt) = uwk(i,kt) + MFCu(i,kt) vwk(i,kt) = -km(i,kt) * dvdz(i,kt) vw_temfx(i,kt) = vwk(i,kt) + MFCv(i,kt) end do ! Surface momentum fluxes ust(i) = sqrt(ftau(i,1)/ftau0) * sqrt(u_temf(i,2)**2. + v_temf(i,2)**2.) * leps(i,1) / log(zm(i,2)/znt(i)) / zt(i,1) ang(i) = atan2(v_temf(i,2),u_temf(i,2)) uw_temfx(i,1) = -cos(ang(i)) * ust(i)**2. vw_temfx(i,1) = -sin(ang(i)) * ust(i)**2. ! Calculate mixed scaling velocity (Moeng & Sullivan 1994 JAS p.1021) ! Replaces ust everywhere (WA need to reconsider?) ! wm(i) = (1./5. * (wstr(i)**3. + 5. * ust(i)**3.)) ** (1./3.) ! WA TEST (R2,R11) 7/23/10 reduce velocity scale to fix excessive fluxes wm(i) = 0.5 * (1./5. * (wstr(i)**3. + 5. * ust(i)**3.)) ** (1./3.) ! WA TEST 2/14/11 limit contribution of w* ! wm(i) = 0.5 * (1./5. * (min(0.8,wstr(i))**3. + 5. * ust(i)**3.)) ** (1./3.) ! WA TEST (R3-R11) 7/23/10 wm = u* ! wm(i) = ust(i) ! Specified flux versions (flux is modified by land surface) shf_temfx(i,1) = hfx(i)/(rho(i,1)*cp) + (shf_temfx(i,2) - hfx(i)/(rho(i,1)*cp)) * (zt(i,2)-zt(i,1)) / (zt(i,2)-znt(i)) qf_temfx(i,1) = qfx(i)/rho(i,1) + (qf_temfx(i,2)-qfx(i)/rho(i,1)) * (zt(i,2)-zt(i,1)) / (zt(i,2)-znt(i)) Fz(i,1) = shf_temfx(i,1) - MFCth(i,1) QFK(i,1) = qf_temfx(i,1) - MFCq(i,1) ! Calculate thetav and its flux ! From Lewellen 2004 eq. 3 ! WA The constants and combinations below should probably be replaced ! by something more consistent with the WRF system, but for now ! I don't want to take the chance of breaking something. do kt = 2,kte-1 alpha2(i,kt) = 0.61 * (thetal(i,kt) + thetal(i,kt+1)) / 2. beta2(i,kt) = (100000. / p2di(i,kt))**0.286 * 2.45e-6 / 1004.67 - 1.61 * (thetal(i,kt) + thetal(i,kt+1)) / 2. end do alpha2(i,1) = 0.61 * (thetal(i,1) + (thetal(i,2)-thetal(i,1)) * (zt(i,2) - znt(i)) / (zm(i,2) - znt(i))) alpha2(i,kte) = 0.61 * thetal(i,kte) beta2(i,1) = (100000. / p2di(i,1))**0.286 * 2.45e-6 / 1004.67 - 1.61 * (thetal(i,1) + (thetal(i,2) - thetal(i,1)) * (zt(i,2) - znt(i)) / (zm(i,2) - znt(i))) beta2(i,kte) = (100000. / p2di(i,kte))**0.286 * 2.45e-6 / 1004.67 - 1.61 * thetal(i,kte) if ( is_convective ) then ! Activate EDMF components do kt = 1,kte-1 MFCthv(i,kt) = (1. + 0.61 * (qtup_temfx(i,kt)+qtup_temfx(i,kt+1))) / 2. * MFCth(i,kt) + alpha2(i,kt) * MFCq(i,kt) + beta2(i,kt) * MFCql(i,kt) end do MFCthv(i,kte) = 0. else ! No MF components do kt = 1,kte MFCthv(i,kt) = 0. end do end if do kt = 1,kte THVF(i,kt) = (1. + 0.61 * qt(i,kt)) * Fz(i,kt) + alpha2(i,kt) * QFK(i,kt) + MFCthv(i,kt) end do ! Update mean variables: ! This is done with implicit solver for diffusion part followed ! by explicit solution for MF terms. ! Note that Coriolis terms that were source terms for u and v ! in Matlab code are now handled by WRF outside this PBL context. u_new(i,:) = u_temf(i,:) call solve_implicit_temf(km(i,kts:kte-1),u_new(i,kts+1:kte),uw_temfx(i,1),dzm(i,kts:kte-1),dzt(i,kts:kte-1),kts,kte-1,dt,.FALSE.) do k = 2,kte-1 u_new(i,k) = u_new(i,k) + dt * (-(MFCu(i,k)-MFCu(i,k-1))) / dzm(i,k) end do v_new(i,:) = v_temf(i,:) call solve_implicit_temf(km(i,kts:kte-1),v_new(i,kts+1:kte),vw_temfx(i,1),dzm(i,kts:kte-1),dzt(i,kts:kte-1),kts,kte-1,dt,.FALSE.) do k = 2,kte-1 v_new(i,k) = v_new(i,k) + dt * (-(MFCv(i,k)-MFCv(i,k-1))) / dzm(i,k) end do call solve_implicit_temf(kh(i,kts:kte-1),thetal(i,kts+1:kte),Fz(i,1),dzm(i,kts:kte-1),dzt(i,kts:kte-1),kts,kte-1,dt,.FALSE.) do k = 2,kte-1 thetal(i,k) = thetal(i,k) + dt * (-(MFCth(i,k)-MFCth(i,k-1))) / dzm(i,k) end do call solve_implicit_temf(kh(i,kts:kte-1),qt(i,kts+1:kte),QFK(i,1),dzm(i,kts:kte-1),dzt(i,kts:kte-1),kts,kte-1,dt,.FALSE.) do k = 2,kte-1 qt(i,k) = qt(i,k) + dt * (-(MFCq(i,k)-MFCq(i,k-1))) / dzm(i,k) end do ! Stepping TE forward is a bit more complicated te_temfx(i,1) = ust(i)**2. / ftau(i,1) * (1. + ratio(i,1)) if ( is_convective ) then ! WA currently disabled if MFopt=false, is that right? convection_TKE_surface_src(i) = 2. * beta(i,1) * shf_temfx(i,1) else convection_TKE_surface_src(i) = 0. end if te_temfx(i,1) = max(te_temfx(i,1), (leps(i,1) / Cgamma * (ust(i)**2. * S(i,1) + convection_TKE_surface_src(i)))**(2./3.)) if (te_temfx(i,1) > 20.0) then te_temfx(i,1) = 20.0 ! WA 9/28/11 limit max TE end if sfcFTE(i) = -(km(i,1)+km(i,2)) / 2. * (te_temfx(i,2)-te_temfx(i,1)) / dzm(i,2) do kt = 1,kte if (THVF(i,kt) >= 0) then buoy_src(i,kt) = 2. * g / thetav(i,kt) * THVF(i,kt) else buoy_src(i,kt) = 0. ! Cancel buoyancy term when locally stable end if srcs(i,kt) = -uw_temfx(i,kt) * dudz(i,kt) - vw_temfx(i,kt) * dvdz(i,kt) - Cgamma * te_temfx(i,kt)**1.5 * linv(i,kt) + buoy_src(i,kt) end do call solve_implicit_temf((km(i,kts:kte-1)+km(i,kts+1:kte))/2.0,te_temfx(i,kts+1:kte),sfcFTE(i),dzt(i,kts+1:kte),dzt(i,kts:kte-1),kts,kte-1,dt,.false.) do kt = 2,kte-1 te_temfx(i,kt) = te_temfx(i,kt) + dt * srcs(i,kt) te_temfx(i,kt) = te_temfx(i,kt) + dt * (-(MFCTE(i,kt)-MFCTE(i,kt-1))) / dzt(i,kt) if (te_temfx(i,kt) < TEmin) te_temfx(i,kt) = TEmin end do te_temfx(i,kte) = 0.0 ! WA 4/2/10 do kt = 2,kte-1 if (te_temfx(i,kt) > 20.0) then te_temfx(i,kt) = 20.0 ! WA 9/29/11 reduce limit max TE from 30 end if end do ! Done with updates, now convert internal variables back to WRF vars do k = kts,kte ! Populate kh_temfx, km_temfx from kh, km kh_temfx(i,k) = kh(i,k) km_temfx(i,k) = km(i,k) end do ! Convert thetal, qt back to theta, qv, qc ! See opposite conversion at top of subroutine ! WA this accounts for offset of indexing between ! WRF and TEMF, see notes at top of this routine. call thlqt2thqvqc(thetal(i,kts+1:kte),qt(i,kts+1:kte),thx_new(i,kts:kte-1),qvx_new(i,kts:kte-1),qcx_new(i,kts:kte-1),p2d(i,kts:kte-1),pi2d(i,kts:kte-1),kts,kte-1,ep2,xlv,cp) do k = kts,kte-1 ! Calculate tendency terms ! WA this accounts for offset of indexing between ! WRF and TEMF, see notes at top of this routine. rubltenx(i,k) = (u_new(i,k+1) - u_temf(i,k+1)) / dt rvbltenx(i,k) = (v_new(i,k+1) - v_temf(i,k+1)) / dt rthbltenx(i,k) = (thx_new(i,k) - thx(i,k)) / dt rqvbltenx(i,k) = (qvx_new(i,k) - qvx(i,k)) / dt rqcbltenx(i,k) = (qcx_new(i,k) - qcx(i,k)) / dt end do rubltenx(i,kte) = 0. rvbltenx(i,kte) = 0. rthbltenx(i,kte) = 0. rqvbltenx(i,kte) = 0. rqcbltenx(i,kte) = 0. ! Populate surface exchange coefficient variables to go back out ! for next time step of surface scheme ! Unit specifications in SLAB and sfclay are conflicting and probably ! incorrect. This will give a dynamic heat flux (W/m^2) or moisture ! flux (kg(water)/(m^2*s)) when multiplied by a difference. ! These formulae are the same as what's used above to get surface ! flux from surface temperature and specific humidity. ! WA 2/16/11 removed, not needed in BL ! flhc(i) = rho(i,1) * cp * fth(i,1)/fth0 * wm(i) * leps(i,1) / PrT0 / log(zm(i,2)/z0t(i)) / zt(i,1) ! flqc(i) = rho(i,1) * fth(i,1)/fth0 * wm(i) * leps(i,1) / PrT0 / log(zm(i,2)/z0t(i)) / zt(i,1) ! WA Must exchange coeffs be limited to avoid runaway in some ! (convective?) conditions? Something like this is done in sfclay. ! Doing nothing for now. ! Populate 10 m winds and 2 m temp ! WA Note this only works if first mass level is above 10 m u10(i) = u_new(i,2) * log(10.0/znt(i)) / log(zm(i,2)/znt(i)) v10(i) = v_new(i,2) * log(10.0/znt(i)) / log(zm(i,2)/znt(i)) t2(i) = (tsk(i)/pi2d(i,1) + (thx_new(i,1) - tsk(i)/pi2d(i,1)) * log(2.0/z0t(i)) / log(zm(i,2)/z0t(i))) * pi2d(i,1) ! WA this should also use pi at z0 ! Populate diagnostic variables hd_temfx(i) = hd(i) lcl_temfx(i) = lcl(i) hct_temfx(i) = hct(i) ! Send updraft liquid water back if ( is_convective) then do k = kts,kte-1 qlup_temfx(i,k) = qlUPD(i,k) end do else qlup_temfx(i,1) = qcx(i,1) do k = kts+1,kte-1 qlup_temfx(i,k) = qcx(i,k-1) end do end if qlup_temfx(i,kte) = qcx(i,kte) end do ! Main (i) loop end subroutine temf2d ! !-------------------------------------------------------------------- ! subroutine thlqt2thqvqc(thetal,qt,theta,qv,qc,p,piex,kbot,ktop,ep2,Lv,Cp) 1,1 ! Calculates theta, qv, qc from thetal, qt. ! Originally from RAMS (subroutine satadjst) by way of Hongli Jiang. implicit none integer, intent(in ) :: kbot, ktop real, dimension( kbot:ktop ), intent(in ) :: thetal, qt real, dimension( kbot:ktop ), intent( out) :: theta, qv, qc real, dimension( kbot:ktop ), intent(in ) :: p, piex real, intent(in ) :: ep2, Lv, Cp ! ! Local variables integer :: k, iterate real :: T1, Tt real, dimension( kbot:ktop) :: rst real, dimension( kbot:ktop) :: Tair, rc, rt, rv ! do k = kbot,ktop T1 = thetal(k) * piex(k) ! First guess T is just thetal converted to T Tair(k) = T1 rt(k) = qt(k) / (1. - qt(k)) do iterate = 1,20 rst(k) = rsat(p(k),Tair(k),ep2) rc(k) = max(rt(k) - rst(k), 0.) Tt = 0.7*Tair(k) + 0.3*T1 * (1.+Lv*rc(k) / (Cp*max(Tair(k),253.))) if ( abs(Tt - Tair(k)) < 0.001) GOTO 100 Tair(k) = Tt end do 100 continue rv(k) = rt(k) - rc(k) qv(k) = rv(k) / (1. + rv(k)) qc(k) = rc(k) / (1. + rc(k)) theta(k) = Tair(k) / piex(k) end do ! k loop return end subroutine thlqt2thqvqc ! !-------------------------------------------------------------------- ! subroutine findhct_te( thetavenv,thetaparin,qpar, &,1 rpar,hdidx,paridx,zm,hct,hctidx,p,piex,ep2,kbot,ktop) ! Calculates the cloud top height (limit of convection) for the ! updraft properties. hct is the level at which a parcel lifted ! at the moist adiabatic rate where it is saturated and at the dry ! adiabatic rate otherwise, first has thetav cooler than the environment. ! Loops start at LCL (paridx). implicit none integer, intent(in) :: kbot, ktop integer, intent(in) :: paridx, hdidx real, intent(in) :: ep2 real, dimension( kbot:ktop), intent(in) :: thetavenv real, dimension( kbot:ktop), intent(in) :: thetaparin real, dimension( kbot:ktop), intent(in) :: qpar, rpar, zm, p, piex real, intent(out) :: hct integer, intent(out) :: hctidx ! Local variables integer k real, dimension( kbot:ktop) :: thetapar, thetavpar, qlpar, Tpar, rsatpar real, dimension( kbot:ktop) :: qsatpar real :: gammas, TparC thetapar(paridx) = thetaparin(paridx) Tpar(paridx) = thetapar(paridx) * piex(paridx) hctidx = ktop ! In case hct not found do k = paridx+1,ktop ! Find saturation mixing ratio at parcel temperature rsatpar(k) = rsat(p(k-1),Tpar(k-1),ep2) qsatpar(k) = rsatpar(k) / (1. + rsatpar(k)) ! When parcel is unsaturated, its temperature changes ! at dry adiabatic rate (in other words, theta is constant). if (rpar(k) <= rsatpar(k)) then thetapar(k) = thetapar(k-1) Tpar(k) = thetapar(k) * piex(k) thetavpar(k) = thetapar(k) * (1.+0.608*qpar(k)) else ! When parcel is saturated, its temperature changes at ! moist adiabatic rate ! Calculate moist adiabatic lapse rate according to Gill A4.12 ! Requires T in deg.C TparC = Tpar(k-1) - 273.15 gammas = 6.4 - 0.12 * TparC + 2.5e-5 * TparC**3. + (-2.4 + 1.e-3 * (TparC-5.)**2.) * (1. - p(k-1)/100000.) Tpar(k) = Tpar(k-1) - gammas/1000. * (zm(k)-zm(k-1)) thetapar(k) = Tpar(k) / piex(k) qlpar(k) = qpar(k) - qsatpar(k) ! Liquid water in parcel thetavpar(k) = thetapar(k) * (1. + 0.608 * qsatpar(k) - qlpar(k)) end if if (thetavenv(k) >= thetavpar(k)) then hctidx = k goto 1000 end if end do 1000 hct = zm(hctidx) return end subroutine findhct_te ! !-------------------------------------------------------------------- ! real function rsat(p,T,ep2) 6 ! Calculates the saturation mixing ratio with respect to liquid water ! Arguments are pressure (Pa) and absolute temperature (K) ! Uses the formula from the ARM intercomparison setup. ! Converted from Matlab by WA 7/28/08 implicit none real p, T, ep2 real temp, x real, parameter :: c0 = 0.6105851e+3 real, parameter :: c1 = 0.4440316e+2 real, parameter :: c2 = 0.1430341e+1 real, parameter :: c3 = 0.2641412e-1 real, parameter :: c4 = 0.2995057e-3 real, parameter :: c5 = 0.2031998e-5 real, parameter :: c6 = 0.6936113e-8 real, parameter :: c7 = 0.2564861e-11 real, parameter :: c8 = -0.3704404e-13 temp = T - 273.15 x =c0+temp*(c1+temp*(c2+temp*(c3+temp*(c4+temp*(c5+temp*(c6+temp*(c7+temp*c8))))))) rsat = ep2*x/(p-x) return end function rsat ! !-------------------------------------------------------------------- ! subroutine solve_implicit_temf(Khlf,psi_n,srf_flux,dzm,dzt,kbot,ktop,dt,print_flag) 5,1 ! Implicit solution of vertical diffusion for conserved variable ! psi given diffusivity Khlf on turbulence levels, ! and surface flux srf_flux. ! dzm is delta_z of mass levels, dzt is delta_z of turbulence levels. ! dt is timestep (s). implicit none integer :: kbot, ktop logical :: print_flag real :: srf_flux, dt real, dimension( kbot:ktop ), intent(in ) :: Khlf real, dimension( kbot:ktop ), intent(in ) :: dzm, dzt real, dimension( kbot:ktop ), intent(inout) :: psi_n ! ! Local variables integer :: k real, dimension( kbot:ktop ) :: AU, BU, CU, YU ! AU(kbot) = Khlf(kbot) / (dzm(kbot)*dzt(kbot)) BU(kbot) = -1.0/dt - Khlf(kbot+1)/(dzm(kbot+1)*dzt(kbot+1)) CU(kbot) = Khlf(kbot+1)/(dzm(kbot)*dzt(kbot+1)) YU(kbot) = -psi_n(kbot)/dt - srf_flux/dzm(kbot) do k = kbot+1,ktop-1 ! Subdiagonal (A) vector AU(k) = Khlf(k) / (dzm(k) * dzt(k)) ! Main diagonal (B) vector BU(k) = -1.0/dt - (Khlf(k)/dzt(k) + Khlf(k+1)/dzt(k+1)) / dzm(k) ! Superdiagonal (C) vector CU(k) = Khlf(k+1) / (dzm(k)*dzt(k+1)) ! Result vector YU(k) = -psi_n(k)/dt end do ! k loop AU(ktop) = 0. BU(ktop) = -1.0 / dt YU(ktop) = -psi_n(ktop) / dt ! Compute result with tridiagonal routine psi_n = trid(AU,BU,CU,YU,kbot,ktop) return end subroutine solve_implicit_temf ! !-------------------------------------------------------------------- ! function trid(a,b,c,r,kbot,ktop) 1 ! Solves tridiagonal linear system. ! Inputs are subdiagonal vector a, main diagonal b, superdiagonal c, ! result r, column top and bottom indices kbot and ktop. ! Originally from Numerical Recipes section 2.4. implicit none real, dimension( kbot:ktop ) :: trid integer :: kbot, ktop real, dimension( kbot:ktop ), intent(in ) :: a, b, c, r ! ! Local variables integer :: k real :: bet real, dimension( kbot:ktop ) :: gam, u ! bet = b(kbot) u(kbot) = r(kbot) / bet do k = kbot+1,ktop gam(k) = c(k-1) / bet bet = b(k) - a(k)*gam(k) u(k) = (r(k) - a(k)*u(k-1)) / bet end do do k = ktop-1,kbot,-1 u(k) = u(k) - gam(k+1)*u(k+1) end do trid = u return end function trid ! !-------------------------------------------------------------------- ! subroutine temfinit(rublten,rvblten,rthblten,rqvblten, & 1 rqcblten,rqiblten,p_qi,p_first_scalar, & restart, allowed_to_read, & te_temf, cf3d_temf, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) !------------------------------------------------------------------- implicit none !------------------------------------------------------------------- ! logical , intent(in) :: restart, allowed_to_read integer , intent(in) :: ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte integer , intent(in) :: p_qi,p_first_scalar real , dimension( ims:ime , kms:kme , jms:jme ), intent(out) :: & rublten, & rvblten, & rthblten, & rqvblten, & rqcblten, & rqiblten, & te_temf, & cf3d_temf ! Local variables integer :: i, j, k, itf, jtf, ktf real, parameter :: TEmin = 1e-3 ! jtf = min0(jte,jde-1) ktf = min0(kte,kde-1) itf = min0(ite,ide-1) ! if(.not.restart)then do j = jts,jtf do k = kts,ktf do i = its,itf rublten(i,k,j) = 0. rvblten(i,k,j) = 0. rthblten(i,k,j) = 0. rqvblten(i,k,j) = 0. rqcblten(i,k,j) = 0. te_temf(i,k,j) = TEmin cf3d_temf(i,k,j) = 0. enddo enddo enddo endif ! if (p_qi .ge. p_first_scalar .and. .not.restart) then do j = jts,jtf do k = kts,ktf do i = its,itf rqiblten(i,k,j) = 0. enddo enddo enddo endif ! end subroutine temfinit !------------------------------------------------------------------- end module module_bl_temf