!WRF:MODEL_LAYER:PHYSICS
!
MODULE module_cu_g3 2
CONTAINS
!-------------------------------------------------------------
SUBROUTINE G3DRV( & 1,1
DT,itimestep,DX &
,rho,RAINCV,PRATEC &
,U,V,t,W,q,p,pi &
,dz8w,p8w,XLV,CP,G,r_v &
,htop,hbot &
,CU_ACT_FLAG,warm_rain &
,APR_GR,APR_W,APR_MC,APR_ST,APR_AS &
,APR_CAPMA,APR_CAPME,APR_CAPMI &
,MASS_FLUX,XF_ENS,PR_ENS,HT,XLAND,gsw,edt_out &
,GDC,GDC2 ,kpbl,k22_shallow,kbcon_shallow &
,ktop_shallow,xmb_shallow,ktop_deep &
,cugd_tten,cugd_qvten ,cugd_qcten &
,cugd_ttens,cugd_qvtens,cugd_avedx,imomentum &
,ensdim,maxiens,maxens,maxens2,maxens3,ichoice &
,ishallow_g3,ids,ide, jds,jde, kds,kde &
,ims,ime, jms,jme, kms,kme &
,ips,ipe, jps,jpe, kps,kpe &
,its,ite, jts,jte, kts,kte &
,periodic_x,periodic_y &
,RQVCUTEN,RQCCUTEN,RQICUTEN &
,RQVFTEN,RTHFTEN,RTHCUTEN &
,rqvblten,rthblten &
,F_QV ,F_QC ,F_QR ,F_QI ,F_QS &
#if ( WRF_DFI_RADAR == 1 )
! Optional CAP suppress option
,do_capsuppress,cap_suppress_loc &
#endif
)
!-------------------------------------------------------------
IMPLICIT NONE
!-------------------------------------------------------------
INTEGER, INTENT(IN ) :: &
ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
ips,ipe, jps,jpe, kps,kpe, &
its,ite, jts,jte, kts,kte
LOGICAL periodic_x,periodic_y
integer, parameter :: ens4_spread = 3 ! max(3,cugd_avedx)
integer, parameter :: ens4=ens4_spread*ens4_spread
integer, intent (in ) :: &
ensdim,maxiens,maxens,maxens2,maxens3,ichoice
INTEGER, INTENT(IN ) :: ITIMESTEP,cugd_avedx, &
ishallow_g3,imomentum
LOGICAL, INTENT(IN ) :: warm_rain
REAL, INTENT(IN ) :: XLV, R_v
REAL, INTENT(IN ) :: CP,G
REAL, DIMENSION( ims:ime , kms:kme , jms:jme ) , &
INTENT(IN ) :: &
U, &
V, &
W, &
pi, &
t, &
q, &
p, &
dz8w, &
p8w, &
rho
REAL, DIMENSION( ims:ime , kms:kme , jms:jme ) , &
OPTIONAL , &
INTENT(INOUT ) :: &
GDC,GDC2
REAL, DIMENSION( ims:ime , jms:jme ),INTENT(IN) :: GSW,HT,XLAND
INTEGER, DIMENSION( ims:ime , jms:jme ),INTENT(IN) :: KPBL
INTEGER, DIMENSION( ims:ime , jms:jme ),INTENT(INOUT) :: k22_shallow, &
kbcon_shallow,ktop_shallow
INTEGER, DIMENSION( ims:ime , jms:jme ),INTENT( OUT) :: ktop_deep
!
REAL, INTENT(IN ) :: DT, DX
!
REAL, DIMENSION( ims:ime , jms:jme ), &
INTENT(INOUT) :: pratec,RAINCV, MASS_FLUX, &
APR_GR,APR_W,APR_MC,APR_ST,APR_AS, &
edt_out,APR_CAPMA,APR_CAPME,APR_CAPMI, &
htop,hbot,xmb_shallow
!+lxz
! REAL, DIMENSION( ims:ime , jms:jme ) :: & !, INTENT(INOUT) :: &
! HTOP, &! highest model layer penetrated by cumulus since last reset in radiation_driver
! HBOT ! lowest model layer penetrated by cumulus since last reset in radiation_driver
! ! HBOT>HTOP follow physics leveling convention
LOGICAL, DIMENSION( ims:ime , jms:jme ), &
INTENT(INOUT) :: CU_ACT_FLAG
!
! Optionals
!
REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), &
OPTIONAL, &
INTENT(INOUT) :: RTHFTEN, &
cugd_tten,cugd_qvten,cugd_qcten, &
cugd_ttens,cugd_qvtens, &
RQVFTEN
REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), &
OPTIONAL, &
INTENT(INOUT) :: &
RTHCUTEN, &
RQVCUTEN, &
RQVBLTEN, &
RTHBLTEN, &
RQCCUTEN, &
RQICUTEN
!
! Flags relating to the optional tendency arrays declared above
! Models that carry the optional tendencies will provdide the
! optional arguments at compile time; these flags all the model
! to determine at run-time whether a particular tracer is in
! use or not.
!
LOGICAL, OPTIONAL :: &
F_QV &
,F_QC &
,F_QR &
,F_QI &
,F_QS
#if ( WRF_DFI_RADAR == 1 )
!
! option of cap suppress:
! do_capsuppress = 1 do
! do_capsuppress = other don't
!
!
INTEGER, INTENT(IN ) ,OPTIONAL :: do_capsuppress
REAL, DIMENSION( ims:ime, jms:jme ),INTENT(IN ),OPTIONAL :: cap_suppress_loc
REAL, DIMENSION( its:ite ) :: cap_suppress_j
#endif
! LOCAL VARS
real, dimension(ims:ime,jms:jme,1:ensdim),intent(inout) :: &
xf_ens,pr_ens
real, dimension ( its:ite , jts:jte , 1:ensdim) :: &
massflni,xfi_ens,pri_ens
REAL, DIMENSION( its:ite , jts:jte ) :: MASSI_FLX, &
APRi_GR,APRi_W,APRi_MC,APRi_ST,APRi_AS, &
edti_out,APRi_CAPMA,APRi_CAPME,APRi_CAPMI,gswi
real, dimension (its:ite,kts:kte) :: &
SUBT,SUBQ,OUTT,OUTQ,OUTQC,phh,subm,cupclw,dhdt, &
outts,outqs
real, dimension (its:ite) :: &
pret, ter11, aa0, fp,xlandi
!+lxz
integer, dimension (its:ite) :: &
kbcon, ktop,kpbli,k22s,kbcons,ktops
!.lxz
integer, dimension (its:ite,jts:jte) :: &
iact_old_gr
integer :: iens,ibeg,iend,jbeg,jend,n,nn,ens4n
integer :: ibegh,iendh,jbegh,jendh
integer :: ibegc,iendc,jbegc,jendc
!
! basic environmental input includes moisture convergence (mconv)
! omega (omeg), windspeed (us,vs), and a flag (aaeq) to turn off
! convection for this call only and at that particular gridpoint
!
real, dimension (its:ite,kts:kte) :: &
T2d,q2d,PO,P2d,US,VS,tn,qo,tshall,qshall
real, dimension (ips-2:ipe+2,kps:kpe,jps-2:jpe+2) :: &
ave_f_t,ave_f_q
real, dimension (its:ite,kts:kte,1:ens4) :: &
omeg,tx,qx
real, dimension (its:ite) :: &
Z1,PSUR,AAEQ,direction,cuten,umean,vmean,pmean,xmbs
real, dimension (its:ite,1:ens4) :: &
mconv
INTEGER :: i,j,k,ICLDCK,ipr,jpr
REAL :: tcrit,tscl_KF,dp,dq,sub_spread,subcenter
INTEGER :: itf,jtf,ktf,iss,jss,nbegin,nend
INTEGER :: high_resolution
REAL :: rkbcon,rktop !-lxz
! ruc variable
real, dimension (its:ite) :: tkm
! A. Betts for shallow convection: suggestion for the KF timescale < DELTAX / 25 m/s
tscl_kf=dx/25.
!
! write(0,*)'ishallow = ',ishallow_g3
high_resolution=0
if(cugd_avedx.gt.1) high_resolution=1
subcenter=0.
! subcenter=1./float(cugd_avedx)
sub_spread=max(1.,float(cugd_avedx*cugd_avedx-1))
sub_spread=(1.-subcenter)/sub_spread
iens=1
ipr=43
jpr=1
ipr=0
jpr=0
! if(itimestep.eq.8)then
! ipr=37
! jpr=16
! endif
IF ( periodic_x ) THEN
ibeg=max(its,ids)
iend=min(ite,ide-1)
ibegc=max(its,ids)
iendc=min(ite,ide-1)
ELSE
ibeg=max(its,ids)
iend=min(ite,ide-1)
ibegc=max(its,ids+4)
iendc=min(ite,ide-5)
END IF
IF ( periodic_y ) THEN
jbeg=max(jts,jds)
jend=min(jte,jde-1)
jbegc=max(jts,jds)
jendc=min(jte,jde-1)
ELSE
jbeg=max(jts,jds)
jend=min(jte,jde-1)
jbegc=max(jts,jds+4)
jendc=min(jte,jde-5)
END IF
do j=jts,jte
do i=its,ite
k22_shallow(i,j)=0
kbcon_shallow(i,j)=0
ktop_shallow(i,j)=0
xmb_shallow(i,j)=0
ktop_deep(i,j)=0
enddo
enddo
tcrit=258.
ave_f_t=0.
ave_f_q=0.
itf=MIN(ite,ide-1)
ktf=MIN(kte,kde-1)
jtf=MIN(jte,jde-1)
!
#if ( EM_CORE == 1 )
if(high_resolution.eq.1)then
!
! calculate these on the halo...the incominh tendencies have been exchanged on a 24pt halo
! only neede for high resolution run
!
ibegh=its
jbegh=jts
iendh=ite
jendh=jte
if(its.eq.ips)ibegh=max(its-1,ids)
if(jts.eq.jps)jbegh=max(jts-1,jds)
if(jte.eq.jpe)jendh=min(jte+1,jde-1)
if(ite.eq.ipe)iendh=min(ite+1,ide-1)
DO J = jbegh,jendh
DO k= kts,ktf
DO I= ibegh,iendh
ave_f_t(i,k,j)=(rthften(i-1,k,j-1)+rthften(i-1,k,j) + rthften(i-1,k,j+1)+ &
rthften(i,k,j-1) +rthften(i,k,j) +rthften(i,k,j+1)+ &
rthften(i+1,k,j-1) +rthften(i+1,k,j) +rthften(i+1,k,j+1))/9.
ave_f_q(i,k,j)=(rqvften(i-1,k,j-1)+rqvften(i-1,k,j) + rqvften(i-1,k,j+1)+ &
rqvften(i,k,j-1) +rqvften(i,k,j) +rqvften(i,k,j+1)+ &
rqvften(i+1,k,j-1) +rqvften(i+1,k,j) +rqvften(i+1,k,j+1))/9.
! ave_f_t(i,k,j)=rthften(i,k,j)
! ave_f_q(i,k,j)=rqvften(i,k,j)
ENDDO
ENDDO
ENDDO
endif
#endif
DO 100 J = jts,jtf
DO n= 1,ensdim
DO I= its,itf
xfi_ens(i,j,n)=0.
pri_ens(i,j,n)=0.
! xfi_ens(i,j,n)=xf_ens(i,j,n)
! pri_ens(i,j,n)=pr_ens(i,j,n)
ENDDO
ENDDO
DO I= its,itf
kbcon(i)=0
ktop(i)=0
tkm(i)=0.
HBOT(I,J) =REAL(KTE)
HTOP(I,J) =REAL(KTS)
iact_old_gr(i,j)=0
mass_flux(i,j)=0.
massi_flx(i,j)=0.
raincv(i,j)=0.
pratec (i,j)=0.
edt_out(i,j)=0.
edti_out(i,j)=0.
gswi(i,j)=gsw(i,j)
xlandi(i)=xland(i,j)
APRi_GR(i,j)=apr_gr(i,j)
APRi_w(i,j)=apr_w(i,j)
APRi_mc(i,j)=apr_mc(i,j)
APRi_st(i,j)=apr_st(i,j)
APRi_as(i,j)=apr_as(i,j)
APRi_capma(i,j)=apr_capma(i,j)
APRi_capme(i,j)=apr_capme(i,j)
APRi_capmi(i,j)=apr_capmi(i,j)
CU_ACT_FLAG(i,j) = .true.
ENDDO
do k=kts,kte
DO I= its,itf
cugd_tten(i,k,j)=0.
cugd_ttens(i,k,j)=0.
cugd_qvten(i,k,j)=0.
cugd_qvtens(i,k,j)=0.
cugd_qcten(i,k,j)=0.
ENDDO
ENDDO
DO n=1,ens4
DO I= its,itf
mconv(i,n)=0.
ENDDO
do k=kts,kte
DO I= its,itf
omeg(i,k,n)=0.
tx(i,k,n)=0.
qx(i,k,n)=0.
ENDDO
ENDDO
ENDDO
DO k=1,ensdim
DO I= its,itf
massflni(i,j,k)=0.
ENDDO
ENDDO
! put hydrostatic pressure on half levels
DO K=kts,ktf
DO I=ITS,ITF
phh(i,k) = p(i,k,j)
ENDDO
ENDDO
DO I=ITS,ITF
PSUR(I)=p8w(I,1,J)*.01
! PSUR(I)=p(I,1,J)*.01
TER11(I)=HT(i,j)
aaeq(i)=0.
direction(i)=0.
pret(i)=0.
umean(i)=0.
vmean(i)=0.
pmean(i)=0.
kpbli(i)=kpbl(i,j)
ENDDO
! if(j.eq.jpr)write(0,*)'psur(ipr),ter11(ipr),kpbli(ipr)'
! if(j.eq.jpr)write(0,*)psur(ipr),ter11(ipr),kpbli(ipr),r_v
DO K=kts,ktf
DO I=ITS,ITF
po(i,k)=phh(i,k)*.01
subm(i,k)=0.
P2d(I,K)=PO(i,k)
US(I,K) =u(i,k,j)
VS(I,K) =v(i,k,j)
T2d(I,K)=t(i,k,j)
q2d(I,K)=q(i,k,j)
IF(Q2d(I,K).LT.1.E-08)Q2d(I,K)=1.E-08
SUBT(I,K)=0.
SUBQ(I,K)=0.
OUTT(I,K)=0.
OUTQ(I,K)=0.
OUTQC(I,K)=0.
OUTTS(I,K)=0.
OUTQS(I,K)=0.
TN(I,K)=t2d(i,k)+RTHFTEN(i,k,j)*dt
QO(I,K)=q2d(i,k)+RQVFTEN(i,k,j)*dt
TSHALL(I,K)=t2d(i,k)+RTHBLTEN(i,k,j)*pi(i,k,j)*dt
DHDT(I,K)=cp*RTHBLTEN(i,k,j)*pi(i,k,j)+ XLV*RQVBLTEN(i,k,j)
QSHALL(I,K)=q2d(i,k)+RQVBLTEN(i,k,j)*dt
if(high_resolution.eq.1)then
TN(I,K)=t2d(i,k)+ave_f_t(i,k,j)*dt
QO(I,K)=q2d(i,k)+ave_f_q(i,k,j)*dt
endif
IF(TN(I,K).LT.200.)TN(I,K)=T2d(I,K)
IF(QO(I,K).LT.1.E-08)QO(I,K)=1.E-08
! if(i.eq.ipr.and.j.eq.jpr)then
! write(0,123)k,p2d(i,k),t2d(i,k),tn(i,k),q2d(i,k),QO(i,k),RTHBLTEN(i,k,j),RQVBLTEN(i,k,j)
! endif
ENDDO
ENDDO
123 format(1x,i2,f8.0,1x,2(1x,f8.3),4(1x,e12.4))
ens4n=0
nbegin=0
nend=0
if(ens4_spread.gt.1)then
nbegin=-ens4_spread/2
nend=ens4_spread/2
endif
do nn=nbegin,nend,1
jss=max(j+nn,jds+0)
jss=min(jss,jde-1)
do n=nbegin,nend,1
ens4n=ens4n+1
DO K=kts,ktf
DO I=ITS,ITF
iss=max(i+n,ids+0)
iss=min(iss,ide-1)
omeg(I,K,ens4n)= -g*rho(i,k,j)*w(iss,k,jss)
! omeg(I,K,ens4n)= -g*rho(i,k,j)*w(i,k,j)
Tx(I,K,ens4n)=t2d(i,k)+RTHFTEN(iss,k,jss)*dt
! Tx(I,K,ens4n)=t2d(i,k)+RTHFTEN(i,k,j)*dt
if(high_resolution.eq.1)Tx(I,K,ens4n)=t2d(i,k)+ave_f_t(iss,k,jss)*dt
IF(Tx(I,K,ens4n).LT.200.)Tx(I,K,ens4n)=T2d(I,K)
Qx(I,K,ens4n)=q2d(i,k)+RQVFTEN(iss,k,jss)*dt
Qx(I,K,ens4n)=q2d(i,k)+RQVFTEN(i,k,j)*dt
if(high_resolution.eq.1)qx(I,K,ens4n)=q2d(i,k)+ave_f_q(iss,k,jss)*dt
IF(Qx(I,K,ens4n).LT.1.E-08)Qx(I,K,ens4n)=1.E-08
enddo
enddo
enddo !n
enddo !nn
do k= kts+1,ktf-1
DO I = its,itf
if((p2d(i,1)-p2d(i,k)).gt.150.and.p2d(i,k).gt.300)then
dp=-.5*(p2d(i,k+1)-p2d(i,k-1))
umean(i)=umean(i)+us(i,k)*dp
vmean(i)=vmean(i)+vs(i,k)*dp
pmean(i)=pmean(i)+dp
endif
enddo
enddo
DO I = its,itf
umean(i)=umean(i)/pmean(i)
vmean(i)=vmean(i)/pmean(i)
direction(i)=(atan2(umean(i),vmean(i))+3.1415926)*57.29578
if(direction(i).gt.360.)direction(i)=direction(i)-360.
ENDDO
do n=1,ens4
DO K=kts,ktf-1
DO I = its,itf
dq=(q2d(i,k+1)-q2d(i,k))
mconv(i,n)=mconv(i,n)+omeg(i,k,n)*dq/g
enddo
ENDDO
ENDDO
do n=1,ens4
DO I = its,itf
if(mconv(i,n).lt.0.)mconv(i,n)=0.
ENDDO
ENDDO
!
!---- CALL CUMULUS PARAMETERIZATION
!
#if ( WRF_DFI_RADAR == 1 )
if(do_capsuppress == 1 ) then
DO I= its,itf
cap_suppress_j(i)=cap_suppress_loc(i,j)
ENDDO
endif
#endif
CALL CUP_enss_3d
(outqc,j,AAEQ,T2d,Q2d,TER11,subm,TN,QO,PO,PRET,&
P2d,OUTT,OUTQ,DT,itimestep,tkm,PSUR,US,VS,tcrit,iens,tx,qx, &
tshall,qshall,kpbli,DHDT,outts,outqs,tscl_kf, &
k22s,kbcons,ktops,xmbs, &
mconv,massflni,iact_old_gr,omeg,direction,MASSi_FLX, &
maxiens,maxens,maxens2,maxens3,ensdim, &
APRi_GR,APRi_W,APRi_MC,APRi_ST,APRi_AS, &
APRi_CAPMA,APRi_CAPME,APRi_CAPMI,kbcon,ktop,cupclw, &
xfi_ens,pri_ens,XLANDi,gswi,edti_out,subt,subq, &
! ruc lv_p,rv_p,cpd_p,g0_p,ichoice,ipr,jpr, &
xlv,r_v,cp,g,ichoice,ipr,jpr,ens4,high_resolution, &
ishallow_g3,itf,jtf,ktf, &
its,ite, jts,jte, kts,kte &
#if ( WRF_DFI_RADAR == 1 )
,do_capsuppress,cap_suppress_j &
#endif
)
if(j.lt.jbegc.or.j.gt.jendc)go to 100
DO I=ibegc,iendc
xmb_shallow(i,j)=xmbs(i)
k22_shallow(i,j)=k22s(i)
kbcon_shallow(i,j)=kbcons(i)
ktop_shallow(i,j)=ktops(i)
ktop_deep(i,j)=ktop(i)
cuten(i)=0.
if(pret(i).gt.0.)then
cuten(i)=1.
! raincv(i,j)=pret(i)*dt
endif
ENDDO
! if(j.eq.jpr)write(0,*)'precip,ktop,kbcon = ',pret(ipr),ktop(ipr),kbcon(ipr)
DO I=ibegc,iendc
DO K=kts,ktf
cugd_ttens(I,K,J)=subt(i,k)*cuten(i)*sub_spread
cugd_qvtens(I,K,J)=subq(i,k)*cuten(i)*sub_spread
! cugd_tten(I,K,J)=outt(i,k)*cuten(i)
! cugd_qvten(I,K,J)=outq(i,k)*cuten(i)
cugd_tten(I,K,J)=outts(i,k)+outt(i,k)*cuten(i)
cugd_qvten(I,K,J)=outqs(i,k)+outq(i,k)*cuten(i)
cugd_qcten(I,K,J)=outqc(i,k)*cuten(i)
! if(i.eq.ipr.and.j.eq.jpr)then
! write(0,*)subt(i,k)+outt(i,k),subq(i,k)+outq(i,k),outts(i,k),outqs(i,k)
! endif
ENDDO
ENDDO
DO I=ibegc,iendc
if(pret(i).gt.0.)then
raincv(i,j)=pret(i)*dt
pratec(i,j)=pret(i)
rkbcon = kte+kts - kbcon(i)
rktop = kte+kts - ktop(i)
if (ktop(i) > HTOP(i,j)) HTOP(i,j) = ktop(i)+.001
if (kbcon(i) < HBOT(i,j)) HBOT(i,j) = kbcon(i)+.001
endif
ENDDO
DO n= 1,ensdim
DO I= ibegc,iendc
xf_ens(i,j,n)=xfi_ens(i,j,n)
pr_ens(i,j,n)=pri_ens(i,j,n)
ENDDO
ENDDO
DO I= ibegc,iendc
APR_GR(i,j)=apri_gr(i,j)
APR_w(i,j)=apri_w(i,j)
APR_mc(i,j)=apri_mc(i,j)
APR_st(i,j)=apri_st(i,j)
APR_as(i,j)=apri_as(i,j)
APR_capma(i,j)=apri_capma(i,j)
APR_capme(i,j)=apri_capme(i,j)
APR_capmi(i,j)=apri_capmi(i,j)
mass_flux(i,j)=massi_flx(i,j)
edt_out(i,j)=edti_out(i,j)
ENDDO
IF(PRESENT(RQCCUTEN)) THEN
IF ( F_QC ) THEN
DO K=kts,ktf
DO I=ibegc,iendc
RQCCUTEN(I,K,J)=outqc(I,K)*cuten(i)
IF ( PRESENT( GDC ) ) GDC(I,K,J)=CUPCLW(I,K)*cuten(i)
IF ( PRESENT( GDC2 ) ) GDC2(I,K,J)=0.
ENDDO
ENDDO
ENDIF
ENDIF
!...... QSTEN STORES GRAUPEL TENDENCY IF IT EXISTS, OTHERISE SNOW (V2)
IF(PRESENT(RQICUTEN).AND.PRESENT(RQCCUTEN))THEN
IF (F_QI) THEN
DO K=kts,ktf
DO I=ibegc,iendc
if(t2d(i,k).lt.258.)then
RQICUTEN(I,K,J)=outqc(I,K)*cuten(i)
cugd_qcten(i,k,j)=0.
RQCCUTEN(I,K,J)=0.
IF ( PRESENT( GDC2 ) ) GDC2(I,K,J)=CUPCLW(I,K)*cuten(i)
else
RQICUTEN(I,K,J)=0.
RQCCUTEN(I,K,J)=outqc(I,K)*cuten(i)
IF ( PRESENT( GDC ) ) GDC(I,K,J)=CUPCLW(I,K)*cuten(i)
endif
ENDDO
ENDDO
ENDIF
ENDIF
100 continue
END SUBROUTINE G3DRV
SUBROUTINE CUP_enss_3d(OUTQC,J,AAEQ,T,Q,Z1,sub_mas, & 1,62
TN,QO,PO,PRE,P,OUTT,OUTQ,DTIME,ktau,tkmax,PSUR,US,VS, &
TCRIT,iens,tx,qx, &
tshall,qshall,kpbl,dhdt,outts,outqs,tscl_kf, &
k23,kbcon3,ktop3,xmb3, &
mconv,massfln,iact, &
omeg,direction,massflx,maxiens, &
maxens,maxens2,maxens3,ensdim, &
APR_GR,APR_W,APR_MC,APR_ST,APR_AS, &
APR_CAPMA,APR_CAPME,APR_CAPMI,kbcon,ktop,cupclw, & !-lxz
xf_ens,pr_ens,xland,gsw,edt_out,subt,subq, &
xl,rv,cp,g,ichoice,ipr,jpr,ens4,high_resolution, &
ishallow_g3,itf,jtf,ktf, &
its,ite, jts,jte, kts,kte &
#if ( WRF_DFI_RADAR == 1 )
! Optional CAP suppress option
,do_capsuppress,cap_suppress_j &
#endif
)
IMPLICIT NONE
integer &
,intent (in ) :: &
itf,jtf,ktf,ktau, &
its,ite, jts,jte, kts,kte,ipr,jpr,ens4,high_resolution
integer, intent (in ) :: &
j,ensdim,maxiens,ishallow_g3,maxens,maxens2,maxens3,ichoice,iens
!
!
!
real, dimension (its:ite,jts:jte,1:ensdim) &
,intent (inout) :: &
massfln,xf_ens,pr_ens
real, dimension (its:ite,jts:jte) &
,intent (inout ) :: &
APR_GR,APR_W,APR_MC,APR_ST,APR_AS,APR_CAPMA, &
APR_CAPME,APR_CAPMI,massflx,edt_out
real, dimension (its:ite,jts:jte) &
,intent (in ) :: &
gsw
integer, dimension (its:ite,jts:jte) &
,intent (in ) :: &
iact
! outtem = output temp tendency (per s)
! outq = output q tendency (per s)
! outqc = output qc tendency (per s)
! pre = output precip
real, dimension (its:ite,kts:kte) &
,intent (inout ) :: &
DHDT,OUTT,OUTQ,OUTQC,subt,subq,sub_mas,cupclw,outts,outqs
real, dimension (its:ite) &
,intent (out ) :: &
pre,xmb3
integer, dimension (its:ite) &
,intent (out ) :: &
kbcon,ktop,k23,kbcon3,ktop3
integer, dimension (its:ite) &
,intent (in ) :: &
kpbl
!
! basic environmental input includes moisture convergence (mconv)
! omega (omeg), windspeed (us,vs), and a flag (aaeq) to turn off
! convection for this call only and at that particular gridpoint
!
real, dimension (its:ite,kts:kte) &
,intent (in ) :: &
T,PO,P,US,VS,tn,tshall,qshall
real, dimension (its:ite,kts:kte,1:ens4) &
,intent (inout ) :: &
omeg,tx,qx
real, dimension (its:ite,kts:kte) &
,intent (inout) :: &
Q,QO
real, dimension (its:ite) &
,intent (in ) :: &
Z1,PSUR,AAEQ,direction,tkmax,xland
real, dimension (its:ite,1:ens4) &
,intent (in ) :: &
mconv
real &
,intent (in ) :: &
dtime,tcrit,xl,cp,rv,g,tscl_kf
#if ( WRF_DFI_RADAR == 1 )
!
! option of cap suppress:
! do_capsuppress = 1 do
! do_capsuppress = other don't
!
!
INTEGER, INTENT(IN ) ,OPTIONAL :: do_capsuppress
REAL, DIMENSION( its:ite ),INTENT(IN ) ,OPTIONAL :: cap_suppress_j
#endif
!
! local ensemble dependent variables in this routine
!
real, dimension (its:ite,1:maxens) :: &
xaa0_ens
real, dimension (1:maxens) :: &
mbdt_ens
real, dimension (1:maxens2) :: &
edt_ens
real, dimension (its:ite,1:maxens2) :: &
edtc
real, dimension (its:ite,kts:kte,1:maxens2) :: &
dellat_ens,dellaqc_ens,dellaq_ens,pwo_ens,subt_ens,subq_ens
!
!
!
!***************** the following are your basic environmental
! variables. They carry a "_cup" if they are
! on model cloud levels (staggered). They carry
! an "o"-ending (z becomes zo), if they are the forced
! variables. They are preceded by x (z becomes xz)
! to indicate modification by some typ of cloud
!
! z = heights of model levels
! q = environmental mixing ratio
! qes = environmental saturation mixing ratio
! t = environmental temp
! p = environmental pressure
! he = environmental moist static energy
! hes = environmental saturation moist static energy
! z_cup = heights of model cloud levels
! q_cup = environmental q on model cloud levels
! qes_cup = saturation q on model cloud levels
! t_cup = temperature (Kelvin) on model cloud levels
! p_cup = environmental pressure
! he_cup = moist static energy on model cloud levels
! hes_cup = saturation moist static energy on model cloud levels
! gamma_cup = gamma on model cloud levels
!
!
! hcd = moist static energy in downdraft
! zd normalized downdraft mass flux
! dby = buoancy term
! entr = entrainment rate
! zd = downdraft normalized mass flux
! entr= entrainment rate
! hcd = h in model cloud
! bu = buoancy term
! zd = normalized downdraft mass flux
! gamma_cup = gamma on model cloud levels
! mentr_rate = entrainment rate
! qcd = cloud q (including liquid water) after entrainment
! qrch = saturation q in cloud
! pwd = evaporate at that level
! pwev = total normalized integrated evaoprate (I2)
! entr= entrainment rate
! z1 = terrain elevation
! entr = downdraft entrainment rate
! jmin = downdraft originating level
! kdet = level above ground where downdraft start detraining
! psur = surface pressure
! z1 = terrain elevation
! pr_ens = precipitation ensemble
! xf_ens = mass flux ensembles
! massfln = downdraft mass flux ensembles used in next timestep
! omeg = omega from large scale model
! mconv = moisture convergence from large scale model
! zd = downdraft normalized mass flux
! zu = updraft normalized mass flux
! dir = "storm motion"
! mbdt = arbitrary numerical parameter
! dtime = dt over which forcing is applied
! iact_gr_old = flag to tell where convection was active
! kbcon = LFC of parcel from k22
! k22 = updraft originating level
! icoic = flag if only want one closure (usually set to zero!)
! dby = buoancy term
! ktop = cloud top (output)
! xmb = total base mass flux
! hc = cloud moist static energy
! hkb = moist static energy at originating level
! mentr_rate = entrainment rate
real, dimension (its:ite,kts:kte) :: &
he3,hes3,qes3,z3,zdo3,zu3_0,hc3_0,dby3_0, &
qes3_cup,q3_cup,he3_cup,hes3_cup,z3_cup,gamma3_cup,t3_cup, &
xhe3,xhes3,xqes3,xz3,xt3,xq3, &
xqes3_cup,xq3_cup,xhe3_cup,xhes3_cup,xz3_cup,xgamma3_cup, &
xt3_cup, &
xdby3,xqc3,xhc3,xqrc3,xzu3, &
dby3,qc3,pw3,hc3,qrc3,zu3,cd3,DELLAH3,DELLAQ3, &
dsubt3,dsubq3,DELLAT3,DELLAQC3
real, dimension (its:ite,kts:kte) :: &
he,hes,qes,z, &
heo,heso,qeso,zo, &
xhe,xhes,xqes,xz,xt,xq, &
qes_cup,q_cup,he_cup,hes_cup,z_cup,p_cup,gamma_cup,t_cup, &
qeso_cup,qo_cup,heo_cup,heso_cup,zo_cup,po_cup,gammao_cup, &
tn_cup, &
xqes_cup,xq_cup,xhe_cup,xhes_cup,xz_cup,xp_cup,xgamma_cup, &
xt_cup, &
dby,qc,qrcd,pwd,pw,hcd,qcd,dbyd,hc,qrc,zu,zd,clw_all, &
dbyo,qco,qrcdo,pwdo,pwo,hcdo,qcdo,dbydo,hco,qrco,zuo,zdo, &
xdby,xqc,xqrcd,xpwd,xpw,xhcd,xqcd,xhc,xqrc,xzu,xzd, &
! cd = detrainment function for updraft
! cdd = detrainment function for downdraft
! dellat = change of temperature per unit mass flux of cloud ensemble
! dellaq = change of q per unit mass flux of cloud ensemble
! dellaqc = change of qc per unit mass flux of cloud ensemble
cd,cdd,scr1,DELLAH,DELLAQ,DELLAT,DELLAQC,dsubt,dsubq
! aa0 cloud work function for downdraft
! edt = epsilon
! aa0 = cloud work function without forcing effects
! aa1 = cloud work function with forcing effects
! xaa0 = cloud work function with cloud effects (ensemble dependent)
! edt = epsilon
real, dimension (its:ite) :: &
aa3_0,aa3,hkb3,qkb3,pwav3,bu3,xaa3,xhkb3, &
hkb3_0,edt,edto,edtx,AA1,AA0,XAA0,HKB, &
HKBO,aad,XHKB,QKB,QKBO,edt3, &
XMB,XPWAV,XPWEV,PWAV,PWEV,PWAVO, &
PWEVO,BU,BUO,cap_max,xland1, &
cap_max_increment,closure_n,cap_max3
real, dimension (its:ite,1:ens4) :: &
axx
integer, dimension (its:ite) :: &
kzdown,KDET,K22,KB,JMIN,kstabi,kstabm,K22x,jmin3,kdet3, & !-lxz
KBCONx,KBx,KTOPx,ierr,ierr2,ierr3,KBMAX,ierr5,ierr5_0
integer :: &
nall,iedt,nens,nens3,ki,I,K,KK,iresult
real :: &
day,dz,mbdt,mbdt_s,entr_rate,radius,entrd_rate,mentr_rate,mentrd_rate, &
zcutdown,edtmax,edtmin,depth_min,zkbmax,z_detr,zktop, &
massfld,dh,cap_maxs,trash,entr_rate3,mentr_rate3
integer :: jmini
logical :: keep_going
real xff_shal(9),blqe,xkshal
day=86400.
do i=its,itf
xmb3(i)=0.
closure_n(i)=16.
xland1(i)=1.
if(xland(i).gt.1.5)xland1(i)=0.
! cap_max_increment(i)=50.
cap_max_increment(i)=25.
enddo
!
!--- specify entrainmentrate and detrainmentrate
!
if(iens.le.4)then
radius=14000.-float(iens)*2000.
else
radius=12000.
endif
!
!--- gross entrainment rate (these may be changed later on in the
!--- program, depending what your detrainment is!!)
!
entr_rate =.2/radius
entr_rate3=.2/200.
!
!--- entrainment of mass
!
mentrd_rate=0.
mentr_rate=entr_rate
mentr_rate3=entr_rate3
!
!--- initial detrainmentrates
!
do k=kts,ktf
do i=its,itf
cupclw(i,k)=0.
cd(i,k)=0.01*entr_rate
cd3(i,k)=entr_rate3
cdd(i,k)=0.
zdo3(i,k)=0.
hcdo(i,k)=0.
qrcdo(i,k)=0.
dellaqc(i,k)=0.
enddo
enddo
!
!--- max/min allowed value for epsilon (ratio downdraft base mass flux/updraft
! base mass flux
!
edtmax=1.
edtmin=.2
!
!--- minimum depth (m), clouds must have
!
depth_min=500.
!
!--- maximum depth (mb) of capping
!--- inversion (larger cap = no convection)
!
! cap_maxs=125.
cap_maxs=75.
DO i=its,itf
kbmax(i)=1
jmin3(i)=0
kdet3(i)=0
aa0(i)=0.
aa3_0(i)=0.
aa1(i)=0.
aa3(i)=0.
aad(i)=0.
edt(i)=0.
edt3(i)=0.
kstabm(i)=ktf-1
IERR(i)=0
IERR2(i)=0
IERR3(i)=0
IERR5(i)=0
IERR5_0(i)=0
enddo
!
!--- first check for upstream convection
!
#if ( WRF_DFI_RADAR == 1 )
if(do_capsuppress == 1) then
do i=its,itf
cap_max(i)=cap_maxs
cap_max3(i)=25.
if(gsw(i,j).lt.1.or.high_resolution.eq.1)cap_max(i)=25.
if (abs(cap_suppress_j(i) - 1.0 ) < 0.1 ) then
cap_max(i)=cap_maxs+75.
elseif (abs(cap_suppress_j(i) - 0.0 ) < 0.1 ) then
cap_max(i)=10.0
endif
iresult=0
enddo
else
do i=its,itf
cap_max(i)=cap_maxs
cap_max3(i)=25.
if(gsw(i,j).lt.1.or.high_resolution.eq.1)cap_max(i)=25.
iresult=0
enddo
endif
do i=its,itf
edt_out(i,j)=cap_max(i)
enddo
#else
do i=its,itf
cap_max(i)=cap_maxs
cap_max3(i)=25.
if(gsw(i,j).lt.1.or.high_resolution.eq.1)cap_max(i)=25.
iresult=0
enddo
#endif
!
!--- max height(m) above ground where updraft air can originate
!
zkbmax=4000.
!
!--- height(m) above which no downdrafts are allowed to originate
!
zcutdown=3000.
!
!--- depth(m) over which downdraft detrains all its mass
!
z_detr=1250.
!
do nens=1,maxens
mbdt_ens(nens)=(float(nens)-3.)*dtime*1.e-3+dtime*5.E-03
enddo
do nens=1,maxens2
edt_ens(nens)=.95-float(nens)*.01
enddo
!
!--- environmental conditions, FIRST HEIGHTS
!
do i=its,itf
if(ierr(i).ne.20)then
do k=1,maxens*maxens2*maxens3
xf_ens(i,j,(iens-1)*maxens*maxens2*maxens3+k)=0.
pr_ens(i,j,(iens-1)*maxens*maxens2*maxens3+k)=0.
enddo
endif
enddo
!
!--- calculate moist static energy, heights, qes
!
call cup_env
(z,qes,he,hes,t,q,p,z1, &
psur,ierr,tcrit,0,xl,cp, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
call cup_env
(zo,qeso,heo,heso,tn,qo,po,z1, &
psur,ierr,tcrit,0,xl,cp, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
!
!--- environmental values on cloud levels
!
call cup_env_clev
(t,qes,q,he,hes,z,p,qes_cup,q_cup,he_cup, &
hes_cup,z_cup,p_cup,gamma_cup,t_cup,psur, &
ierr,z1,xl,rv,cp, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
call cup_env_clev
(tn,qeso,qo,heo,heso,zo,po,qeso_cup,qo_cup, &
heo_cup,heso_cup,zo_cup,po_cup,gammao_cup,tn_cup,psur, &
ierr,z1,xl,rv,cp, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
do i=its,itf
if(aaeq(i).lt.-0.1)then
ierr(i)=20
endif
! if(ierr(i).eq.0)then
!
do k=kts,ktf
if(zo_cup(i,k).gt.zkbmax+z1(i))then
kbmax(i)=k
go to 25
endif
enddo
25 continue
!
!--- level where detrainment for downdraft starts
!
do k=kts,ktf
if(zo_cup(i,k).gt.z_detr+z1(i))then
kdet(i)=k
go to 26
endif
enddo
26 continue
!
! endif
enddo
!
!
!
!------- DETERMINE LEVEL WITH HIGHEST MOIST STATIC ENERGY CONTENT - K22
!
CALL cup_MAXIMI
(HEO_CUP,3,KBMAX,K22,ierr, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
DO 36 i=its,itf
IF(ierr(I).eq.0.)THEN
IF(K22(I).GE.KBMAX(i))ierr(i)=2
endif
36 CONTINUE
!
!--- DETERMINE THE LEVEL OF CONVECTIVE CLOUD BASE - KBCON
!
call cup_kbcon
(cap_max_increment,1,k22,kbcon,heo_cup,heso_cup, &
ierr,kbmax,po_cup,cap_max, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
!
!--- increase detrainment in stable layers
!
CALL cup_minimi
(HEso_cup,Kbcon,kstabm,kstabi,ierr, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
do i=its,itf
IF(ierr(I).eq.0.)THEN
if(kstabm(i)-1.gt.kstabi(i))then
do k=kstabi(i),kstabm(i)-1
cd(i,k)=cd(i,k-1)+.15*entr_rate
if(cd(i,k).gt.1.0*entr_rate)cd(i,k)=1.0*entr_rate
enddo
ENDIF
ENDIF
ENDDO
!
!--- calculate incloud moist static energy
!
call cup_up_he
(k22,hkb,z_cup,cd,mentr_rate,he_cup,hc, &
kbcon,ierr,dby,he,hes_cup,'deep', &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
call cup_up_he
(k22,hkbo,zo_cup,cd,mentr_rate,heo_cup,hco, &
kbcon,ierr,dbyo,heo,heso_cup,'deep', &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
!--- DETERMINE CLOUD TOP - KTOP
!
call cup_ktop
(1,dbyo,kbcon,ktop,ierr, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
DO 37 i=its,itf
kzdown(i)=0
if(ierr(i).eq.0)then
zktop=(zo_cup(i,ktop(i))-z1(i))*.6
zktop=min(zktop+z1(i),zcutdown+z1(i))
do k=kts,kte
if(zo_cup(i,k).gt.zktop)then
kzdown(i)=k
go to 37
endif
enddo
endif
37 CONTINUE
!
!--- DOWNDRAFT ORIGINATING LEVEL - JMIN
!
call cup_minimi
(HEso_cup,K22,kzdown,JMIN,ierr, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
DO 100 i=its,ite
IF(ierr(I).eq.0.)THEN
!
!--- check whether it would have buoyancy, if there where
!--- no entrainment/detrainment
!
jmini = jmin(i)
keep_going = .TRUE.
do while ( keep_going )
keep_going = .FALSE.
if ( jmini - 1 .lt. kdet(i) ) kdet(i) = jmini-1
if ( jmini .ge. ktop(i)-1 ) jmini = ktop(i) - 2
ki = jmini
hcdo(i,ki)=heso_cup(i,ki)
DZ=Zo_cup(i,Ki+1)-Zo_cup(i,Ki)
dh=0.
do k=ki-1,1,-1
hcdo(i,k)=heso_cup(i,jmini)
DZ=Zo_cup(i,K+1)-Zo_cup(i,K)
dh=dh+dz*(HCDo(i,K)-heso_cup(i,k))
if(dh.gt.0.)then
jmini=jmini-1
if ( jmini .gt. 3 ) then
keep_going = .TRUE.
else
ierr(i) = 9
exit
endif
endif
enddo
enddo
jmin(i) = jmini
if ( jmini .le. 3 ) then
ierr(i)=4
endif
ENDIF
100 continue
!
! - Must have at least depth_min m between cloud convective base
! and cloud top.
!
do i=its,itf
IF(ierr(I).eq.0.)THEN
IF(-zo_cup(I,KBCON(I))+zo_cup(I,KTOP(I)).LT.depth_min)then
ierr(i)=6
endif
endif
enddo
!
!c--- normalized updraft mass flux profile
!
call cup_up_nms
(zu,z_cup,mentr_rate,cd,kbcon,ktop,ierr,k22, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
call cup_up_nms
(zuo,zo_cup,mentr_rate,cd,kbcon,ktop,ierr,k22, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
!
!c--- normalized downdraft mass flux profile,also work on bottom detrainment
!--- in this routine
!
call cup_dd_nms
(zd,z_cup,cdd,mentrd_rate,jmin,ierr, &
0,kdet,z1, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
call cup_dd_nms
(zdo,zo_cup,cdd,mentrd_rate,jmin,ierr, &
1,kdet,z1, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
!
!--- downdraft moist static energy
!
call cup_dd_he
(hes_cup,zd,hcd,z_cup,cdd,mentrd_rate, &
jmin,ierr,he,dbyd,he_cup, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
call cup_dd_he
(heso_cup,zdo,hcdo,zo_cup,cdd,mentrd_rate, &
jmin,ierr,heo,dbydo,he_cup,&
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
!
!--- calculate moisture properties of downdraft
!
call cup_dd_moisture_3d
(zd,hcd,hes_cup,qcd,qes_cup, &
pwd,q_cup,z_cup,cdd,mentrd_rate,jmin,ierr,gamma_cup, &
pwev,bu,qrcd,q,he,t_cup,2,xl,high_resolution, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
call cup_dd_moisture_3d
(zdo,hcdo,heso_cup,qcdo,qeso_cup, &
pwdo,qo_cup,zo_cup,cdd,mentrd_rate,jmin,ierr,gammao_cup, &
pwevo,bu,qrcdo,qo,heo,tn_cup,1,xl,high_resolution, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
!
!--- calculate moisture properties of updraft
!
call cup_up_moisture
('deep',ierr,z_cup,qc,qrc,pw,pwav, &
kbcon,ktop,cd,dby,mentr_rate,clw_all, &
q,GAMMA_cup,zu,qes_cup,k22,q_cup,xl, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
do k=kts,ktf
do i=its,itf
cupclw(i,k)=qrc(i,k)
enddo
enddo
call cup_up_moisture
('deep',ierr,zo_cup,qco,qrco,pwo,pwavo, &
kbcon,ktop,cd,dbyo,mentr_rate,clw_all, &
qo,GAMMAo_cup,zuo,qeso_cup,k22,qo_cup,xl,&
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
!
!--- calculate workfunctions for updrafts
!
call cup_up_aa0
(aa0,z,zu,dby,GAMMA_CUP,t_cup, &
kbcon,ktop,ierr, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
call cup_up_aa0
(aa1,zo,zuo,dbyo,GAMMAo_CUP,tn_cup, &
kbcon,ktop,ierr, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
do i=its,itf
if(ierr(i).eq.0)then
if(aa1(i).eq.0.)then
ierr(i)=17
endif
endif
enddo
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! NEXT section for shallow convection
!
if(ishallow_g3.eq.1)then
! write(0,*)'now do shallow for j = ',j
call cup_env
(z3,qes3,he3,hes3,tshall,qshall,po,z1, &
psur,ierr5,tcrit,0,xl,cp, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
call cup_env_clev
(tshall,qes3,qshall,he3,hes3,z3,po,qes3_cup,q3_cup, &
he3_cup,hes3_cup,z3_cup,po_cup,gamma3_cup,t3_cup,psur, &
ierr5,z1,xl,rv,cp, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
CALL cup_MAXIMI
(HE3_CUP,1,kbmax,K23,ierr5, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
DO i=its,itf
if(kpbl(i).gt.5)cap_max3(i)=po_cup(i,kpbl(i))
IF(ierr5(I).eq.0.)THEN
IF(K23(I).Gt.Kbmax(i))ierr5(i)=2
if(kpbl(i).gt.5)k23(i)=kpbl(i)
endif
ierr5_0(i)=ierr5(i)
ENDDO
call cup_kbcon
(cap_max_increment,5,k23,kbcon3,he3_cup,hes3_cup, &
ierr5,kbmax,po_cup,cap_max3, &
! ierr5,kpbl,po_cup,cap_max3, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
call cup_up_he
(k23,hkb3,z3_cup,cd3,mentr_rate3,he3_cup,hc3, &
kbcon3,ierr5,dby3,he3,hes3_cup,'shallow', &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
call cup_up_he
(k23,hkb3_0,z_cup,cd3,mentr_rate3,he_cup,hc3_0, &
kbcon3,ierr5,dby3_0,he,hes_cup,'shallow', &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
call cup_ktop
(1,dby3,kbcon3,ktop3,ierr5, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
call cup_up_nms
(zu3,z3_cup,mentr_rate3,cd3,kbcon3,ktop3, &
ierr5,k23, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
call cup_up_nms
(zu3_0,z_cup,mentr_rate3,cd3,kbcon3,ktop3, &
ierr5,k23, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
!
! first calculate aa3_0_cup
!
call cup_up_aa0
(aa3_0,z,zu3_0,dby3_0,GAMMA3_CUP,t_cup, &
kbcon3,ktop3,ierr5, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
!
! now what is necessary for aa3 and feedbacks
!
call cup_up_moisture
('shallow',ierr5,z3_cup,qc3,qrc3,pw3,pwav3, &
kbcon3,ktop3,cd3,dby3,mentr_rate3,clw_all, &
qshall,GAMMA3_cup,zu3,qes3_cup,k23,q3_cup,xl,&
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
call cup_up_aa0
(aa3,z3,zu3,dby3,GAMMA3_CUP,t3_cup, &
kbcon3,ktop3,ierr5, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
! do i=its,itf
! if(ierr5(i).eq.0)then
! if(aa3(i).eq.0.)then
! ierr5(i)=17
! endif
! endif
! enddo
! call cup_dellabot('shallow',ipr,jpr,q3_cup,ierr5,z3_cup,po,qrcdo,edto, &
! zdo,cdd,q3,dellaq3,dsubq,j,mentrd_rate,z3,g,&
! itf,jtf,ktf, &
! its,ite, jts,jte, kts,kte)
call cup_dellas_3d
(ierr5,z3_cup,po_cup,hcdo,edt3,zdo3,cdd, &
he3,dellah3,dsubt3,j,mentrd_rate,zu3,g, &
cd3,hc3,ktop3,k23,kbcon3,mentr_rate3,jmin,he3_cup,kdet, &
k23,ipr,jpr,'shallow',0, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
call cup_dellas_3d
(ierr5,z3_cup,po_cup,qrcdo,edt3,zdo3,cdd, &
qshall,dellaq3,dsubq3,j,mentrd_rate,zu3,g, &
cd3,qc3,ktop3,k23,kbcon3,mentr_rate3,jmin,q3_cup,kdet, &
k23,ipr,jpr,'shallow',0, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte )
mbdt_s=1.e-1*mbdt_ens(1)
do k=kts,ktf
do i=its,itf
dellat3(i,k)=0.
if(ierr5(i).eq.0)then
trash=dsubt3(i,k)
XHE3(I,K)=(dsubt3(i,k)+DELLAH3(I,K))*MBDT_S+HE3(I,K)
XQ3(I,K)=(dsubq3(i,k)+DELLAQ3(I,K))*MBDT_S+QSHALL(I,K)
DELLAT3(I,K)=(1./cp)*(DELLAH3(I,K)-xl*DELLAQ3(I,K))
dSUBT3(I,K)=(1./cp)*(dsubt3(i,k)-xl*dsubq3(i,k))
XT3(I,K)= (DELLAT3(I,K)+dsubt3(i,k))*MBDT_S+TSHALL(I,K)
IF(XQ3(I,K).LE.0.)XQ3(I,K)=1.E-08
! if(i.eq.ipr.and.j.eq.jpr)then
! write(0,*)k,trash,DELLAQ3(I,K),dsubq3(I,K),dsubt3(i,k)
! endif
ENDIF
enddo
enddo
do i=its,itf
if(ierr5(i).eq.0)then
XHE3(I,ktf)=HE3(I,ktf)
XQ3(I,ktf)=QSHALL(I,ktf)
XT3(I,ktf)=TSHALL(I,ktf)
IF(XQ3(I,ktf).LE.0.)XQ3(I,ktf)=1.E-08
endif
enddo
!
!--- calculate moist static energy, heights, qes
!
call cup_env
(xz3,xqes3,xhe3,xhes3,xt3,xq3,po,z1, &
psur,ierr5,tcrit,2,xl,cp, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
!
!--- environmental values on cloud levels
!
call cup_env_clev
(xt3,xqes3,xq3,xhe3,xhes3,xz3,po,xqes3_cup,xq3_cup, &
xhe3_cup,xhes3_cup,xz3_cup,po_cup,gamma3_cup,xt3_cup,psur, &
ierr5,z1,xl,rv,cp, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
!
!
!**************************** static control
!
!--- moist static energy inside cloud
!
do i=its,itf
if(ierr5(i).eq.0)then
xhkb3(i)=xhe3(i,k23(i))
endif
enddo
call cup_up_he
(k23,xhkb3,xz3_cup,cd3,mentr_rate3,xhe3_cup,xhc3, &
kbcon3,ierr5,xdby3,xhe3,xhes3_cup,'shallow', &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
!
!c--- normalized mass flux profile and CWF
!
call cup_up_nms
(xzu3,xz3_cup,mentr_rate3,cd3,kbcon3,ktop3,ierr5,k23, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
call cup_up_aa0
(xaa3,xz3,xzu3,xdby3,GAMMA3_CUP,xt3_cup, &
kbcon3,ktop3,ierr5, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
!
! now for shallow forcing
!
do i=its,itf
xmb3(i)=0.
xff_shal(1:9)=0.
if(ierr5(i).eq.0)then
xkshal=(xaa3(i)-aa3(i))/mbdt_s
if(xkshal.ge.0.)xkshal=+1.e6
if(xkshal.gt.-1.e-4 .and. xkshal.lt.0.)xkshal=-1.e-4
xff_shal(1)=max(0.,-(aa3(i)-aa3_0(i))/(xkshal*dtime))
xff_shal(2)=max(0.,-(aa3(i)-aa3_0(i))/(xkshal*dtime))
xff_shal(3)=max(0.,-(aa3(i)-aa3_0(i))/(xkshal*dtime))
if(aa3_0(i).le.0)then
xff_shal(1)=0.
xff_shal(2)=0.
xff_shal(3)=0.
endif
if(aa3(i)-aa3_0(i).le.0.)then
xff_shal(1)=0.
xff_shal(2)=0.
xff_shal(3)=0.
endif
! boundary layer QE (from Saulo Freitas)
blqe=0.
trash=0.
if(k23(i).lt.kpbl(i)+1)then
do k=1,kbcon3(i)-1
blqe=blqe+100.*dhdt(i,k)*(p_cup(i,k)-p_cup(i,k+1))/g
enddo
trash=max((hc3(i,kbcon3(i))-he_cup(i,kbcon3(i))),1.e1)
xff_shal(7)=max(0.,blqe/trash)
xff_shal(7)=min(0.1,xff_shal(7))
else
xff_shal(7)=0.
endif
if((xkshal.lt.-1.1e-04) .and. &
((aa3(i)-aa3_0(i).gt.0.) .or. (xff_shal(7).gt.0)))then
xff_shal(4)=max(0.,-aa3(i)/(xkshal*tscl_KF))
xff_shal(4)=min(0.1,xff_shal(4))
xff_shal(5)=xff_shal(4)
xff_shal(6)=xff_shal(4)
else
xff_shal(4)=0.
xff_shal(5)=0.
xff_shal(6)=0.
endif
! write(0,888)'i0=',i,j,kpbl(i),blqe,xff_shal(7)
888 format(a3,3(1x,i3),2e12.4)
xff_shal(8)= xff_shal(7)
xff_shal(9)= xff_shal(7)
do k=1,9
xmb3(i)=xmb3(i)+xff_shal(k)
enddo
xmb3(i)=min(.1,xmb3(i)/9.)
! if(xmb3(i).eq.10.1 )then
! write(0,*)'i0,xmb3,blqe,xkshal = ',i,j,xmb3(i),blqe,xkshal
! if(xff_shal(7).ge.0.1)then
! write(0,*)'i1,blqe,trash = ',blqe,trash
! endif
! if(xff_shal(7).eq.0 .and. xff_shal(1).ge.0.1)then
! write(0,*)'i2,aa3_0(i),aa3(i),xaa3(i) = ',aa3_0(i),aa3(i),xaa3(i)
! endif
! if(xff_shal(5).ge.0.1)then
! write(0,*)'i3,aa3(i),a0,xkshal= ',aa3(i),aa3_0(i),xkshal
! endif
! write(0,*)'i0, xff_shallow = ',xff_shal
! endif
!! if(xff_shal(7).eq.0 .and. xff_shal(4).gt.0 .and. xmb3(i).eq.0.5)then
!! write(0,*)'i4,xmb3 = ',i,j,xmb3(i),xkshal
!! write(0,*)'xff_shallow = ',xff_shal
!! write(0,*)aa3(i),xaa3(i),blqe
!! endif
if(xmb3(i).eq.0.)ierr5(i)=22
if(xmb3(i).lt.0.)then
ierr5(i)=21
! write(0,*)'neg xmb,i,j,xmb3 for shallow = ',i,j,k23(i),ktop3(i),kbcon3(i),kpbl(i)
endif
endif
! if(ierr5(i).eq.0)write(0,*)'i,j,xmb3 for shallow = ',i,j,xmb3(i),k23(i),ktop3(i)
! if(ierr5(i).eq.0.and.i.eq.12.and.j.eq.25)write(0,*)'i,j,xmb3 for shallow = ',k23(i),ktop3(i),kbcon3(i),kpbl(i)
! if(ierr5(i).eq.0)write(0,*)'i,j,xmb3 for shallow = ',i,j,k23(i),ktop3(i),kbcon3(i),kpbl(i)
if(ierr5(i).ne.0)then
k23(i)=0
kbcon3(i)=0
ktop3(i)=0
xmb3(i)=0
do k=kts,ktf
outts(i,k)=0.
outqs(i,k)=0.
enddo
else if(ierr5(i).eq.0)then
!
! got the mass flux, sanity check, first for heating rates
!
trash=0.
do k=2,ktop3(i)
trash=max(trash,86400.*(dsubt3(i,k)+dellat3(i,k))*xmb3(i))
enddo
if(trash.gt.150.)xmb3(i)=xmb3(i)*150./trash
!
! sanity check on moisture tendencies: do not allow anything that may allow neg tendencies
!
do k=2,ktop3(i)
trash=q(i,k)+(dsubq3(i,k)+dellaq3(i,k))*xmb3(i)*dtime
if(trash.lt.1.e-12)then
! max allowable tendency over tendency that would lead to too small mix ratios
!
trash=((1.e-12-q(i,k))/dtime) &
/((dsubq3(i,k)+dellaq3(i,k))*xmb3(i))
trash=max(0.,trash)
trash=min(1.,trash)
xmb3(i)=trash*xmb3(i)
endif
enddo
!
! final tendencies
!
do k=2,ktop3(i)
outts(i,k)=(dsubt3(i,k)+dellat3(i,k))*xmb3(i)
outqs(i,k)=(dsubq3(i,k)+dellaq3(i,k))*xmb3(i)
enddo
endif
enddo
! if(j.eq.-25)then
!! write(0,*)'!!!!!!!! j = ',j,' !!!!!!!!!!!!!!!!!!!!'
i=12
! write(0,*)k23(i),kbcon3(i),ktop3(i)
! write(0,*)kpbl(i),ierr5(i),ierr(i)
! write(0,*)xmb3(i),xff_shal(1:9)
! write(0,*)xaa3(i),aa1(i),aa0(i),aa3(i)
! do k=1,ktf
! write(0,*)po(i,k),he3(i,k),hes3(i,k),dellah3(i,k)
! enddo
! do k=1,ktf
! write(0,*)zu3(i,k),hc3(i,k),dsubt3(i,k),dellat3(i,k)
! enddo
! do k=1,ktop3(i)+1
! blqe=cp*outts(i,k)+xl*outqs(i,k)
! write(0,*)outts(i,k),outqs(i,k),blqe
! enddo
! endif
!
! done shallow
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
ENDIF
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
call cup_axx
(tcrit,kbmax,z1,p,psur,xl,rv,cp,tx,qx,axx,ierr, &
cap_max,cap_max_increment,entr_rate,mentr_rate,&
j,itf,jtf,ktf, &
its,ite, jts,jte, kts,kte,ens4)
!
!--- DETERMINE DOWNDRAFT STRENGTH IN TERMS OF WINDSHEAR
!
call cup_dd_edt
(ierr,us,vs,zo,ktop,kbcon,edt,po,pwavo, &
pwevo,edtmax,edtmin,maxens2,edtc, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
do 250 iedt=1,maxens2
do i=its,itf
if(ierr(i).eq.0)then
edt(i)=edtc(i,iedt)
edto(i)=edtc(i,iedt)
edtx(i)=edtc(i,iedt)
edt_out(i,j)=edtc(i,2)
if(high_resolution.eq.1)then
edt(i)=edtc(i,3)
edto(i)=edtc(i,3)
edtx(i)=edtc(i,3)
edt_out(i,j)=edtc(i,3)
endif
endif
enddo
do k=kts,ktf
do i=its,itf
subt_ens(i,k,iedt)=0.
subq_ens(i,k,iedt)=0.
dellat_ens(i,k,iedt)=0.
dellaq_ens(i,k,iedt)=0.
dellaqc_ens(i,k,iedt)=0.
pwo_ens(i,k,iedt)=0.
enddo
enddo
!
! if(j.eq.jpr.and.iedt.eq.1.and.ipr.gt.its.and.ipr.lt.ite)then
!! if(j.eq.jpr)then
! i=ipr
!! write(0,*)'in 250 loop ',iedt,edt(ipr),ierr(ipr)
!! if(ierr(i).eq.0.or.ierr(i).eq.3)then
! write(0,*)'250',k22(I),kbcon(i),ktop(i),jmin(i)
! write(0,*)edt(i),aa0(i),aa1(i)
! do k=kts,ktf
! write(0,*)k,z(i,k),he(i,k),hes(i,k)
! enddo
! write(0,*)'end 250 loop ',iedt,edt(ipr),ierr(ipr)
! do k=1,ktop(i)+1
! write(0,*)zu(i,k),zd(i,k),pw(i,k),pwd(i,k)
! enddo
!! endif
! endif
do i=its,itf
aad(i)=0.
enddo
!
!--- change per unit mass that a model cloud would modify the environment
!
!--- 1. in bottom layer
!
call cup_dellabot
('deep',ipr,jpr,heo_cup,ierr,zo_cup,po,hcdo,edto, &
zdo,cdd,heo,dellah,dsubt,j,mentrd_rate,zo,g, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
call cup_dellabot
('deep',ipr,jpr,qo_cup,ierr,zo_cup,po,qrcdo,edto, &
zdo,cdd,qo,dellaq,dsubq,j,mentrd_rate,zo,g,&
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
!
!--- 2. everywhere else
!
call cup_dellas_3d
(ierr,zo_cup,po_cup,hcdo,edto,zdo,cdd, &
heo,dellah,dsubt,j,mentrd_rate,zuo,g, &
cd,hco,ktop,k22,kbcon,mentr_rate,jmin,heo_cup,kdet, &
k22,ipr,jpr,'deep',high_resolution, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
!
!-- take out cloud liquid water for detrainment
!
!?? do k=kts,ktf
do k=kts,ktf-1
do i=its,itf
scr1(i,k)=0.
dellaqc(i,k)=0.
if(ierr(i).eq.0)then
scr1(i,k)=qco(i,k)-qrco(i,k)
if(k.eq.ktop(i)-0)dellaqc(i,k)= &
.01*zuo(i,ktop(i))*qrco(i,ktop(i))* &
9.81/(po_cup(i,k)-po_cup(i,k+1))
if(k.lt.ktop(i).and.k.gt.kbcon(i))then
dz=zo_cup(i,k+1)-zo_cup(i,k)
dellaqc(i,k)=.01*9.81*cd(i,k)*dz*zuo(i,k) &
*.5*(qrco(i,k)+qrco(i,k+1))/ &
(po_cup(i,k)-po_cup(i,k+1))
endif
endif
enddo
enddo
call cup_dellas_3d
(ierr,zo_cup,po_cup,qrcdo,edto,zdo,cdd, &
qo,dellaq,dsubq,j,mentrd_rate,zuo,g, &
cd,qco,ktop,k22,kbcon,mentr_rate,jmin,qo_cup,kdet, &
k22,ipr,jpr,'deep',high_resolution, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte )
!
!--- using dellas, calculate changed environmental profiles
!
! do 200 nens=1,maxens
mbdt=mbdt_ens(2)
do i=its,itf
xaa0_ens(i,1)=0.
xaa0_ens(i,2)=0.
xaa0_ens(i,3)=0.
enddo
! if(j.eq.jpr)then
! write(0,*)'xt',xl,'DELLAH(I,K),DELLAQ(I,K),dsubq(I,K),dsubt(i,k)'
! endif
do k=kts,ktf
do i=its,itf
dellat(i,k)=0.
if(ierr(i).eq.0)then
trash=dsubt(i,k)
XHE(I,K)=(dsubt(i,k)+DELLAH(I,K))*MBDT+HEO(I,K)
XQ(I,K)=(dsubq(i,k)+DELLAQ(I,K))*MBDT+QO(I,K)
DELLAT(I,K)=(1./cp)*(DELLAH(I,K)-xl*DELLAQ(I,K))
dSUBT(I,K)=(1./cp)*(dsubt(i,k)-xl*dsubq(i,k))
XT(I,K)= (DELLAT(I,K)+dsubt(i,k))*MBDT+TN(I,K)
IF(XQ(I,K).LE.0.)XQ(I,K)=1.E-08
! if(i.eq.ipr.and.j.eq.jpr)then
! write(0,*)k,trash,DELLAQ(I,K),dsubq(I,K),dsubt(i,k)
! endif
ENDIF
enddo
enddo
do i=its,itf
if(ierr(i).eq.0)then
XHE(I,ktf)=HEO(I,ktf)
XQ(I,ktf)=QO(I,ktf)
XT(I,ktf)=TN(I,ktf)
IF(XQ(I,ktf).LE.0.)XQ(I,ktf)=1.E-08
endif
enddo
!
!--- calculate moist static energy, heights, qes
!
call cup_env
(xz,xqes,xhe,xhes,xt,xq,po,z1, &
psur,ierr,tcrit,2,xl,cp, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
!
!--- environmental values on cloud levels
!
call cup_env_clev
(xt,xqes,xq,xhe,xhes,xz,po,xqes_cup,xq_cup, &
xhe_cup,xhes_cup,xz_cup,po_cup,gamma_cup,xt_cup,psur, &
ierr,z1,xl,rv,cp, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
!
!
!**************************** static control
!
!--- moist static energy inside cloud
!
do i=its,itf
if(ierr(i).eq.0)then
xhkb(i)=xhe(i,k22(i))
endif
enddo
call cup_up_he
(k22,xhkb,xz_cup,cd,mentr_rate,xhe_cup,xhc, &
kbcon,ierr,xdby,xhe,xhes_cup,'deep', &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
!
!c--- normalized mass flux profile
!
call cup_up_nms
(xzu,xz_cup,mentr_rate,cd,kbcon,ktop,ierr,k22, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
!
!--- moisture downdraft
!
call cup_dd_nms
(xzd,xz_cup,cdd,mentrd_rate,jmin,ierr, &
1,kdet,z1, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
call cup_dd_he
(xhes_cup,xzd,xhcd,xz_cup,cdd,mentrd_rate, &
jmin,ierr,xhe,dbyd,xhe_cup,&
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
call cup_dd_moisture_3d
(xzd,xhcd,xhes_cup,xqcd,xqes_cup, &
xpwd,xq_cup,xz_cup,cdd,mentrd_rate,jmin,ierr,gamma_cup, &
xpwev,bu,xqrcd,xq,xhe,xt_cup,3,xl,high_resolution, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
!
!------- MOISTURE updraft
!
call cup_up_moisture
('deep',ierr,xz_cup,xqc,xqrc,xpw,xpwav, &
kbcon,ktop,cd,xdby,mentr_rate,clw_all, &
xq,GAMMA_cup,xzu,xqes_cup,k22,xq_cup,xl, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
!
!--- workfunctions for updraft
!
call cup_up_aa0
(xaa0,xz,xzu,xdby,GAMMA_CUP,xt_cup, &
kbcon,ktop,ierr, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
do 200 nens=1,maxens
do i=its,itf
if(ierr(i).eq.0)then
xaa0_ens(i,nens)=xaa0(i)
nall=(iens-1)*maxens3*maxens*maxens2 &
+(iedt-1)*maxens*maxens3 &
+(nens-1)*maxens3
do k=kts,ktf
if(k.le.ktop(i))then
do nens3=1,maxens3
if(nens3.eq.7)then
!--- b=0
pr_ens(i,j,nall+nens3)=pr_ens(i,j,nall+nens3) &
+edto(i)*pwdo(i,k) &
+pwo(i,k)
!--- b=beta
else if(nens3.eq.8)then
pr_ens(i,j,nall+nens3)=pr_ens(i,j,nall+nens3)+ &
pwo(i,k)
!--- b=beta/2
else if(nens3.eq.9)then
pr_ens(i,j,nall+nens3)=pr_ens(i,j,nall+nens3) &
+.5*edto(i)*pwdo(i,k) &
+ pwo(i,k)
else
pr_ens(i,j,nall+nens3)=pr_ens(i,j,nall+nens3)+ &
pwo(i,k)+edto(i)*pwdo(i,k)
endif
enddo
endif
enddo
if(pr_ens(i,j,nall+7).lt.1.e-6)then
ierr(i)=18
do nens3=1,maxens3
pr_ens(i,j,nall+nens3)=0.
enddo
endif
do nens3=1,maxens3
if(pr_ens(i,j,nall+nens3).lt.1.e-4)then
pr_ens(i,j,nall+nens3)=0.
endif
enddo
endif
enddo
200 continue
!
!--- LARGE SCALE FORCING
!
!
!------- CHECK wether aa0 should have been zero
!
!
CALL cup_MAXIMI
(HEO_CUP,3,KBMAX,K22x,ierr, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
do i=its,itf
ierr2(i)=ierr(i)
ierr3(i)=ierr(i)
enddo
call cup_kbcon
(cap_max_increment,2,k22x,kbconx,heo_cup, &
heso_cup,ierr2,kbmax,po_cup,cap_max, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
call cup_kbcon
(cap_max_increment,3,k22x,kbconx,heo_cup, &
heso_cup,ierr3,kbmax,po_cup,cap_max, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
!
!--- DETERMINE THE LEVEL OF CONVECTIVE CLOUD BASE - KBCON
!
call cup_forcing_ens_3d
(closure_n,xland1,aa0,aa1,xaa0_ens,mbdt_ens,dtime, &
ierr,ierr2,ierr3,xf_ens,j,'deeps',axx, &
maxens,iens,iedt,maxens2,maxens3,mconv, &
po_cup,ktop,omeg,zdo,k22,zuo,pr_ens,edto,kbcon, &
massflx,iact,direction,ensdim,massfln,ichoice,edt_out, &
high_resolution,itf,jtf,ktf, &
its,ite, jts,jte, kts,kte,ens4,ktau)
!
do k=kts,ktf
do i=its,itf
if(ierr(i).eq.0)then
subt_ens(i,k,iedt)=dsubt(i,k)
subq_ens(i,k,iedt)=dsubq(i,k)
dellat_ens(i,k,iedt)=dellat(i,k)
dellaq_ens(i,k,iedt)=dellaq(i,k)
dellaqc_ens(i,k,iedt)=dellaqc(i,k)
pwo_ens(i,k,iedt)=pwo(i,k)+edt(i)*pwdo(i,k)
else
subt_ens(i,k,iedt)=0.
subq_ens(i,k,iedt)=0.
dellat_ens(i,k,iedt)=0.
dellaq_ens(i,k,iedt)=0.
dellaqc_ens(i,k,iedt)=0.
pwo_ens(i,k,iedt)=0.
endif
! if(i.eq.ipr.and.j.eq.jpr)then
! write(0,*)'1',iens,iedt,dellat(i,k),dellat_ens(i,k,iedt), &
! dellaq(i,k), dellaqc(i,k)
! write(0,*)'2',k,subt_ens(i,k,iedt),subq_ens(i,k,iedt)
! endif
enddo
enddo
250 continue
!
!--- FEEDBACK
!
call cup_output_ens_3d
(xf_ens,ierr,dellat_ens,dellaq_ens, &
dellaqc_ens,subt_ens,subq_ens,subt,subq,outt, &
outq,outqc,zuo,sub_mas,pre,pwo_ens,xmb,ktop, &
j,'deep',maxens2,maxens,iens,ierr2,ierr3, &
pr_ens,maxens3,ensdim,massfln, &
APR_GR,APR_W,APR_MC,APR_ST,APR_AS, &
APR_CAPMA,APR_CAPME,APR_CAPMI,closure_n,xland1, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
k=1
do i=its,itf
if(ierr(i).eq.0.and.ierr5(i).eq.0.and.kbcon(i).lt.ktop3(i)+1)then
! write(0,*)'both ier and ier5=0 at i,j=',i,j,kbcon(i),ktop3(i)
if(high_resolution.eq.1)then
outts(i,kts:kte)=0.
outqs(i,kts:kte)=0.
endif
elseif (ierr5(i).eq.0)then
! write(0,*)'ier5=0 at i,j=',i,j,k23(i),ktop3(i)
endif
PRE(I)=MAX(PRE(I),0.)
! if(i.eq.ipr.and.j.eq.jpr)then
! write(0,*)'i,j,pre(i),aa0(i),aa1(i)'
! write(0,*)i,j,pre(i),aa0(i)
! endif
enddo
!
!---------------------------done------------------------------
!
! do i=its,itf
! if(ierr(i).eq.0)then
! if(i.eq.ipr.and.j.eq.jpr)then
! write(0,*)'on output, pre =',pre(i),its,itf,kts,ktf
! do k=kts,ktf
! write(0,*)z(i,k),outt(i,k)*86400.,subt(i,k)*86400.
! enddo
! write(0,*)i,j,(axx(i,k),k=1,ens4)
! endif
! endif
! enddo
! print *,'ierr(i) = ',ierr(i),pre(i)
END SUBROUTINE CUP_enss_3d
SUBROUTINE cup_dd_aa0(edt,ierr,aa0,jmin,gamma_cup,t_cup, &
hcd,hes_cup,z,zd, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte )
IMPLICIT NONE
!
! on input
!
! only local wrf dimensions are need as of now in this routine
integer &
,intent (in ) :: &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte
! aa0 cloud work function for downdraft
! gamma_cup = gamma on model cloud levels
! t_cup = temperature (Kelvin) on model cloud levels
! hes_cup = saturation moist static energy on model cloud levels
! hcd = moist static energy in downdraft
! edt = epsilon
! zd normalized downdraft mass flux
! z = heights of model levels
! ierr error value, maybe modified in this routine
!
real, dimension (its:ite,kts:kte) &
,intent (in ) :: &
z,zd,gamma_cup,t_cup,hes_cup,hcd
real, dimension (its:ite) &
,intent (in ) :: &
edt
integer, dimension (its:ite) &
,intent (in ) :: &
jmin
!
! input and output
!
integer, dimension (its:ite) &
,intent (inout) :: &
ierr
real, dimension (its:ite) &
,intent (out ) :: &
aa0
!
! local variables in this routine
!
integer :: &
i,k,kk
real :: &
dz
!
do i=its,itf
aa0(i)=0.
enddo
!
!?? DO k=kts,kte-1
DO k=kts,ktf-1
do i=its,itf
IF(ierr(I).eq.0.and.k.lt.jmin(i))then
KK=JMIN(I)-K
!
!--- ORIGINAL
!
DZ=(Z(I,KK)-Z(I,KK+1))
AA0(I)=AA0(I)+zd(i,kk)*EDT(I)*DZ*(9.81/(1004.*T_cup(I,KK))) &
*((hcd(i,kk)-hes_cup(i,kk))/(1.+GAMMA_cup(i,kk)))
endif
enddo
enddo
END SUBROUTINE CUP_dd_aa0
SUBROUTINE cup_dd_edt(ierr,us,vs,z,ktop,kbcon,edt,p,pwav, & 2
pwev,edtmax,edtmin,maxens2,edtc, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte )
IMPLICIT NONE
integer &
,intent (in ) :: &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte
integer, intent (in ) :: &
maxens2
!
! ierr error value, maybe modified in this routine
!
real, dimension (its:ite,kts:kte) &
,intent (in ) :: &
us,vs,z,p
real, dimension (its:ite,1:maxens2) &
,intent (out ) :: &
edtc
real, dimension (its:ite) &
,intent (out ) :: &
edt
real, dimension (its:ite) &
,intent (in ) :: &
pwav,pwev
real &
,intent (in ) :: &
edtmax,edtmin
integer, dimension (its:ite) &
,intent (in ) :: &
ktop,kbcon
integer, dimension (its:ite) &
,intent (inout) :: &
ierr
!
! local variables in this routine
!
integer i,k,kk
real einc,pef,pefb,prezk,zkbc
real, dimension (its:ite) :: &
vshear,sdp,vws
!
!--- DETERMINE DOWNDRAFT STRENGTH IN TERMS OF WINDSHEAR
!
! */ calculate an average wind shear over the depth of the cloud
!
do i=its,itf
edt(i)=0.
vws(i)=0.
sdp(i)=0.
vshear(i)=0.
enddo
do k=1,maxens2
do i=its,itf
edtc(i,k)=0.
enddo
enddo
do kk = kts,ktf-1
do 62 i=its,itf
IF(ierr(i).ne.0)GO TO 62
if (kk .le. min0(ktop(i),ktf) .and. kk .ge. kbcon(i)) then
vws(i) = vws(i)+ &
(abs((us(i,kk+1)-us(i,kk))/(z(i,kk+1)-z(i,kk))) &
+ abs((vs(i,kk+1)-vs(i,kk))/(z(i,kk+1)-z(i,kk)))) * &
(p(i,kk) - p(i,kk+1))
sdp(i) = sdp(i) + p(i,kk) - p(i,kk+1)
endif
if (kk .eq. ktf-1)vshear(i) = 1.e3 * vws(i) / sdp(i)
62 continue
end do
do i=its,itf
IF(ierr(i).eq.0)then
pef=(1.591-.639*VSHEAR(I)+.0953*(VSHEAR(I)**2) &
-.00496*(VSHEAR(I)**3))
if(pef.gt.1.)pef=1.
if(pef.lt.0.)pef=0.
!
!--- cloud base precip efficiency
!
zkbc=z(i,kbcon(i))*3.281e-3
prezk=.02
if(zkbc.gt.3.)then
prezk=.96729352+zkbc*(-.70034167+zkbc*(.162179896+zkbc &
*(- 1.2569798E-2+zkbc*(4.2772E-4-zkbc*5.44E-6))))
endif
if(zkbc.gt.25)then
prezk=2.4
endif
pefb=1./(1.+prezk)
if(pefb.gt.1.)pefb=1.
if(pefb.lt.0.)pefb=0.
EDT(I)=1.-.5*(pefb+pef)
!--- edt here is 1-precipeff!
einc=.2*edt(i)
do k=1,maxens2
edtc(i,k)=edt(i)+float(k-2)*einc
enddo
endif
enddo
do i=its,itf
IF(ierr(i).eq.0)then
do k=1,maxens2
EDTC(I,K)=-EDTC(I,K)*PWAV(I)/PWEV(I)
IF(EDTC(I,K).GT.edtmax)EDTC(I,K)=edtmax
IF(EDTC(I,K).LT.edtmin)EDTC(I,K)=edtmin
enddo
endif
enddo
END SUBROUTINE cup_dd_edt
SUBROUTINE cup_dd_he(hes_cup,zd,hcd,z_cup,cdd,entr, & 3
jmin,ierr,he,dby,he_cup, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte )
IMPLICIT NONE
!
! on input
!
! only local wrf dimensions are need as of now in this routine
integer &
,intent (in ) :: &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte
! hcd = downdraft moist static energy
! he = moist static energy on model levels
! he_cup = moist static energy on model cloud levels
! hes_cup = saturation moist static energy on model cloud levels
! dby = buoancy term
! cdd= detrainment function
! z_cup = heights of model cloud levels
! entr = entrainment rate
! zd = downdraft normalized mass flux
!
real, dimension (its:ite,kts:kte) &
,intent (in ) :: &
he,he_cup,hes_cup,z_cup,cdd,zd
! entr= entrainment rate
real &
,intent (in ) :: &
entr
integer, dimension (its:ite) &
,intent (in ) :: &
jmin
!
! input and output
!
! ierr error value, maybe modified in this routine
integer, dimension (its:ite) &
,intent (inout) :: &
ierr
real, dimension (its:ite,kts:kte) &
,intent (out ) :: &
hcd,dby
!
! local variables in this routine
!
integer :: &
i,k,ki
real :: &
dz
do k=kts+1,ktf
do i=its,itf
dby(i,k)=0.
IF(ierr(I).eq.0)then
hcd(i,k)=hes_cup(i,k)
endif
enddo
enddo
!
do 100 i=its,itf
IF(ierr(I).eq.0)then
k=jmin(i)
hcd(i,k)=hes_cup(i,k)
dby(i,k)=hcd(i,jmin(i))-hes_cup(i,k)
!
do ki=jmin(i)-1,1,-1
DZ=Z_cup(i,Ki+1)-Z_cup(i,Ki)
HCD(i,Ki)=(HCD(i,Ki+1)*(1.-.5*CDD(i,Ki)*DZ) &
+entr*DZ*HE(i,Ki) &
)/(1.+entr*DZ-.5*CDD(i,Ki)*DZ)
dby(i,ki)=HCD(i,Ki)-hes_cup(i,ki)
enddo
!
endif
!--- end loop over i
100 continue
END SUBROUTINE cup_dd_he
SUBROUTINE cup_dd_moisture_3d(zd,hcd,hes_cup,qcd,qes_cup, & 3
pwd,q_cup,z_cup,cdd,entr,jmin,ierr, &
gamma_cup,pwev,bu,qrcd, &
q,he,t_cup,iloop,xl,high_resolution, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte )
IMPLICIT NONE
integer &
,intent (in ) :: &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte,high_resolution
! cdd= detrainment function
! q = environmental q on model levels
! q_cup = environmental q on model cloud levels
! qes_cup = saturation q on model cloud levels
! hes_cup = saturation h on model cloud levels
! hcd = h in model cloud
! bu = buoancy term
! zd = normalized downdraft mass flux
! gamma_cup = gamma on model cloud levels
! mentr_rate = entrainment rate
! qcd = cloud q (including liquid water) after entrainment
! qrch = saturation q in cloud
! pwd = evaporate at that level
! pwev = total normalized integrated evaoprate (I2)
! entr= entrainment rate
!
real, dimension (its:ite,kts:kte) &
,intent (in ) :: &
zd,t_cup,hes_cup,hcd,qes_cup,q_cup,z_cup,cdd,gamma_cup,q,he
real &
,intent (in ) :: &
entr,xl
integer &
,intent (in ) :: &
iloop
integer, dimension (its:ite) &
,intent (in ) :: &
jmin
integer, dimension (its:ite) &
,intent (inout) :: &
ierr
real, dimension (its:ite,kts:kte) &
,intent (out ) :: &
qcd,qrcd,pwd
real, dimension (its:ite) &
,intent (out ) :: &
pwev,bu
!
! local variables in this routine
!
integer :: &
i,k,ki
real :: &
dh,dz,dqeva
do i=its,itf
bu(i)=0.
pwev(i)=0.
enddo
do k=kts,ktf
do i=its,itf
qcd(i,k)=0.
qrcd(i,k)=0.
pwd(i,k)=0.
enddo
enddo
!
!
!
do 100 i=its,itf
IF(ierr(I).eq.0)then
k=jmin(i)
DZ=Z_cup(i,K+1)-Z_cup(i,K)
qcd(i,k)=q_cup(i,k)
if(high_resolution.eq.1)qcd(i,k)=.5*(qes_cup(i,k)+q_cup(i,k))
qrcd(i,k)=qes_cup(i,k)
pwd(i,jmin(i))=min(0.,qcd(i,k)-qrcd(i,k))
pwev(i)=pwev(i)+pwd(i,jmin(i))
qcd(i,k)=qes_cup(i,k)
!
DH=HCD(I,k)-HES_cup(I,K)
bu(i)=dz*dh
do ki=jmin(i)-1,1,-1
DZ=Z_cup(i,Ki+1)-Z_cup(i,Ki)
QCD(i,Ki)=(qCD(i,Ki+1)*(1.-.5*CDD(i,Ki)*DZ) &
+entr*DZ*q(i,Ki) &
)/(1.+entr*DZ-.5*CDD(i,Ki)*DZ)
!
!--- to be negatively buoyant, hcd should be smaller than hes!
!
DH=HCD(I,ki)-HES_cup(I,Ki)
bu(i)=bu(i)+dz*dh
QRCD(I,Ki)=qes_cup(i,ki)+(1./XL)*(GAMMA_cup(i,ki) &
/(1.+GAMMA_cup(i,ki)))*DH
dqeva=qcd(i,ki)-qrcd(i,ki)
if(dqeva.gt.0.)dqeva=0.
pwd(i,ki)=zd(i,ki)*dqeva
qcd(i,ki)=qrcd(i,ki)
pwev(i)=pwev(i)+pwd(i,ki)
! if(iloop.eq.1.and.i.eq.102.and.j.eq.62)then
! print *,'in cup_dd_moi ', hcd(i,ki),HES_cup(I,Ki),dh,dqeva
! endif
enddo
!
!--- end loop over i
if(pwev(I).eq.0.and.iloop.eq.1)then
! print *,'problem with buoy in cup_dd_moisture',i
ierr(i)=7
endif
if(BU(I).GE.0.and.iloop.eq.1)then
! print *,'problem with buoy in cup_dd_moisture',i
ierr(i)=7
endif
endif
100 continue
END SUBROUTINE cup_dd_moisture_3d
SUBROUTINE cup_dd_nms(zd,z_cup,cdd,entr,jmin,ierr, & 3
itest,kdet,z1, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte )
IMPLICIT NONE
!
! on input
!
! only local wrf dimensions are need as of now in this routine
integer &
,intent (in ) :: &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte
! z_cup = height of cloud model level
! z1 = terrain elevation
! entr = downdraft entrainment rate
! jmin = downdraft originating level
! kdet = level above ground where downdraft start detraining
! itest = flag to whether to calculate cdd
real, dimension (its:ite,kts:kte) &
,intent (in ) :: &
z_cup
real, dimension (its:ite) &
,intent (in ) :: &
z1
real &
,intent (in ) :: &
entr
integer, dimension (its:ite) &
,intent (in ) :: &
jmin,kdet
integer &
,intent (in ) :: &
itest
!
! input and output
!
! ierr error value, maybe modified in this routine
integer, dimension (its:ite) &
,intent (inout) :: &
ierr
! zd is the normalized downdraft mass flux
! cdd is the downdraft detrainmen function
real, dimension (its:ite,kts:kte) &
,intent (out ) :: &
zd
real, dimension (its:ite,kts:kte) &
,intent (inout) :: &
cdd
!
! local variables in this routine
!
integer :: &
i,k,ki
real :: &
a,perc,dz
!
!--- perc is the percentage of mass left when hitting the ground
!
perc=.03
do k=kts,ktf
do i=its,itf
zd(i,k)=0.
if(itest.eq.0)cdd(i,k)=0.
enddo
enddo
a=1.-perc
!
!
!
do 100 i=its,itf
IF(ierr(I).eq.0)then
zd(i,jmin(i))=1.
!
!--- integrate downward, specify detrainment(cdd)!
!
do ki=jmin(i)-1,1,-1
DZ=Z_cup(i,Ki+1)-Z_cup(i,Ki)
if(ki.le.kdet(i).and.itest.eq.0)then
cdd(i,ki)=entr+(1.- (a*(z_cup(i,ki)-z1(i)) &
+perc*(z_cup(i,kdet(i))-z1(i)) ) &
/(a*(z_cup(i,ki+1)-z1(i)) &
+perc*(z_cup(i,kdet(i))-z1(i))))/dz
endif
zd(i,ki)=zd(i,ki+1)*(1.+(entr-cdd(i,ki))*dz)
enddo
!
endif
!--- end loop over i
100 continue
END SUBROUTINE cup_dd_nms
SUBROUTINE cup_dellabot(name,ipr,jpr,he_cup,ierr,z_cup,p_cup, & 2
hcd,edt,zd,cdd,he,della,subs,j,mentrd_rate,z,g, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte )
IMPLICIT NONE
integer &
,intent (in ) :: &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte
integer, intent (in ) :: &
j,ipr,jpr
character *(*), intent (in) :: &
name
!
! ierr error value, maybe modified in this routine
!
real, dimension (its:ite,kts:kte) &
,intent (out ) :: &
della,subs
real, dimension (its:ite,kts:kte) &
,intent (in ) :: &
z_cup,p_cup,hcd,zd,cdd,he,z,he_cup
real, dimension (its:ite) &
,intent (in ) :: &
edt
real &
,intent (in ) :: &
g,mentrd_rate
integer, dimension (its:ite) &
,intent (inout) :: &
ierr
!
! local variables in this routine
!
integer i
real detdo,detdo1,detdo2,entdo,dp,dz,subin, &
totmas
!
!
! if(name.eq.'shallow')then
! edt(:)=0.
! cdd(:,:)=0.
! endif
do 100 i=its,itf
della(i,1)=0.
subs(i,1)=0.
if(ierr(i).ne.0)go to 100
dz=z_cup(i,2)-z_cup(i,1)
DP=100.*(p_cup(i,1)-P_cup(i,2))
detdo1=edt(i)*zd(i,2)*CDD(i,1)*DZ
detdo2=edt(i)*zd(i,1)
entdo=edt(i)*zd(i,2)*mentrd_rate*dz
subin=-EDT(I)*zd(i,2)
detdo=detdo1+detdo2-entdo+subin
DELLA(I,1)=(detdo1*.5*(HCD(i,1)+HCD(i,2)) &
+detdo2*hcd(i,1) &
+subin*he_cup(i,2) &
-entdo*he(i,1))*g/dp
SUBS(I,1)=0.
! if(i.eq.ipr.and.j.eq.jpr)then
! write(0,*)'db1',della(i,1),subs(i,1),subin,entdo
! write(0,*)'db2',detdo1,detdo2,detdo1+detdo2-entdo+subin
! endif
100 CONTINUE
END SUBROUTINE cup_dellabot
SUBROUTINE cup_dellas_3d(ierr,z_cup,p_cup,hcd,edt,zd,cdd, & 4
he,della,subs,j,mentrd_rate,zu,g, &
cd,hc,ktop,k22,kbcon,mentr_rate,jmin,he_cup,kdet,kpbl, &
ipr,jpr,name,high_res, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte )
IMPLICIT NONE
integer &
,intent (in ) :: &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte
integer, intent (in ) :: &
j,ipr,jpr,high_res
!
! ierr error value, maybe modified in this routine
!
real, dimension (its:ite,kts:kte) &
,intent (out ) :: &
della,subs
real, dimension (its:ite,kts:kte) &
,intent (in ) :: &
z_cup,p_cup,hcd,zd,cdd,he,hc,cd,zu,he_cup
real, dimension (its:ite) &
,intent (in ) :: &
edt
real &
,intent (in ) :: &
g,mentrd_rate,mentr_rate
integer, dimension (its:ite) &
,intent (in ) :: &
kbcon,ktop,k22,jmin,kdet,kpbl
integer, dimension (its:ite) &
,intent (inout) :: &
ierr
character *(*), intent (in) :: &
name
!
! local variables in this routine
!
integer i,k,kstart
real detdo1,detdo2,entdo,dp,dz,subin,detdo,entup, &
detup,subdown,entdoj,entupk,detupk,totmas
!
i=ipr
kstart=kts+1
if(name.eq.'shallow')kstart=kts
DO K=kstart,ktf
do i=its,itf
della(i,k)=0.
subs(i,k)=0.
enddo
enddo
!
! no downdrafts for shallow convection
!
DO 100 k=kts+1,ktf-1
DO 100 i=its,ite
IF(ierr(i).ne.0)GO TO 100
IF(K.Gt.KTOP(I))GO TO 100
if(k.lt.k22(i)-1.and.name.eq.'shallow')GO TO 100
!
!--- SPECIFY DETRAINMENT OF DOWNDRAFT, HAS TO BE CONSISTENT
!--- WITH ZD CALCULATIONS IN SOUNDD.
!
DZ=Z_cup(I,K+1)-Z_cup(I,K)
detdo=edt(i)*CDD(i,K)*DZ*ZD(i,k+1)
entdo=edt(i)*mentrd_rate*dz*zd(i,k+1)
!3d subin=zu(i,k+1)-zd(i,k+1)*edt(i)
subin=-zd(i,k+1)*edt(i)
entup=0.
detup=0.
if(k.ge.kbcon(i).and.k.lt.ktop(i))then
entup=mentr_rate*dz*zu(i,k)
detup=CD(i,K+1)*DZ*ZU(i,k)
endif
!3d subdown=(zu(i,k)-zd(i,k)*edt(i))
subdown=-zd(i,k)*edt(i)
entdoj=0.
entupk=0.
detupk=0.
!
if(k.eq.jmin(i))then
entdoj=edt(i)*zd(i,k)
endif
if(k.eq.k22(i)-1)then
entupk=zu(i,kpbl(i))
subin=zu(i,k+1)-zd(i,k+1)*edt(i)
if(high_res.eq.1)subin=-zd(i,k+1)*edt(i)
! subin=-zd(i,k+1)*edt(i)
endif
if(k.gt.kdet(i))then
detdo=0.
endif
if(k.eq.ktop(i)-0)then
detupk=zu(i,ktop(i))
subin=0.
!
! this subsidene for ktop now in subs term!
! subdown=zu(i,k)
subdown=0.
endif
if(k.lt.kbcon(i))then
detup=0.
endif
!C
!C--- CHANGED DUE TO SUBSIDENCE AND ENTRAINMENT
!C
totmas=subin-subdown+detup-entup-entdo+ &
detdo-entupk-entdoj+detupk
! if(j.eq.jpr.and.i.eq.ipr)print *,'k,totmas,sui,sud = ',k,
! 1 totmas,subin,subdown
! if(j.eq.jpr.and.i.eq.ipr)print *,'updr stuff = ',detup,
! 1 entup,entupk,detupk
! if(j.eq.jpr.and.i.eq.ipr)print *,'dddr stuff = ',entdo,
! 1 detdo,entdoj
if(abs(totmas).gt.1.e-6)then
! print *,'*********************',i,j,k,totmas,name
! print *,kpbl(i),k22(i),kbcon(i),ktop(i)
!c print *,'updr stuff = ',subin,
!c 1 subdown,detup,entup,entupk,detupk
!c print *,'dddr stuff = ',entdo,
!c 1 detdo,entdoj
! call wrf_error_fatal ( 'totmas .gt.1.e-6' )
endif
dp=100.*(p_cup(i,k-1)-p_cup(i,k))
della(i,k)=(detup*.5*(HC(i,K+1)+HC(i,K)) &
+detdo*.5*(HCD(i,K+1)+HCD(i,K)) &
-entup*he(i,k) &
-entdo*he(i,k) &
+subin*he_cup(i,k+1) &
-subdown*he_cup(i,k) &
+detupk*(hc(i,ktop(i))-he_cup(i,ktop(i))) &
-entupk*he_cup(i,k22(i)) &
-entdoj*he_cup(i,jmin(i)) &
)*g/dp
if(high_res.eq.1)then
! the first term includes entr and detr into/from updraft as well as (entup-detup)*he(i,k) from
! neighbouring point, to make things mass consistent....
! if(k.ge.k22(i))then
della(i,k)=( &
detup*.5*(HC(i,K+1)+HC(i,K))-entup*he(i,k)+(entup-detup)*he(i,k) &
+detdo*.5*(HCD(i,K+1)+HCD(i,K)) &
-entdo*he(i,k) &
+subin*he_cup(i,k+1) &
-subdown*he_cup(i,k) &
+detupk*(hc(i,ktop(i))-he(i,ktop(i))) &
-entdoj*he_cup(i,jmin(i)) &
-entupk*he_cup(i,k22(i))+entupk*he(i,k) &
)*g/dp
! else if(k.eq.k22(i)-1)then
! della(i,k)=(-entupk*he_cup(i,k22(i))+entupk*he(i,k))*g/dp
endif
!3d subin=zu(i,k+1)-zd(i,k+1)*edt(i)
!
! updraft subsidence only
!
if(k.ge.k22(i).and.k.lt.ktop(i))then
subs(i,k)=(zu(i,k+1)*he_cup(i,k+1) &
-zu(i,k)*he_cup(i,k))*g/dp
! else if(k.eq.ktop(i))then
! subs(i,k)=-detupk*he_cup(i,k)*g/dp
endif
!
! in igh res case, subsidence terms are for meighbouring points only. This has to be
! done mass consistent with the della term
if(high_res.eq.1)then
if(k.ge.k22(i).and.k.lt.ktop(i))then
subs(i,k)=(zu(i,k+1)*he_cup(i,k+1)-zu(i,k)*he_cup(i,k)-(entup-detup)*he(i,k))*g/dp
else if(k.eq.ktop(i))then
subs(i,k)=detupk*(he(i,ktop(i))-he_cup(i,ktop(i)))*g/dp
else if(k.eq.k22(i)-1)then
subs(i,k)=(entupk*he(i,k)-entupk*he_cup(i,k))*g/dp
endif
endif
! if(i.eq.ipr.and.j.eq.jpr)then
! write(0,*)'d',k,della(i,k),subs(i,k),subin,subdown
!! write(0,*)'d',detup,entup,entdo,entupk,entdoj
!! print *,k,della(i,k),subin*he_cup(i,k+1),subdown*he_cup(i,k),
!! 1 detdo*.5*(HCD(i,K+1)+HCD(i,K))
!! print *,k,detup*.5*(HC(i,K+1)+HC(i,K)),detupk*hc(i,ktop(i)),
!! 1 entup*he(i,k),entdo*he(i,k)
!! print *,k,he_cup(i,k+1),he_cup(i,k),entupk*he_cup(i,k)
! endif
100 CONTINUE
END SUBROUTINE cup_dellas_3d
SUBROUTINE cup_direction2(i,j,dir,id,massflx, &
iresult,imass,massfld, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte )
IMPLICIT NONE
integer &
,intent (in ) :: &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte
integer, intent (in ) :: &
i,j,imass
integer, intent (out ) :: &
iresult
!
! ierr error value, maybe modified in this routine
!
integer, dimension (its:ite,jts:jte) &
,intent (in ) :: &
id
real, dimension (its:ite,jts:jte) &
,intent (in ) :: &
massflx
real, dimension (its:ite) &
,intent (inout) :: &
dir
real &
,intent (out ) :: &
massfld
!
! local variables in this routine
!
integer k,ia,ja,ib,jb
real diff
!
!
!
if(imass.eq.1)then
massfld=massflx(i,j)
endif
iresult=0
! return
diff=22.5
if(dir(i).lt.22.5)dir(i)=360.+dir(i)
if(id(i,j).eq.1)iresult=1
! ja=max(2,j-1)
! ia=max(2,i-1)
! jb=min(mjx-1,j+1)
! ib=min(mix-1,i+1)
ja=j-1
ia=i-1
jb=j+1
ib=i+1
if(dir(i).gt.90.-diff.and.dir(i).le.90.+diff)then
!--- steering flow from the east
if(id(ib,j).eq.1)then
iresult=1
if(imass.eq.1)then
massfld=max(massflx(ib,j),massflx(i,j))
endif
return
endif
else if(dir(i).gt.135.-diff.and.dir(i).le.135.+diff)then
!--- steering flow from the south-east
if(id(ib,ja).eq.1)then
iresult=1
if(imass.eq.1)then
massfld=max(massflx(ib,ja),massflx(i,j))
endif
return
endif
!--- steering flow from the south
else if(dir(i).gt.180.-diff.and.dir(i).le.180.+diff)then
if(id(i,ja).eq.1)then
iresult=1
if(imass.eq.1)then
massfld=max(massflx(i,ja),massflx(i,j))
endif
return
endif
!--- steering flow from the south west
else if(dir(i).gt.225.-diff.and.dir(i).le.225.+diff)then
if(id(ia,ja).eq.1)then
iresult=1
if(imass.eq.1)then
massfld=max(massflx(ia,ja),massflx(i,j))
endif
return
endif
!--- steering flow from the west
else if(dir(i).gt.270.-diff.and.dir(i).le.270.+diff)then
if(id(ia,j).eq.1)then
iresult=1
if(imass.eq.1)then
massfld=max(massflx(ia,j),massflx(i,j))
endif
return
endif
!--- steering flow from the north-west
else if(dir(i).gt.305.-diff.and.dir(i).le.305.+diff)then
if(id(ia,jb).eq.1)then
iresult=1
if(imass.eq.1)then
massfld=max(massflx(ia,jb),massflx(i,j))
endif
return
endif
!--- steering flow from the north
else if(dir(i).gt.360.-diff.and.dir(i).le.360.+diff)then
if(id(i,jb).eq.1)then
iresult=1
if(imass.eq.1)then
massfld=max(massflx(i,jb),massflx(i,j))
endif
return
endif
!--- steering flow from the north-east
else if(dir(i).gt.45.-diff.and.dir(i).le.45.+diff)then
if(id(ib,jb).eq.1)then
iresult=1
if(imass.eq.1)then
massfld=max(massflx(ib,jb),massflx(i,j))
endif
return
endif
endif
END SUBROUTINE cup_direction2
SUBROUTINE cup_env(z,qes,he,hes,t,q,p,z1, & 11,1
psur,ierr,tcrit,itest,xl,cp, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte )
IMPLICIT NONE
integer &
,intent (in ) :: &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte
!
! ierr error value, maybe modified in this routine
! q = environmental mixing ratio
! qes = environmental saturation mixing ratio
! t = environmental temp
! tv = environmental virtual temp
! p = environmental pressure
! z = environmental heights
! he = environmental moist static energy
! hes = environmental saturation moist static energy
! psur = surface pressure
! z1 = terrain elevation
!
!
real, dimension (its:ite,kts:kte) &
,intent (in ) :: &
p,t,q
real, dimension (its:ite,kts:kte) &
,intent (out ) :: &
he,hes,qes
real, dimension (its:ite,kts:kte) &
,intent (inout) :: &
z
real, dimension (its:ite) &
,intent (in ) :: &
psur,z1
real &
,intent (in ) :: &
xl,cp
integer, dimension (its:ite) &
,intent (inout) :: &
ierr
integer &
,intent (in ) :: &
itest
!
! local variables in this routine
!
integer :: &
i,k,iph
real, dimension (1:2) :: AE,BE,HT
real, dimension (its:ite,kts:kte) :: tv
real :: tcrit,e,tvbar
HT(1)=XL/CP
HT(2)=2.834E6/CP
BE(1)=.622*HT(1)/.286
AE(1)=BE(1)/273.+ALOG(610.71)
BE(2)=.622*HT(2)/.286
AE(2)=BE(2)/273.+ALOG(610.71)
! print *, 'TCRIT = ', tcrit,its,ite
DO k=kts,ktf
do i=its,itf
if(ierr(i).eq.0)then
!Csgb - IPH is for phase, dependent on TCRIT (water or ice)
IPH=1
IF(T(I,K).LE.TCRIT)IPH=2
! print *, 'AE(IPH),BE(IPH) = ',AE(IPH),BE(IPH),AE(IPH)-BE(IPH),T(i,k),i,k
E=EXP(AE(IPH)-BE(IPH)/T(I,K))
! print *, 'P, E = ', P(I,K), E
QES(I,K)=.622*E/(100.*P(I,K)-E)
IF(QES(I,K).LE.1.E-08)QES(I,K)=1.E-08
IF(QES(I,K).LT.Q(I,K))QES(I,K)=Q(I,K)
! IF(Q(I,K).GT.QES(I,K))Q(I,K)=QES(I,K)
TV(I,K)=T(I,K)+.608*Q(I,K)*T(I,K)
endif
enddo
enddo
!
!--- z's are calculated with changed h's and q's and t's
!--- if itest=2
!
if(itest.ne.2)then
do i=its,itf
if(ierr(i).eq.0)then
Z(I,1)=max(0.,Z1(I))-(ALOG(P(I,1))- &
ALOG(PSUR(I)))*287.*TV(I,1)/9.81
endif
enddo
! --- calculate heights
DO K=kts+1,ktf
do i=its,itf
if(ierr(i).eq.0)then
TVBAR=.5*TV(I,K)+.5*TV(I,K-1)
Z(I,K)=Z(I,K-1)-(ALOG(P(I,K))- &
ALOG(P(I,K-1)))*287.*TVBAR/9.81
endif
enddo
enddo
else
do k=kts,ktf
do i=its,itf
if(ierr(i).eq.0)then
z(i,k)=(he(i,k)-1004.*t(i,k)-2.5e6*q(i,k))/9.81
z(i,k)=max(1.e-3,z(i,k))
endif
enddo
enddo
endif
!
!--- calculate moist static energy - HE
! saturated moist static energy - HES
!
DO k=kts,ktf
do i=its,itf
if(ierr(i).eq.0)then
if(itest.eq.0)HE(I,K)=9.81*Z(I,K)+1004.*T(I,K)+2.5E06*Q(I,K)
HES(I,K)=9.81*Z(I,K)+1004.*T(I,K)+2.5E06*QES(I,K)
IF(HE(I,K).GE.HES(I,K))HE(I,K)=HES(I,K)
endif
enddo
enddo
END SUBROUTINE cup_env
SUBROUTINE cup_env_clev(t,qes,q,he,hes,z,p,qes_cup,q_cup, & 11
he_cup,hes_cup,z_cup,p_cup,gamma_cup,t_cup,psur, &
ierr,z1,xl,rv,cp, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte )
IMPLICIT NONE
integer &
,intent (in ) :: &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte
!
! ierr error value, maybe modified in this routine
! q = environmental mixing ratio
! q_cup = environmental mixing ratio on cloud levels
! qes = environmental saturation mixing ratio
! qes_cup = environmental saturation mixing ratio on cloud levels
! t = environmental temp
! t_cup = environmental temp on cloud levels
! p = environmental pressure
! p_cup = environmental pressure on cloud levels
! z = environmental heights
! z_cup = environmental heights on cloud levels
! he = environmental moist static energy
! he_cup = environmental moist static energy on cloud levels
! hes = environmental saturation moist static energy
! hes_cup = environmental saturation moist static energy on cloud levels
! gamma_cup = gamma on cloud levels
! psur = surface pressure
! z1 = terrain elevation
!
!
real, dimension (its:ite,kts:kte) &
,intent (in ) :: &
qes,q,he,hes,z,p,t
real, dimension (its:ite,kts:kte) &
,intent (out ) :: &
qes_cup,q_cup,he_cup,hes_cup,z_cup,p_cup,gamma_cup,t_cup
real, dimension (its:ite) &
,intent (in ) :: &
psur,z1
real &
,intent (in ) :: &
xl,rv,cp
integer, dimension (its:ite) &
,intent (inout) :: &
ierr
!
! local variables in this routine
!
integer :: &
i,k
do k=kts+1,ktf
do i=its,itf
if(ierr(i).eq.0)then
qes_cup(i,k)=.5*(qes(i,k-1)+qes(i,k))
q_cup(i,k)=.5*(q(i,k-1)+q(i,k))
hes_cup(i,k)=.5*(hes(i,k-1)+hes(i,k))
he_cup(i,k)=.5*(he(i,k-1)+he(i,k))
if(he_cup(i,k).gt.hes_cup(i,k))he_cup(i,k)=hes_cup(i,k)
z_cup(i,k)=.5*(z(i,k-1)+z(i,k))
p_cup(i,k)=.5*(p(i,k-1)+p(i,k))
t_cup(i,k)=.5*(t(i,k-1)+t(i,k))
gamma_cup(i,k)=(xl/cp)*(xl/(rv*t_cup(i,k) &
*t_cup(i,k)))*qes_cup(i,k)
endif
enddo
enddo
do i=its,itf
if(ierr(i).eq.0)then
qes_cup(i,1)=qes(i,1)
q_cup(i,1)=q(i,1)
hes_cup(i,1)=hes(i,1)
he_cup(i,1)=he(i,1)
z_cup(i,1)=.5*(z(i,1)+z1(i))
p_cup(i,1)=.5*(p(i,1)+psur(i))
t_cup(i,1)=t(i,1)
gamma_cup(i,1)=xl/cp*(xl/(rv*t_cup(i,1) &
*t_cup(i,1)))*qes_cup(i,1)
endif
enddo
END SUBROUTINE cup_env_clev
SUBROUTINE cup_forcing_ens_3d(closure_n,xland,aa0,aa1,xaa0,mbdt,dtime,ierr,ierr2,ierr3,& 2
xf_ens,j,name,axx,maxens,iens,iedt,maxens2,maxens3,mconv, &
p_cup,ktop,omeg,zd,k22,zu,pr_ens,edt,kbcon,massflx, &
iact_old_gr,dir,ensdim,massfln,icoic,edt_out, &
high_resolution,itf,jtf,ktf, &
its,ite, jts,jte, kts,kte,ens4,ktau )
IMPLICIT NONE
integer &
,intent (in ) :: &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte,ens4,high_resolution,ktau
integer, intent (in ) :: &
j,ensdim,maxens,iens,iedt,maxens2,maxens3
!
! ierr error value, maybe modified in this routine
! pr_ens = precipitation ensemble
! xf_ens = mass flux ensembles
! massfln = downdraft mass flux ensembles used in next timestep
! omeg = omega from large scale model
! mconv = moisture convergence from large scale model
! zd = downdraft normalized mass flux
! zu = updraft normalized mass flux
! aa0 = cloud work function without forcing effects
! aa1 = cloud work function with forcing effects
! xaa0 = cloud work function with cloud effects (ensemble dependent)
! edt = epsilon
! dir = "storm motion"
! mbdt = arbitrary numerical parameter
! dtime = dt over which forcing is applied
! iact_gr_old = flag to tell where convection was active
! kbcon = LFC of parcel from k22
! k22 = updraft originating level
! icoic = flag if only want one closure (usually set to zero!)
! name = deep or shallow convection flag
!
real, dimension (its:ite,jts:jte,1:ensdim) &
,intent (inout) :: &
pr_ens
real, dimension (its:ite,jts:jte,1:ensdim) &
,intent (out ) :: &
xf_ens,massfln
real, dimension (its:ite,jts:jte) &
,intent (inout ) :: &
edt_out
real, dimension (its:ite,jts:jte) &
,intent (in ) :: &
massflx
real, dimension (its:ite,kts:kte) &
,intent (in ) :: &
zd,zu,p_cup
real, dimension (its:ite,kts:kte,1:ens4) &
,intent (in ) :: &
omeg
real, dimension (its:ite,1:maxens) &
,intent (in ) :: &
xaa0
real, dimension (its:ite) &
,intent (in ) :: &
aa1,edt,dir,xland
real, dimension (its:ite,1:ens4) &
,intent (in ) :: &
mconv,axx
real, dimension (its:ite) &
,intent (inout) :: &
aa0,closure_n
real, dimension (1:maxens) &
,intent (in ) :: &
mbdt
real &
,intent (in ) :: &
dtime
integer, dimension (its:ite,jts:jte) &
,intent (in ) :: &
iact_old_gr
integer, dimension (its:ite) &
,intent (in ) :: &
k22,kbcon,ktop
integer, dimension (its:ite) &
,intent (inout) :: &
ierr,ierr2,ierr3
integer &
,intent (in ) :: &
icoic
character *(*), intent (in) :: &
name
!
! local variables in this routine
!
real, dimension (1:maxens3) :: &
xff_ens3
real, dimension (1:maxens) :: &
xk
integer :: &
i,k,nall,n,ne,nens,nens3,iresult,iresultd,iresulte,mkxcrt,kclim
parameter (mkxcrt=15)
real :: &
fens4,a1,massfld,a_ave,xff0,xff00,xxx,xomg,aclim1,aclim2,aclim3,aclim4
real, dimension(1:mkxcrt) :: &
pcrit,acrit,acritt
integer :: nall2,ixxx,irandom
integer, dimension (12) :: seed
DATA PCRIT/850.,800.,750.,700.,650.,600.,550.,500.,450.,400., &
350.,300.,250.,200.,150./
DATA ACRIT/.0633,.0445,.0553,.0664,.075,.1082,.1521,.2216, &
.3151,.3677,.41,.5255,.7663,1.1686,1.6851/
! GDAS DERIVED ACRIT
DATA ACRITT/.203,.515,.521,.566,.625,.665,.659,.688, &
.743,.813,.886,.947,1.138,1.377,1.896/
!
seed=0
seed(2)=j
seed(3)=ktau
nens=0
irandom=1
if(high_resolution.eq.1)irandom=0
irandom=0
fens4=float(ens4)
!--- LARGE SCALE FORCING
!
DO 100 i=its,itf
if(name.eq.'deeps'.and.ierr(i).gt.995)then
aa0(i)=0.
ierr(i)=0
endif
IF(ierr(i).eq.0)then
!
!---
!
if(name.eq.'deeps')then
!
a_ave=0.
do ne=1,ens4
a_ave=a_ave+axx(i,ne)
enddo
a_ave=max(0.,a_ave/fens4)
a_ave=min(a_ave,aa1(i))
a_ave=max(0.,a_ave)
do ne=1,16
xff_ens3(ne)=0.
enddo
xff0= (AA1(I)-AA0(I))/DTIME
if(high_resolution.eq.1)xff0= (a_ave-AA0(I))/DTIME
xff_ens3(1)=(AA1(I)-AA0(I))/dtime
xff_ens3(2)=(a_ave-AA0(I))/dtime
if(irandom.eq.1)then
seed(1)=i
call random_seed (PUT=seed)
call random_number (xxx)
ixxx=min(ens4,max(1,int(fens4*xxx+1.e-8)))
xff_ens3(3)=(axx(i,ixxx)-AA0(I))/dtime
call random_number (xxx)
ixxx=min(ens4,max(1,int(fens4*xxx+1.e-8)))
xff_ens3(13)=(axx(i,ixxx)-AA0(I))/dtime
else
xff_ens3(3)=(AA1(I)-AA0(I))/dtime
xff_ens3(13)=(AA1(I)-AA0(I))/dtime
endif
if(high_resolution.eq.1)then
xff_ens3(1)=(a_ave-AA0(I))/dtime
xff_ens3(2)=(a_ave-AA0(I))/dtime
xff_ens3(3)=(a_ave-AA0(I))/dtime
xff_ens3(13)=(a_ave-AA0(I))/dtime
endif
!
!--- more original Arakawa-Schubert (climatologic value of aa0)
!
!
!--- omeg is in bar/s, mconv done with omeg in Pa/s
! more like Brown (1979), or Frank-Cohen (199?)
!
xff_ens3(14)=0.
do ne=1,ens4
xff_ens3(14)=xff_ens3(14)-omeg(i,k22(i),ne)/(fens4*9.81)
enddo
if(xff_ens3(14).lt.0.)xff_ens3(14)=0.
xff_ens3(5)=0.
do ne=1,ens4
xff_ens3(5)=xff_ens3(5)-omeg(i,kbcon(i),ne)/(fens4*9.81)
enddo
if(xff_ens3(5).lt.0.)xff_ens3(5)=0.
!
! minimum below kbcon
!
if(high_resolution.eq.0)then
xff_ens3(4)=-omeg(i,2,1)/9.81
do k=2,kbcon(i)-1
do ne=1,ens4
xomg=-omeg(i,k,ne)/9.81
if(xomg.lt.xff_ens3(4))xff_ens3(4)=xomg
enddo
enddo
if(xff_ens3(4).lt.0.)xff_ens3(4)=0.
!
! max below kbcon
xff_ens3(6)=-omeg(i,2,1)/9.81
do k=2,kbcon(i)-1
do ne=1,ens4
xomg=-omeg(i,k,ne)/9.81
if(xomg.gt.xff_ens3(6))xff_ens3(6)=xomg
enddo
enddo
if(xff_ens3(6).lt.0.)xff_ens3(6)=0.
endif
if(high_resolution.eq.1)then
xff_ens3(5)=min(xff_ens3(5),xff_ens3(14))
xff_ens3(4)=xff_ens3(5)
xff_ens3(6)=xff_ens3(5)
endif
!
!--- more like Krishnamurti et al.; pick max and average values
!
xff_ens3(7)=mconv(i,1)
xff_ens3(8)=mconv(i,1)
xff_ens3(9)=mconv(i,1)
if(ens4.gt.1)then
do ne=2,ens4
if (mconv(i,ne).gt.xff_ens3(7))xff_ens3(7)=mconv(i,ne)
enddo
do ne=2,ens4
if (mconv(i,ne).lt.xff_ens3(8))xff_ens3(8)=mconv(i,ne)
enddo
do ne=2,ens4
xff_ens3(9)=xff_ens3(9)+mconv(i,ne)
enddo
xff_ens3(9)=xff_ens3(9)/fens4
endif
if(high_resolution.eq.1)then
xff_ens3(7)=xff_ens3(9)
xff_ens3(8)=xff_ens3(9)
xff_ens3(15)=xff_ens3(9)
endif
!
if(high_resolution.eq.0)then
if(irandom.eq.1)then
seed(1)=i
call random_seed (PUT=seed)
call random_number (xxx)
ixxx=min(ens4,max(1,int(fens4*xxx+1.e-8)))
xff_ens3(15)=mconv(i,ixxx)
else
xff_ens3(15)=mconv(i,1)
endif
endif
!
!--- more like Fritsch Chappel or Kain Fritsch (plus triggers)
!
xff_ens3(10)=A_AVE/(60.*40.)
xff_ens3(11)=AA1(I)/(60.*40.)
if(irandom.eq.1)then
seed(1)=i
call random_seed (PUT=seed)
call random_number (xxx)
ixxx=min(ens4,max(1,int(fens4*xxx+1.e-8)))
xff_ens3(12)=AXX(I,ixxx)/(60.*40.)
else
xff_ens3(12)=AA1(I)/(60.*40.)
endif
if(high_resolution.eq.1)then
xff_ens3(11)=xff_ens3(10)
xff_ens3(12)=xff_ens3(10)
endif
!
!--- more original Arakawa-Schubert (climatologic value of aa0)
!
! edt_out(i,j)=xff0
if(icoic.eq.0)then
if(xff0.lt.0.)then
xff_ens3(1)=0.
xff_ens3(2)=0.
xff_ens3(3)=0.
xff_ens3(13)=0.
xff_ens3(10)=0.
xff_ens3(11)=0.
xff_ens3(12)=0.
endif
endif
do nens=1,maxens
XK(nens)=(XAA0(I,nens)-AA1(I))/MBDT(2)
if(xk(nens).le.0.and.xk(nens).gt.-1.e-6) &
xk(nens)=-1.e-6
if(xk(nens).gt.0.and.xk(nens).lt.1.e-6) &
xk(nens)=1.e-6
enddo
!
!--- add up all ensembles
!
do 350 ne=1,maxens
!
!--- for every xk, we have maxens3 xffs
!--- iens is from outermost ensemble (most expensive!
!
!--- iedt (maxens2 belongs to it)
!--- is from second, next outermost, not so expensive
!
!--- so, for every outermost loop, we have maxens*maxens2*3
!--- ensembles!!! nall would be 0, if everything is on first
!--- loop index, then ne would start counting, then iedt, then iens....
!
iresult=0
iresultd=0
iresulte=0
nall=(iens-1)*maxens3*maxens*maxens2 &
+(iedt-1)*maxens*maxens3 &
+(ne-1)*maxens3
!
! over water, enfor!e small cap for some of the closures
!
if(xland(i).lt.0.1)then
if(ierr2(i).gt.0.or.ierr3(i).gt.0)then
xff_ens3(1) =0.
massfln(i,j,nall+1)=0.
xff_ens3(2) =0.
massfln(i,j,nall+2)=0.
xff_ens3(3) =0.
massfln(i,j,nall+3)=0.
xff_ens3(10) =0.
massfln(i,j,nall+10)=0.
xff_ens3(11) =0.
massfln(i,j,nall+11)=0.
xff_ens3(12) =0.
massfln(i,j,nall+12)=0.
xff_ens3(7) =0.
massfln(i,j,nall+7)=0.
xff_ens3(8) =0.
massfln(i,j,nall+8)=0.
xff_ens3(9) =0.
massfln(i,j,nall+9)=0.
xff_ens3(13) =0.
massfln(i,j,nall+13)=0.
xff_ens3(15) =0.
massfln(i,j,nall+15)=0.
endif
endif
!
! end water treatment
!
!
!--- check for upwind convection
! iresult=0
massfld=0.
! call cup_direction2(i,j,dir,iact_old_gr, &
! massflx,iresult,1, &
! massfld, &
! itf,jtf,ktf, &
! ims,ime, jms,jme, kms,kme, &
! its,ite, jts,jte, kts,kte )
! if(i.eq.ipr.and.j.eq.jpr.and.iedt.eq.1.and.ne.eq.1)then
! if(iedt.eq.1.and.ne.eq.1)then
! print *,massfld,ne,iedt,iens
! print *,xk(ne),xff_ens3(1),xff_ens3(2),xff_ens3(3)
! endif
! print *,i,j,massfld,aa0(i),aa1(i)
IF(XK(ne).lt.0.and.xff0.gt.0.)iresultd=1
iresulte=max(iresult,iresultd)
iresulte=1
if(iresulte.eq.1)then
!
!--- special treatment for stability closures
!
if(xff0.ge.0.)then
xf_ens(i,j,nall+1)=massfld
xf_ens(i,j,nall+2)=massfld
xf_ens(i,j,nall+3)=massfld
xf_ens(i,j,nall+13)=massfld
if(xff_ens3(1).gt.0)xf_ens(i,j,nall+1)=max(0.,-xff_ens3(1)/xk(ne)) &
+massfld
if(xff_ens3(2).gt.0)xf_ens(i,j,nall+2)=max(0.,-xff_ens3(2)/xk(ne)) &
+massfld
if(xff_ens3(3).gt.0)xf_ens(i,j,nall+3)=max(0.,-xff_ens3(3)/xk(ne)) &
+massfld
if(xff_ens3(13).gt.0)xf_ens(i,j,nall+13)=max(0.,-xff_ens3(13)/xk(ne)) &
+massfld
! endif
else
xf_ens(i,j,nall+1)=massfld
xf_ens(i,j,nall+2)=massfld
xf_ens(i,j,nall+3)=massfld
xf_ens(i,j,nall+13)=massfld
endif
!
!--- if iresult.eq.1, following independent of xff0
!
xf_ens(i,j,nall+4)=max(0.,xff_ens3(4) &
+massfld)
xf_ens(i,j,nall+5)=max(0.,xff_ens3(5) &
+massfld)
xf_ens(i,j,nall+6)=max(0.,xff_ens3(6) &
+massfld)
xf_ens(i,j,nall+14)=max(0.,xff_ens3(14) &
+massfld)
a1=max(1.e-3,pr_ens(i,j,nall+7))
xf_ens(i,j,nall+7)=max(0.,xff_ens3(7) &
/a1)
a1=max(1.e-3,pr_ens(i,j,nall+8))
xf_ens(i,j,nall+8)=max(0.,xff_ens3(8) &
/a1)
a1=max(1.e-3,pr_ens(i,j,nall+9))
xf_ens(i,j,nall+9)=max(0.,xff_ens3(9) &
/a1)
a1=max(1.e-3,pr_ens(i,j,nall+15))
xf_ens(i,j,nall+15)=max(0.,xff_ens3(15) &
/a1)
if(XK(ne).lt.0.)then
xf_ens(i,j,nall+10)=max(0., &
-xff_ens3(10)/xk(ne)) &
+massfld
xf_ens(i,j,nall+11)=max(0., &
-xff_ens3(11)/xk(ne)) &
+massfld
xf_ens(i,j,nall+12)=max(0., &
-xff_ens3(12)/xk(ne)) &
+massfld
else
xf_ens(i,j,nall+10)=massfld
xf_ens(i,j,nall+11)=massfld
xf_ens(i,j,nall+12)=massfld
endif
if(icoic.ge.1)then
closure_n(i)=0.
xf_ens(i,j,nall+1)=xf_ens(i,j,nall+icoic)
xf_ens(i,j,nall+2)=xf_ens(i,j,nall+icoic)
xf_ens(i,j,nall+3)=xf_ens(i,j,nall+icoic)
xf_ens(i,j,nall+4)=xf_ens(i,j,nall+icoic)
xf_ens(i,j,nall+5)=xf_ens(i,j,nall+icoic)
xf_ens(i,j,nall+6)=xf_ens(i,j,nall+icoic)
xf_ens(i,j,nall+7)=xf_ens(i,j,nall+icoic)
xf_ens(i,j,nall+8)=xf_ens(i,j,nall+icoic)
xf_ens(i,j,nall+9)=xf_ens(i,j,nall+icoic)
xf_ens(i,j,nall+10)=xf_ens(i,j,nall+icoic)
xf_ens(i,j,nall+11)=xf_ens(i,j,nall+icoic)
xf_ens(i,j,nall+12)=xf_ens(i,j,nall+icoic)
xf_ens(i,j,nall+13)=xf_ens(i,j,nall+icoic)
xf_ens(i,j,nall+14)=xf_ens(i,j,nall+icoic)
xf_ens(i,j,nall+15)=xf_ens(i,j,nall+icoic)
xf_ens(i,j,nall+16)=xf_ens(i,j,nall+icoic)
endif
!
! 16 is a randon pick from the oher 15
!
if(irandom.eq.1)then
call random_number (xxx)
ixxx=min(15,max(1,int(15.*xxx+1.e-8)))
xf_ens(i,j,nall+16)=xf_ens(i,j,nall+ixxx)
else
xf_ens(i,j,nall+16)=xf_ens(i,j,nall+1)
endif
!
!
!--- store new for next time step
!
do nens3=1,maxens3
massfln(i,j,nall+nens3)=edt(i) &
*xf_ens(i,j,nall+nens3)
massfln(i,j,nall+nens3)=max(0., &
massfln(i,j,nall+nens3))
enddo
!
!
!--- do some more on the caps!!! ne=1 for 175, ne=2 for 100,....
!
! do not care for caps here for closure groups 1 and 5,
! they are fine, do not turn them off here
!
!
if(ne.eq.2.and.ierr2(i).gt.0)then
xf_ens(i,j,nall+1) =0.
xf_ens(i,j,nall+2) =0.
xf_ens(i,j,nall+3) =0.
xf_ens(i,j,nall+4) =0.
xf_ens(i,j,nall+5) =0.
xf_ens(i,j,nall+6) =0.
xf_ens(i,j,nall+7) =0.
xf_ens(i,j,nall+8) =0.
xf_ens(i,j,nall+9) =0.
xf_ens(i,j,nall+10)=0.
xf_ens(i,j,nall+11)=0.
xf_ens(i,j,nall+12)=0.
xf_ens(i,j,nall+13)=0.
xf_ens(i,j,nall+14)=0.
xf_ens(i,j,nall+15)=0.
xf_ens(i,j,nall+16)=0.
massfln(i,j,nall+1)=0.
massfln(i,j,nall+2)=0.
massfln(i,j,nall+3)=0.
massfln(i,j,nall+4)=0.
massfln(i,j,nall+5)=0.
massfln(i,j,nall+6)=0.
massfln(i,j,nall+7)=0.
massfln(i,j,nall+8)=0.
massfln(i,j,nall+9)=0.
massfln(i,j,nall+10)=0.
massfln(i,j,nall+11)=0.
massfln(i,j,nall+12)=0.
massfln(i,j,nall+13)=0.
massfln(i,j,nall+14)=0.
massfln(i,j,nall+15)=0.
massfln(i,j,nall+16)=0.
endif
if(ne.eq.3.and.ierr3(i).gt.0)then
xf_ens(i,j,nall+1) =0.
xf_ens(i,j,nall+2) =0.
xf_ens(i,j,nall+3) =0.
xf_ens(i,j,nall+4) =0.
xf_ens(i,j,nall+5) =0.
xf_ens(i,j,nall+6) =0.
xf_ens(i,j,nall+7) =0.
xf_ens(i,j,nall+8) =0.
xf_ens(i,j,nall+9) =0.
xf_ens(i,j,nall+10)=0.
xf_ens(i,j,nall+11)=0.
xf_ens(i,j,nall+12)=0.
xf_ens(i,j,nall+13)=0.
xf_ens(i,j,nall+14)=0.
xf_ens(i,j,nall+15)=0.
xf_ens(i,j,nall+16)=0.
massfln(i,j,nall+1)=0.
massfln(i,j,nall+2)=0.
massfln(i,j,nall+3)=0.
massfln(i,j,nall+4)=0.
massfln(i,j,nall+5)=0.
massfln(i,j,nall+6)=0.
massfln(i,j,nall+7)=0.
massfln(i,j,nall+8)=0.
massfln(i,j,nall+9)=0.
massfln(i,j,nall+10)=0.
massfln(i,j,nall+11)=0.
massfln(i,j,nall+12)=0.
massfln(i,j,nall+13)=0.
massfln(i,j,nall+14)=0.
massfln(i,j,nall+15)=0.
massfln(i,j,nall+16)=0.
endif
endif
350 continue
! ne=1, cap=175
!
nall=(iens-1)*maxens3*maxens*maxens2 &
+(iedt-1)*maxens*maxens3
! ne=2, cap=100
!
nall2=(iens-1)*maxens3*maxens*maxens2 &
+(iedt-1)*maxens*maxens3 &
+(2-1)*maxens3
xf_ens(i,j,nall+4) = xf_ens(i,j,nall2+4)
xf_ens(i,j,nall+5) =xf_ens(i,j,nall2+5)
xf_ens(i,j,nall+6) =xf_ens(i,j,nall2+6)
xf_ens(i,j,nall+14) =xf_ens(i,j,nall2+14)
xf_ens(i,j,nall+7) =xf_ens(i,j,nall2+7)
xf_ens(i,j,nall+8) =xf_ens(i,j,nall2+8)
xf_ens(i,j,nall+9) =xf_ens(i,j,nall2+9)
xf_ens(i,j,nall+15) =xf_ens(i,j,nall2+15)
xf_ens(i,j,nall+10)=xf_ens(i,j,nall2+10)
xf_ens(i,j,nall+11)=xf_ens(i,j,nall2+11)
xf_ens(i,j,nall+12)=xf_ens(i,j,nall2+12)
go to 100
endif
elseif(ierr(i).ne.20.and.ierr(i).ne.0)then
do n=1,ensdim
xf_ens(i,j,n)=0.
massfln(i,j,n)=0.
enddo
endif
100 continue
END SUBROUTINE cup_forcing_ens_3d
SUBROUTINE cup_kbcon(cap_inc,iloop,k22,kbcon,he_cup,hes_cup, & 9
ierr,kbmax,p_cup,cap_max, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte )
IMPLICIT NONE
!
! only local wrf dimensions are need as of now in this routine
integer &
,intent (in ) :: &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte
!
!
!
! ierr error value, maybe modified in this routine
!
real, dimension (its:ite,kts:kte) &
,intent (in ) :: &
he_cup,hes_cup,p_cup
real, dimension (its:ite) &
,intent (in ) :: &
cap_max,cap_inc
integer, dimension (its:ite) &
,intent (in ) :: &
kbmax
integer, dimension (its:ite) &
,intent (inout) :: &
kbcon,k22,ierr
integer &
,intent (in ) :: &
iloop
!
! local variables in this routine
!
integer :: &
i,k
real :: &
pbcdif,plus,hetest
!
!--- DETERMINE THE LEVEL OF CONVECTIVE CLOUD BASE - KBCON
!
DO 27 i=its,itf
kbcon(i)=1
IF(ierr(I).ne.0)GO TO 27
KBCON(I)=K22(I)
GO TO 32
31 CONTINUE
KBCON(I)=KBCON(I)+1
IF(KBCON(I).GT.KBMAX(i)+2)THEN
if(iloop.ne.4)ierr(i)=3
! if(iloop.lt.4)ierr(i)=997
GO TO 27
ENDIF
32 CONTINUE
hetest=HE_cup(I,K22(I))
if(iloop.eq.5)then
do k=1,k22(i)
hetest=max(hetest,he_cup(i,k))
enddo
endif
IF(HETEST.LT.HES_cup(I,KBCON(I)))GO TO 31
! cloud base pressure and max moist static energy pressure
! i.e., the depth (in mb) of the layer of negative buoyancy
if(KBCON(I)-K22(I).eq.1)go to 27
if(iloop.eq.5 .and. (KBCON(I)-K22(I)).eq.0)go to 27
PBCDIF=-P_cup(I,KBCON(I))+P_cup(I,K22(I))
plus=max(25.,cap_max(i)-float(iloop-1)*cap_inc(i))
if(iloop.eq.4)plus=cap_max(i)
!
! for shallow convection, if cap_max is greater than 25, it is the pressure at pbltop
if(iloop.eq.5)plus=25.
if(iloop.eq.5.and.cap_max(i).gt.25)pbcdif=-P_cup(I,KBCON(I))+cap_max(i)
IF(PBCDIF.GT.plus)THEN
K22(I)=K22(I)+1
KBCON(I)=K22(I)
GO TO 32
ENDIF
27 CONTINUE
END SUBROUTINE cup_kbcon
SUBROUTINE cup_ktop(ilo,dby,kbcon,ktop,ierr, & 3
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte )
IMPLICIT NONE
!
! on input
!
! only local wrf dimensions are need as of now in this routine
integer &
,intent (in ) :: &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte
! dby = buoancy term
! ktop = cloud top (output)
! ilo = flag
! ierr error value, maybe modified in this routine
!
real, dimension (its:ite,kts:kte) &
,intent (inout) :: &
dby
integer, dimension (its:ite) &
,intent (in ) :: &
kbcon
integer &
,intent (in ) :: &
ilo
integer, dimension (its:ite) &
,intent (out ) :: &
ktop
integer, dimension (its:ite) &
,intent (inout) :: &
ierr
!
! local variables in this routine
!
integer :: &
i,k
!
DO 42 i=its,itf
ktop(i)=1
IF(ierr(I).EQ.0)then
DO 40 K=KBCON(I)+1,ktf-1
IF(DBY(I,K).LE.0.)THEN
KTOP(I)=K-1
GO TO 41
ENDIF
40 CONTINUE
if(ilo.eq.1)ierr(i)=5
! if(ilo.eq.2)ierr(i)=998
GO TO 42
41 CONTINUE
do k=ktop(i)+1,ktf
dby(i,k)=0.
enddo
if(kbcon(i).eq.ktop(i))then
ierr(i)=55
endif
endif
42 CONTINUE
END SUBROUTINE cup_ktop
SUBROUTINE cup_MAXIMI(ARRAY,KS,KE,MAXX,ierr, & 7
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte )
IMPLICIT NONE
!
! on input
!
! only local wrf dimensions are need as of now in this routine
integer &
,intent (in ) :: &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte
! array input array
! x output array with return values
! kt output array of levels
! ks,kend check-range
real, dimension (its:ite,kts:kte) &
,intent (in ) :: &
array
integer, dimension (its:ite) &
,intent (in ) :: &
ierr,ke
integer &
,intent (in ) :: &
ks
integer, dimension (its:ite) &
,intent (out ) :: &
maxx
real, dimension (its:ite) :: &
x
real :: &
xar
integer :: &
i,k
DO 200 i=its,itf
MAXX(I)=KS
if(ierr(i).eq.0)then
X(I)=ARRAY(I,KS)
!
DO 100 K=KS,KE(i)
XAR=ARRAY(I,K)
IF(XAR.GE.X(I)) THEN
X(I)=XAR
MAXX(I)=K
ENDIF
100 CONTINUE
endif
200 CONTINUE
END SUBROUTINE cup_MAXIMI
SUBROUTINE cup_minimi(ARRAY,KS,KEND,KT,ierr, & 5
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte )
IMPLICIT NONE
!
! on input
!
! only local wrf dimensions are need as of now in this routine
integer &
,intent (in ) :: &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte
! array input array
! x output array with return values
! kt output array of levels
! ks,kend check-range
real, dimension (its:ite,kts:kte) &
,intent (in ) :: &
array
integer, dimension (its:ite) &
,intent (in ) :: &
ierr,ks,kend
integer, dimension (its:ite) &
,intent (out ) :: &
kt
real, dimension (its:ite) :: &
x
integer :: &
i,k,kstop
DO 200 i=its,itf
KT(I)=KS(I)
if(ierr(i).eq.0)then
X(I)=ARRAY(I,KS(I))
KSTOP=MAX(KS(I)+1,KEND(I))
!
DO 100 K=KS(I)+1,KSTOP
IF(ARRAY(I,K).LT.X(I)) THEN
X(I)=ARRAY(I,K)
KT(I)=K
ENDIF
100 CONTINUE
endif
200 CONTINUE
END SUBROUTINE cup_MINIMI
SUBROUTINE cup_output_ens_3d(xf_ens,ierr,dellat,dellaq,dellaqc, & 2,2
subt_ens,subq_ens,subt,subq,outtem,outq,outqc, &
zu,sub_mas,pre,pw,xmb,ktop, &
j,name,nx,nx2,iens,ierr2,ierr3,pr_ens, &
maxens3,ensdim,massfln, &
APR_GR,APR_W,APR_MC,APR_ST,APR_AS, &
APR_CAPMA,APR_CAPME,APR_CAPMI,closure_n,xland1, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
IMPLICIT NONE
!
! on input
!
! only local wrf dimensions are need as of now in this routine
integer &
,intent (in ) :: &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte
integer, intent (in ) :: &
j,ensdim,nx,nx2,iens,maxens3
! xf_ens = ensemble mass fluxes
! pr_ens = precipitation ensembles
! dellat = change of temperature per unit mass flux of cloud ensemble
! dellaq = change of q per unit mass flux of cloud ensemble
! dellaqc = change of qc per unit mass flux of cloud ensemble
! outtem = output temp tendency (per s)
! outq = output q tendency (per s)
! outqc = output qc tendency (per s)
! pre = output precip
! xmb = total base mass flux
! xfac1 = correction factor
! pw = pw -epsilon*pd (ensemble dependent)
! ierr error value, maybe modified in this routine
!
real, dimension (its:ite,jts:jte,1:ensdim) &
,intent (inout) :: &
xf_ens,pr_ens,massfln
real, dimension (its:ite,jts:jte) &
,intent (inout) :: &
APR_GR,APR_W,APR_MC,APR_ST,APR_AS,APR_CAPMA, &
APR_CAPME,APR_CAPMI
real, dimension (its:ite,kts:kte) &
,intent (out ) :: &
outtem,outq,outqc,subt,subq,sub_mas
real, dimension (its:ite,kts:kte) &
,intent (in ) :: &
zu
real, dimension (its:ite) &
,intent (out ) :: &
pre,xmb
real, dimension (its:ite) &
,intent (inout ) :: &
closure_n,xland1
real, dimension (its:ite,kts:kte,1:nx) &
,intent (in ) :: &
subt_ens,subq_ens,dellat,dellaqc,dellaq,pw
integer, dimension (its:ite) &
,intent (in ) :: &
ktop
integer, dimension (its:ite) &
,intent (inout) :: &
ierr,ierr2,ierr3
!
! local variables in this routine
!
integer :: &
i,k,n,ncount
real :: &
outtes,ddtes,dtt,dtq,dtqc,dtpw,tuning,prerate,clos_wei,xmbhelp
real :: &
dtts,dtqs
real, dimension (its:ite) :: &
xfac1,xfac2
real, dimension (its:ite):: &
xmb_ske,xmb_ave,xmb_std,xmb_cur,xmbweight
real, dimension (its:ite):: &
pr_ske,pr_ave,pr_std,pr_cur
real, dimension (its:ite,jts:jte):: &
pr_gr,pr_w,pr_mc,pr_st,pr_as,pr_capma, &
pr_capme,pr_capmi
real, dimension (5) :: weight,wm,wm1,wm2,wm3
real, dimension (its:ite,5) :: xmb_w
!
character *(*), intent (in) :: &
name
!
weight(1) = -999. !this will turn off weights
wm(1)=-999.
tuning=0.
!
!
DO k=kts,ktf
do i=its,itf
outtem(i,k)=0.
outq(i,k)=0.
outqc(i,k)=0.
subt(i,k)=0.
subq(i,k)=0.
sub_mas(i,k)=0.
enddo
enddo
do i=its,itf
pre(i)=0.
xmb(i)=0.
xfac1(i)=0.
xfac2(i)=0.
xmbweight(i)=1.
enddo
do i=its,itf
IF(ierr(i).eq.0)then
do n=(iens-1)*nx*nx2*maxens3+1,iens*nx*nx2*maxens3
if(pr_ens(i,j,n).le.0.)then
xf_ens(i,j,n)=0.
endif
enddo
endif
enddo
!
!--- calculate ensemble average mass fluxes
!
call massflx_stats
(xf_ens,ensdim,nx2,nx,maxens3, &
xmb_ave,xmb_std,xmb_cur,xmb_ske,j,ierr,1, &
APR_GR,APR_W,APR_MC,APR_ST,APR_AS, &
APR_CAPMA,APR_CAPME,APR_CAPMI, &
pr_gr,pr_w,pr_mc,pr_st,pr_as, &
pr_capma,pr_capme,pr_capmi, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte )
xmb_w=0.
call massflx_stats
(pr_ens,ensdim,nx2,nx,maxens3, &
pr_ave,pr_std,pr_cur,pr_ske,j,ierr,2, &
APR_GR,APR_W,APR_MC,APR_ST,APR_AS, &
APR_CAPMA,APR_CAPME,APR_CAPMI, &
pr_gr,pr_w,pr_mc,pr_st,pr_as, &
pr_capma,pr_capme,pr_capmi, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte )
!
!-- now do feedback
!
ddtes=100.
do i=its,itf
if(ierr(i).eq.0)then
if(xmb_ave(i).le.0.)then
ierr(i)=13
xmb_ave(i)=0.
endif
xmb(i)=max(.1*xmb_ave(i),xmb_ave(i)-tuning*xmb_std(i))
! --- Now use proper count of how many closures were actually
! used in cup_forcing_ens (including screening of some
! closures over water) to properly normalize xmb
clos_wei=16./max(1.,closure_n(i))
if (xland1(i).lt.0.5)xmb(i)=xmb(i)*clos_wei
if(xmb(i).eq.0.)then
ierr(i)=19
endif
if(xmb(i).gt.100.)then
ierr(i)=19
endif
xfac1(i)=xmb(i)
xfac2(i)=xmb(i)
endif
! if(weight(1).lt.-100.)xfac1(i)=xmb_ave(i)
! if(weight(1).lt.-100.)xfac2(i)=xmb_ave(i)
ENDDO
DO k=kts,ktf
do i=its,itf
dtt=0.
dtts=0.
dtq=0.
dtqs=0.
dtqc=0.
dtpw=0.
IF(ierr(i).eq.0.and.k.le.ktop(i))then
do n=1,nx
dtt=dtt+dellat(i,k,n)
dtts=dtts+subt_ens(i,k,n)
dtq=dtq+dellaq(i,k,n)
dtqs=dtqs+subq_ens(i,k,n)
dtqc=dtqc+dellaqc(i,k,n)
dtpw=dtpw+pw(i,k,n)
enddo
OUTTEM(I,K)=XMB(I)*dtt/float(nx)
SUBT(I,K)=XMB(I)*dtts/float(nx)
OUTQ(I,K)=XMB(I)*dtq/float(nx)
SUBQ(I,K)=XMB(I)*dtqs/float(nx)
OUTQC(I,K)=XMB(I)*dtqc/float(nx)
PRE(I)=PRE(I)+XMB(I)*dtpw/float(nx)
sub_mas(i,k)=zu(i,k)*xmb(i)
endif
enddo
enddo
do i=its,itf
if(ierr(i).eq.0)then
do k=(iens-1)*nx*nx2*maxens3+1,iens*nx*nx2*maxens3
massfln(i,j,k)=massfln(i,j,k)*xfac1(i)
xf_ens(i,j,k)=xf_ens(i,j,k)*xfac1(i)
enddo
endif
ENDDO
END SUBROUTINE cup_output_ens_3d
SUBROUTINE cup_up_aa0(aa0,z,zu,dby,GAMMA_CUP,t_cup, & 13
kbcon,ktop,ierr, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte )
IMPLICIT NONE
!
! on input
!
! only local wrf dimensions are need as of now in this routine
integer &
,intent (in ) :: &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte
! aa0 cloud work function
! gamma_cup = gamma on model cloud levels
! t_cup = temperature (Kelvin) on model cloud levels
! dby = buoancy term
! zu= normalized updraft mass flux
! z = heights of model levels
! ierr error value, maybe modified in this routine
!
real, dimension (its:ite,kts:kte) &
,intent (in ) :: &
z,zu,gamma_cup,t_cup,dby
integer, dimension (its:ite) &
,intent (in ) :: &
kbcon,ktop
!
! input and output
!
integer, dimension (its:ite) &
,intent (inout) :: &
ierr
real, dimension (its:ite) &
,intent (out ) :: &
aa0
!
! local variables in this routine
!
integer :: &
i,k
real :: &
dz,da
!
do i=its,itf
aa0(i)=0.
enddo
DO 100 k=kts+1,ktf
DO 100 i=its,itf
IF(ierr(i).ne.0)GO TO 100
IF(K.LE.KBCON(I))GO TO 100
IF(K.Gt.KTOP(I))GO TO 100
DZ=Z(I,K)-Z(I,K-1)
da=zu(i,k)*DZ*(9.81/(1004.*( &
(T_cup(I,K)))))*DBY(I,K-1)/ &
(1.+GAMMA_CUP(I,K))
IF(K.eq.KTOP(I).and.da.le.0.)go to 100
AA0(I)=AA0(I)+da
if(aa0(i).lt.0.)aa0(i)=0.
100 continue
END SUBROUTINE cup_up_aa0
SUBROUTINE cup_up_he(k22,hkb,z_cup,cd,entr,he_cup,hc, & 7
kbcon,ierr,dby,he,hes_cup,name, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte )
IMPLICIT NONE
!
! on input
!
! only local wrf dimensions are need as of now in this routine
integer &
,intent (in ) :: &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte
character *(*), intent (in) :: &
name
! hc = cloud moist static energy
! hkb = moist static energy at originating level
! he = moist static energy on model levels
! he_cup = moist static energy on model cloud levels
! hes_cup = saturation moist static energy on model cloud levels
! dby = buoancy term
! cd= detrainment function
! z_cup = heights of model cloud levels
! entr = entrainment rate
!
real, dimension (its:ite,kts:kte) &
,intent (in ) :: &
he,he_cup,hes_cup,z_cup,cd
! entr= entrainment rate
real &
,intent (in ) :: &
entr
integer, dimension (its:ite) &
,intent (in ) :: &
kbcon,k22
!
! input and output
!
! ierr error value, maybe modified in this routine
integer, dimension (its:ite) &
,intent (inout) :: &
ierr
real, dimension (its:ite,kts:kte) &
,intent (out ) :: &
hc,dby
real, dimension (its:ite) &
,intent (out ) :: &
hkb
!
! local variables in this routine
!
integer :: &
i,k
real :: &
dz
!
!--- moist static energy inside cloud
!
do k=kts,ktf
do i=its,itf
hc(i,k)=0.
DBY(I,K)=0.
enddo
enddo
do i=its,itf
hkb(i)=0.
enddo
do i=its,itf
if(ierr(i).eq.0.)then
hkb(i)=he_cup(i,k22(i))
if(name.eq.'shallow')then
do k=1,k22(i)
hkb(i)=max(hkb(i),he_cup(i,k))
enddo
endif
do k=1,k22(i)
hc(i,k)=he_cup(i,k)
enddo
do k=k22(i),kbcon(i)-1
hc(i,k)=hkb(i)
enddo
k=kbcon(i)
hc(i,k)=hkb(i)
DBY(I,Kbcon(i))=Hkb(I)-HES_cup(I,K)
endif
enddo
do k=kts+1,ktf
do i=its,itf
if(k.gt.kbcon(i).and.ierr(i).eq.0.)then
DZ=Z_cup(i,K)-Z_cup(i,K-1)
HC(i,K)=(HC(i,K-1)*(1.-.5*CD(i,K)*DZ)+entr* &
DZ*HE(i,K-1))/(1.+entr*DZ-.5*cd(i,k)*dz)
DBY(I,K)=HC(I,K)-HES_cup(I,K)
endif
enddo
enddo
END SUBROUTINE cup_up_he
SUBROUTINE cup_up_moisture(name,ierr,z_cup,qc,qrc,pw,pwav, & 5
kbcon,ktop,cd,dby,mentr_rate,clw_all, &
q,GAMMA_cup,zu,qes_cup,k22,qe_cup,xl, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte )
IMPLICIT NONE
!
! on input
!
! only local wrf dimensions are need as of now in this routine
integer &
,intent (in ) :: &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte
! cd= detrainment function
! q = environmental q on model levels
! qe_cup = environmental q on model cloud levels
! qes_cup = saturation q on model cloud levels
! dby = buoancy term
! cd= detrainment function
! zu = normalized updraft mass flux
! gamma_cup = gamma on model cloud levels
! mentr_rate = entrainment rate
!
real, dimension (its:ite,kts:kte) &
,intent (in ) :: &
q,zu,gamma_cup,qe_cup,dby,qes_cup,z_cup,cd
! entr= entrainment rate
real &
,intent (in ) :: &
mentr_rate,xl
integer, dimension (its:ite) &
,intent (in ) :: &
kbcon,ktop,k22
!
! input and output
!
! ierr error value, maybe modified in this routine
integer, dimension (its:ite) &
,intent (inout) :: &
ierr
character *(*), intent (in) :: &
name
! qc = cloud q (including liquid water) after entrainment
! qrch = saturation q in cloud
! qrc = liquid water content in cloud after rainout
! pw = condensate that will fall out at that level
! pwav = totan normalized integrated condensate (I1)
! c0 = conversion rate (cloud to rain)
real, dimension (its:ite,kts:kte) &
,intent (out ) :: &
qc,qrc,pw,clw_all
real, dimension (its:ite) &
,intent (out ) :: &
pwav
!
! local variables in this routine
!
integer :: &
iall,i,k
real :: &
dh,qrch,c0,dz,radius
!
iall=0
c0=.002
!
!--- no precip for small clouds
!
if(name.eq.'shallow')c0=0.
do i=its,itf
pwav(i)=0.
enddo
do k=kts,ktf
do i=its,itf
pw(i,k)=0.
qc(i,k)=0.
if(ierr(i).eq.0)qc(i,k)=qes_cup(i,k)
clw_all(i,k)=0.
qrc(i,k)=0.
enddo
enddo
do i=its,itf
if(ierr(i).eq.0.)then
do k=k22(i),kbcon(i)-1
qc(i,k)=qe_cup(i,k22(i))
enddo
endif
enddo
DO 100 k=kts+1,ktf
DO 100 i=its,itf
IF(ierr(i).ne.0)GO TO 100
IF(K.Lt.KBCON(I))GO TO 100
IF(K.Gt.KTOP(I))GO TO 100
DZ=Z_cup(i,K)-Z_cup(i,K-1)
!
!------ 1. steady state plume equation, for what could
!------ be in cloud without condensation
!
!
QC(i,K)=(QC(i,K-1)*(1.-.5*CD(i,K)*DZ)+mentr_rate* &
DZ*Q(i,K-1))/(1.+mentr_rate*DZ-.5*cd(i,k)*dz)
!
!--- saturation in cloud, this is what is allowed to be in it
!
QRCH=QES_cup(I,K)+(1./XL)*(GAMMA_cup(i,k) &
/(1.+GAMMA_cup(i,k)))*DBY(I,K)
!
!------- LIQUID WATER CONTENT IN cloud after rainout
!
clw_all(i,k)=QC(I,K)-QRCH
QRC(I,K)=(QC(I,K)-QRCH)/(1.+C0*DZ*zu(i,k))
if(qrc(i,k).lt.0.)then
qrc(i,k)=0.
endif
!
!------- 3.Condensation
!
PW(i,k)=c0*dz*QRC(I,K)*zu(i,k)
if(iall.eq.1)then
qrc(i,k)=0.
pw(i,k)=(QC(I,K)-QRCH)*zu(i,k)
if(pw(i,k).lt.0.)pw(i,k)=0.
endif
!
!----- set next level
!
QC(I,K)=QRC(I,K)+qrch
!
!--- integrated normalized ondensate
!
PWAV(I)=PWAV(I)+PW(I,K)
100 CONTINUE
END SUBROUTINE cup_up_moisture
SUBROUTINE cup_up_nms(zu,z_cup,entr,cd,kbcon,ktop,ierr,k22, & 7
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte )
IMPLICIT NONE
!
! on input
!
! only local wrf dimensions are need as of now in this routine
integer &
,intent (in ) :: &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte
! cd= detrainment function
real, dimension (its:ite,kts:kte) &
,intent (in ) :: &
z_cup,cd
! entr= entrainment rate
real &
,intent (in ) :: &
entr
integer, dimension (its:ite) &
,intent (in ) :: &
kbcon,ktop,k22
!
! input and output
!
! ierr error value, maybe modified in this routine
integer, dimension (its:ite) &
,intent (inout) :: &
ierr
! zu is the normalized mass flux
real, dimension (its:ite,kts:kte) &
,intent (out ) :: &
zu
!
! local variables in this routine
!
integer :: &
i,k
real :: &
dz
!
! initialize for this go around
!
do k=kts,ktf
do i=its,itf
zu(i,k)=0.
enddo
enddo
!
! do normalized mass budget
!
do i=its,itf
IF(ierr(I).eq.0)then
do k=k22(i),kbcon(i)
zu(i,k)=1.
enddo
DO K=KBcon(i)+1,KTOP(i)
DZ=Z_cup(i,K)-Z_cup(i,K-1)
ZU(i,K)=ZU(i,K-1)*(1.+(entr-cd(i,k))*DZ)
enddo
endif
enddo
END SUBROUTINE cup_up_nms
!====================================================================
SUBROUTINE g3init(RTHCUTEN,RQVCUTEN,RQCCUTEN,RQICUTEN, & 1
MASS_FLUX,cp,restart, &
P_QC,P_QI,P_FIRST_SCALAR, &
RTHFTEN, RQVFTEN, &
APR_GR,APR_W,APR_MC,APR_ST,APR_AS, &
APR_CAPMA,APR_CAPME,APR_CAPMI, &
cugd_tten,cugd_ttens,cugd_qvten, &
cugd_qvtens,cugd_qcten, &
allowed_to_read, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
!--------------------------------------------------------------------
IMPLICIT NONE
!--------------------------------------------------------------------
LOGICAL , INTENT(IN) :: restart,allowed_to_read
INTEGER , INTENT(IN) :: ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte
INTEGER , INTENT(IN) :: P_FIRST_SCALAR, P_QI, P_QC
REAL, INTENT(IN) :: cp
REAL, DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(OUT) :: &
CUGD_TTEN, &
CUGD_TTENS, &
CUGD_QVTEN, &
CUGD_QVTENS, &
CUGD_QCTEN
REAL, DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(OUT) :: &
RTHCUTEN, &
RQVCUTEN, &
RQCCUTEN, &
RQICUTEN
REAL, DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(OUT) :: &
RTHFTEN, &
RQVFTEN
REAL, DIMENSION( ims:ime , jms:jme ) , INTENT(OUT) :: &
APR_GR,APR_W,APR_MC,APR_ST,APR_AS, &
APR_CAPMA,APR_CAPME,APR_CAPMI, &
MASS_FLUX
INTEGER :: i, j, k, itf, jtf, ktf
jtf=min0(jte,jde-1)
ktf=min0(kte,kde-1)
itf=min0(ite,ide-1)
IF(.not.restart)THEN
DO j=jts,jte
DO k=kts,kte
DO i=its,ite
RTHCUTEN(i,k,j)=0.
RQVCUTEN(i,k,j)=0.
ENDDO
ENDDO
ENDDO
DO j=jts,jte
DO k=kts,kte
DO i=its,ite
cugd_tten(i,k,j)=0.
cugd_ttens(i,k,j)=0.
cugd_qvten(i,k,j)=0.
cugd_qvtens(i,k,j)=0.
ENDDO
ENDDO
ENDDO
DO j=jts,jtf
DO k=kts,ktf
DO i=its,itf
RTHFTEN(i,k,j)=0.
RQVFTEN(i,k,j)=0.
ENDDO
ENDDO
ENDDO
IF (P_QC .ge. P_FIRST_SCALAR) THEN
DO j=jts,jtf
DO k=kts,ktf
DO i=its,itf
RQCCUTEN(i,k,j)=0.
cugd_qcten(i,k,j)=0.
ENDDO
ENDDO
ENDDO
ENDIF
IF (P_QI .ge. P_FIRST_SCALAR) THEN
DO j=jts,jtf
DO k=kts,ktf
DO i=its,itf
RQICUTEN(i,k,j)=0.
ENDDO
ENDDO
ENDDO
ENDIF
DO j=jts,jtf
DO i=its,itf
mass_flux(i,j)=0.
ENDDO
ENDDO
DO j=jts,jtf
DO i=its,itf
APR_GR(i,j)=0.
APR_ST(i,j)=0.
APR_W(i,j)=0.
APR_MC(i,j)=0.
APR_AS(i,j)=0.
APR_CAPMA(i,j)=0.
APR_CAPME(i,j)=0.
APR_CAPMI(i,j)=0.
ENDDO
ENDDO
ENDIF
END SUBROUTINE g3init
SUBROUTINE massflx_stats(xf_ens,ensdim,maxens,maxens2,maxens3, & 2
xt_ave,xt_std,xt_cur,xt_ske,j,ierr,itest, &
APR_GR,APR_W,APR_MC,APR_ST,APR_AS, &
APR_CAPMA,APR_CAPME,APR_CAPMI, &
pr_gr,pr_w,pr_mc,pr_st,pr_as, &
pr_capma,pr_capme,pr_capmi, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
IMPLICIT NONE
integer, intent (in ) :: &
j,ensdim,maxens3,maxens,maxens2,itest
INTEGER, INTENT(IN ) :: &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte
real, dimension (its:ite) &
, intent(inout) :: &
xt_ave,xt_cur,xt_std,xt_ske
integer, dimension (its:ite), intent (in) :: &
ierr
real, dimension (its:ite,jts:jte,1:ensdim) &
, intent(in ) :: &
xf_ens
real, dimension (its:ite,jts:jte) &
, intent(inout) :: &
APR_GR,APR_W,APR_MC,APR_ST,APR_AS, &
APR_CAPMA,APR_CAPME,APR_CAPMI
real, dimension (its:ite,jts:jte) &
, intent(inout) :: &
pr_gr,pr_w,pr_mc,pr_st,pr_as, &
pr_capma,pr_capme,pr_capmi
!
! local stuff
!
real, dimension (its:ite , 1:maxens3 ) :: &
x_ave,x_cur,x_std,x_ske
real, dimension (its:ite , 1:maxens ) :: &
x_ave_cap
integer, dimension (1:maxens3) :: nc1
integer :: i,k
integer :: num,kk,num2,iedt
real :: a3,a4
num=ensdim/maxens3
num2=ensdim/maxens
if(itest.eq.1)then
do i=its,ite
pr_gr(i,j) = 0.
pr_w(i,j) = 0.
pr_mc(i,j) = 0.
pr_st(i,j) = 0.
pr_as(i,j) = 0.
pr_capma(i,j) = 0.
pr_capme(i,j) = 0.
pr_capmi(i,j) = 0.
enddo
endif
do k=1,maxens
do i=its,ite
x_ave_cap(i,k)=0.
enddo
enddo
do k=1,maxens3
do i=its,ite
x_ave(i,k)=0.
x_std(i,k)=0.
x_ske(i,k)=0.
x_cur(i,k)=0.
enddo
enddo
do i=its,ite
xt_ave(i)=0.
xt_std(i)=0.
xt_ske(i)=0.
xt_cur(i)=0.
enddo
do kk=1,num
do k=1,maxens3
do i=its,ite
if(ierr(i).eq.0)then
x_ave(i,k)=x_ave(i,k)+xf_ens(i,j,maxens3*(kk-1)+k)
endif
enddo
enddo
enddo
do iedt=1,maxens2
do k=1,maxens
do kk=1,maxens3
do i=its,ite
if(ierr(i).eq.0)then
x_ave_cap(i,k)=x_ave_cap(i,k) &
+xf_ens(i,j,maxens3*(k-1)+(iedt-1)*maxens*maxens3+kk)
endif
enddo
enddo
enddo
enddo
do k=1,maxens
do i=its,ite
if(ierr(i).eq.0)then
x_ave_cap(i,k)=x_ave_cap(i,k)/float(num2)
endif
enddo
enddo
do k=1,maxens3
do i=its,ite
if(ierr(i).eq.0)then
x_ave(i,k)=x_ave(i,k)/float(num)
endif
enddo
enddo
do k=1,maxens3
do i=its,ite
if(ierr(i).eq.0)then
xt_ave(i)=xt_ave(i)+x_ave(i,k)
endif
enddo
enddo
do i=its,ite
if(ierr(i).eq.0)then
xt_ave(i)=xt_ave(i)/float(maxens3)
endif
enddo
!
!--- now do std, skewness,curtosis
!
do kk=1,num
do k=1,maxens3
do i=its,ite
if(ierr(i).eq.0.and.x_ave(i,k).gt.0.)then
! print *,i,j,k,kk,x_std(i,k),xf_ens(i,j,maxens3*(kk-1)+k),x_ave(i,k)
x_std(i,k)=x_std(i,k)+(xf_ens(i,j,maxens3*(kk-1)+k)-x_ave(i,k))**2
x_ske(i,k)=x_ske(i,k)+(xf_ens(i,j,maxens3*(kk-1)+k)-x_ave(i,k))**3
x_cur(i,k)=x_cur(i,k)+(xf_ens(i,j,maxens3*(kk-1)+k)-x_ave(i,k))**4
endif
enddo
enddo
enddo
do k=1,maxens3
do i=its,ite
if(ierr(i).eq.0.and.xt_ave(i).gt.0.)then
xt_std(i)=xt_std(i)+(x_ave(i,k)-xt_ave(i))**2
xt_ske(i)=xt_ske(i)+(x_ave(i,k)-xt_ave(i))**3
xt_cur(i)=xt_cur(i)+(x_ave(i,k)-xt_ave(i))**4
endif
enddo
enddo
do k=1,maxens3
do i=its,ite
if(ierr(i).eq.0.and.x_std(i,k).gt.0.)then
x_std(i,k)=x_std(i,k)/float(num)
a3=max(1.e-6,x_std(i,k))
x_std(i,k)=sqrt(a3)
a3=max(1.e-6,x_std(i,k)**3)
a4=max(1.e-6,x_std(i,k)**4)
x_ske(i,k)=x_ske(i,k)/float(num)/a3
x_cur(i,k)=x_cur(i,k)/float(num)/a4
endif
! print*,' '
! print*,'Some statistics at gridpoint i,j, ierr',i,j,ierr(i)
! print*,'statistics for closure number ',k
! print*,'Average= ',x_ave(i,k),' Std= ',x_std(i,k)
! print*,'Skewness= ',x_ske(i,k),' Curtosis= ',x_cur(i,k)
! print*,' '
enddo
enddo
do i=its,ite
if(ierr(i).eq.0.and.xt_std(i).gt.0.)then
xt_std(i)=xt_std(i)/float(maxens3)
a3=max(1.e-6,xt_std(i))
xt_std(i)=sqrt(a3)
a3=max(1.e-6,xt_std(i)**3)
a4=max(1.e-6,xt_std(i)**4)
xt_ske(i)=xt_ske(i)/float(maxens3)/a3
xt_cur(i)=xt_cur(i)/float(maxens3)/a4
! print*,' '
! print*,'Total ensemble independent statistics at i =',i
! print*,'Average= ',xt_ave(i),' Std= ',xt_std(i)
! print*,'Skewness= ',xt_ske(i),' Curtosis= ',xt_cur(i)
! print*,' '
!
! first go around: store massflx for different closures/caps
!
if(itest.eq.1)then
pr_gr(i,j) = .25*(x_ave(i,1)+x_ave(i,2)+x_ave(i,3)+x_ave(i,13))
pr_w(i,j) = .25*(x_ave(i,4)+x_ave(i,5)+x_ave(i,6)+x_ave(i,14))
pr_mc(i,j) = .25*(x_ave(i,7)+x_ave(i,8)+x_ave(i,9)+x_ave(i,15))
pr_st(i,j) = .333*(x_ave(i,10)+x_ave(i,11)+x_ave(i,12))
pr_as(i,j) = x_ave(i,16)
pr_capma(i,j) = x_ave_cap(i,1)
pr_capme(i,j) = x_ave_cap(i,2)
pr_capmi(i,j) = x_ave_cap(i,3)
!
! second go around: store preciprates (mm/hour) for different closures/caps
!
else if (itest.eq.2)then
APR_GR(i,j)=.25*(x_ave(i,1)+x_ave(i,2)+x_ave(i,3)+x_ave(i,13))* &
3600.*pr_gr(i,j) +APR_GR(i,j)
APR_W(i,j)=.25*(x_ave(i,4)+x_ave(i,5)+x_ave(i,6)+x_ave(i,14))* &
3600.*pr_w(i,j) +APR_W(i,j)
APR_MC(i,j)=.25*(x_ave(i,7)+x_ave(i,8)+x_ave(i,9)+x_ave(i,15))* &
3600.*pr_mc(i,j) +APR_MC(i,j)
APR_ST(i,j)=.333*(x_ave(i,10)+x_ave(i,11)+x_ave(i,12))* &
3600.*pr_st(i,j) +APR_ST(i,j)
APR_AS(i,j)=x_ave(i,16)* &
3600.*pr_as(i,j) +APR_AS(i,j)
APR_CAPMA(i,j) = x_ave_cap(i,1)* &
3600.*pr_capma(i,j) +APR_CAPMA(i,j)
APR_CAPME(i,j) = x_ave_cap(i,2)* &
3600.*pr_capme(i,j) +APR_CAPME(i,j)
APR_CAPMI(i,j) = x_ave_cap(i,3)* &
3600.*pr_capmi(i,j) +APR_CAPMI(i,j)
endif
endif
enddo
END SUBROUTINE massflx_stats
SUBROUTINE cup_axx(tcrit,kbmax,z1,p,psur,xl,rv,cp,tx,qx,axx,ierr, & 1,7
cap_max,cap_max_increment,entr_rate,mentr_rate,&
j,itf,jtf,ktf, &
its,ite, jts,jte, kts,kte,ens4)
IMPLICIT NONE
INTEGER, INTENT(IN ) :: &
j,itf,jtf,ktf, &
its,ite, jts,jte, kts,kte,ens4
real, dimension (its:ite,kts:kte,1:ens4) &
, intent(inout) :: &
tx,qx
real, dimension (its:ite,kts:kte) &
, intent(in) :: &
p
real, dimension (its:ite) &
, intent(in) :: &
z1,psur,cap_max,cap_max_increment
real, intent(in) :: &
tcrit,xl,rv,cp,mentr_rate,entr_rate
real, dimension (its:ite,1:ens4) &
, intent(out) :: &
axx
integer, dimension (its:ite), intent (in) :: &
ierr,kbmax
integer, dimension (its:ite) :: &
ierrxx,k22xx,kbconxx,ktopxx,kstabm,kstabi
real, dimension (1:2) :: AE,BE,HT
real, dimension (its:ite,kts:kte) :: tv
real :: e,tvbar
integer n,i,k,iph
real, dimension (its:ite,kts:kte) :: &
he,hes,qes,z, &
qes_cup,q_cup,he_cup,hes_cup,z_cup,p_cup,gamma_cup,t_cup, &
tn_cup, &
dby,qc,qrcd,pwd,pw,hcd,qcd,dbyd,hc,qrc,zu,zd,cd
real, dimension (its:ite) :: &
AA0,HKB,QKB, &
PWAV,BU
do n=1,ens4
do i=its,ite
axx(i,n)=0.
enddo
enddo
HT(1)=XL/CP
HT(2)=2.834E6/CP
BE(1)=.622*HT(1)/.286
AE(1)=BE(1)/273.+ALOG(610.71)
BE(2)=.622*HT(2)/.286
AE(2)=BE(2)/273.+ALOG(610.71)
!
!
do 100 n=1,ens4
do k=kts,ktf
do i=its,itf
cd(i,k)=0.1*entr_rate
enddo
enddo
do i=its,itf
ierrxx(i)=ierr(i)
k22xx(i)=1
kbconxx(i)=1
ktopxx(i)=1
kstabm(i)=ktf-1
enddo
DO k=kts,ktf
do i=its,itf
if(ierrxx(i).eq.0)then
IPH=1
IF(Tx(I,K,n).LE.TCRIT)IPH=2
E=EXP(AE(IPH)-BE(IPH)/TX(I,K,N))
QES(I,K)=.622*E/(100.*P(I,K)-E)
IF(QES(I,K).LE.1.E-08)QES(I,K)=1.E-08
IF(Qx(I,K,N).GT.QES(I,K))Qx(I,K,N)=QES(I,K)
TV(I,K)=Tx(I,K,N)+.608*Qx(I,K,N)*Tx(I,K,N)
endif
enddo
enddo
!
do i=its,itf
if(ierrxx(i).eq.0)then
Z(I,KTS)=max(0.,Z1(I))-(ALOG(P(I,KTS))- &
ALOG(PSUR(I)))*287.*TV(I,KTS)/9.81
endif
enddo
! --- calculate heights
DO K=kts+1,ktf
do i=its,itf
if(ierrxx(i).eq.0)then
TVBAR=.5*TV(I,K)+.5*TV(I,K-1)
Z(I,K)=Z(I,K-1)-(ALOG(P(I,K))- &
ALOG(P(I,K-1)))*287.*TVBAR/9.81
endif
enddo
enddo
!
!--- calculate moist static energy - HE
! saturated moist static energy - HES
!
DO k=kts,ktf
do i=its,itf
if(ierrxx(i).eq.0)then
HE(I,K)=9.81*Z(I,K)+1004.*Tx(I,K,n)+2.5E06*Qx(I,K,n)
HES(I,K)=9.81*Z(I,K)+1004.*Tx(I,K,n)+2.5E06*QES(I,K)
IF(HE(I,K).GE.HES(I,K))HE(I,K)=HES(I,K)
endif
enddo
enddo
! cup levels
!
do k=kts+1,ktf
do i=its,itf
if(ierrxx(i).eq.0)then
qes_cup(i,k)=.5*(qes(i,k-1)+qes(i,k))
q_cup(i,k)=.5*(qx(i,k-1,n)+qx(i,k,n))
hes_cup(i,k)=.5*(hes(i,k-1)+hes(i,k))
he_cup(i,k)=.5*(he(i,k-1)+he(i,k))
if(he_cup(i,k).gt.hes_cup(i,k))he_cup(i,k)=hes_cup(i,k)
z_cup(i,k)=.5*(z(i,k-1)+z(i,k))
p_cup(i,k)=.5*(p(i,k-1)+p(i,k))
t_cup(i,k)=.5*(tx(i,k-1,n)+tx(i,k,n))
gamma_cup(i,k)=(xl/cp)*(xl/(rv*t_cup(i,k) &
*t_cup(i,k)))*qes_cup(i,k)
endif
enddo
enddo
do i=its,itf
if(ierrxx(i).eq.0)then
qes_cup(i,1)=qes(i,1)
q_cup(i,1)=qx(i,1,n)
hes_cup(i,1)=hes(i,1)
he_cup(i,1)=he(i,1)
z_cup(i,1)=.5*(z(i,1)+z1(i))
p_cup(i,1)=.5*(p(i,1)+psur(i))
t_cup(i,1)=tx(i,1,n)
gamma_cup(i,1)=xl/cp*(xl/(rv*t_cup(i,1) &
*t_cup(i,1)))*qes_cup(i,1)
endif
enddo
!
!
!------- DETERMINE LEVEL WITH HIGHEST MOIST STATIC ENERGY CONTENT - K22
!
CALL cup_MAXIMI
(HE_CUP,3,KBMAX,K22XX,ierrxx, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
DO 36 i=its,itf
IF(ierrxx(I).eq.0.)THEN
IF(K22xx(I).GE.KBMAX(i))ierrxx(i)=2
endif
36 CONTINUE
!
!--- DETERMINE THE LEVEL OF CONVECTIVE CLOUD BASE - KBCON
!
call cup_kbcon
(cap_max_increment,1,k22xx,kbconxx,he_cup,hes_cup, &
ierrxx,kbmax,p_cup,cap_max, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
!
!--- increase detrainment in stable layers
!
CALL cup_minimi
(HEs_cup,Kbconxx,kstabm,kstabi,ierrxx, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
do i=its,itf
IF(ierrxx(I).eq.0.)THEN
if(kstabm(i)-1.gt.kstabi(i))then
do k=kstabi(i),kstabm(i)-1
cd(i,k)=cd(i,k-1)+1.5*entr_rate
if(cd(i,k).gt.10.0*entr_rate)cd(i,k)=10.0*entr_rate
enddo
ENDIF
ENDIF
ENDDO
!
!--- calculate incloud moist static energy
!
call cup_up_he
(k22xx,hkb,z_cup,cd,mentr_rate,he_cup,hc, &
kbconxx,ierrxx,dby,he,hes_cup,'deep', &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
!--- DETERMINE CLOUD TOP - KTOP
!
call cup_ktop
(1,dby,kbconxx,ktopxx,ierrxx, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
!
!c--- normalized updraft mass flux profile
!
call cup_up_nms
(zu,z_cup,mentr_rate,cd,kbconxx,ktopxx,ierrxx,k22xx, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
!
!--- calculate workfunctions for updrafts
!
call cup_up_aa0
(aa0,z,zu,dby,GAMMA_CUP,t_cup, &
kbconxx,ktopxx,ierrxx, &
itf,jtf,ktf, &
its,ite, jts,jte, kts,kte)
do i=its,itf
if(ierrxx(i).eq.0)axx(i,n)=aa0(i)
enddo
100 continue
END SUBROUTINE cup_axx
SUBROUTINE conv_grell_spread3d(rthcuten,rqvcuten,rqccuten,raincv, & 1
& cugd_avedx,cugd_tten,cugd_qvten,rqicuten,cugd_ttens, &
& cugd_qvtens,cugd_qcten,pi_phy,moist_qv,pratec,dt,num_tiles,&
& imomentum,F_QV ,F_QC ,F_QR ,F_QI ,F_QS, &
& ids, ide, jds, jde, kds, kde, &
& ips, ipe, jps, jpe, kps, kpe, &
& ims, ime, jms, jme, kms, kme, &
& its, ite, jts, jte, kts, kte )
!
INTEGER, INTENT(IN ) :: num_tiles,imomentum
INTEGER, INTENT(IN ) :: ids, ide, jds, jde, kds, kde,&
ims,ime, jms,jme, kms,kme, &
ips,ipe, jps,jpe, kps,kpe, &
its,ite, jts,jte, kts,kte, &
cugd_avedx
REAL, DIMENSION (ims:ime,kms:kme,jms:jme), optional,INTENT (INOUT) :: &
& rthcuten,rqvcuten,rqccuten,rqicuten
REAL, DIMENSION (ims:ime,kms:kme,jms:jme), optional,INTENT (IN ) :: &
& cugd_tten,cugd_qvten,cugd_ttens,cugd_qvtens,cugd_qcten
REAL, DIMENSION (ims:ime,kms:kme,jms:jme),INTENT (IN) :: &
moist_qv
REAL, DIMENSION (ims:ime,kms:kme,jms:jme), INTENT (IN) :: &
PI_PHY
REAL, DIMENSION (ims:ime,jms:jme), INTENT (INOUT) :: &
raincv,pratec
REAL, INTENT(IN) :: dt
INTEGER :: ikk1,ikk2,ikk11,i,j,k,kk,nn,smoothh,smoothv
INTEGER :: ifs,ife,jfs,jfe,ido,jdo,cugd_spread
LOGICAL :: new
!
! Flags relating to the optional tendency arrays declared above
! Models that carry the optional tendencies will provdide the
! optional arguments at compile time; these flags all the model
! to determine at run-time whether a particular tracer is in
! use or not.
!
LOGICAL, OPTIONAL :: &
F_QV &
,F_QC &
,F_QR &
,F_QI &
,F_QS
REAL, DIMENSION (its-2:ite+2,kts:kte,jts-2:jte+2) :: &
RTHcutent,RQVcutent
real, dimension (its-2:ite+2,jts-2:jte+2) :: Qmem
real, dimension (its-1:ite+1,jts-1:jte+1) :: smTT,smTQ
real, dimension (kts:kte) :: conv_TRASHT,conv_TRASHQ
REAL :: Qmem1,Qmem2,Qmemf,Thresh
smoothh=1
smoothv=1
cugd_spread=cugd_avedx/2
ifs=max(its,ids)
jfs=max(jts,jds)
ife=min(ite,ide-1)
jfe=min(jte,jde-1)
do j=jfs-2,jfe+2
do i=ifs-2,ife+2
Qmem(i,j)=1.
enddo
enddo
do j=jfs-1,jfe+1
do i=ifs-1,ife+1
smTT(i,j)=0.
smTQ(i,j)=0.
enddo
enddo
do j=jfs,jfe
do k=kts,kte
do i=ifs,ife
rthcuten(i,k,j)=0.
rqvcuten(i,k,j)=0.
enddo
enddo
enddo
do j=jfs-2,jfe+2
do k=kts,kte
do i=ifs-2,ife+2
RTHcutent(i,k,j)=0.
RQVcutent(i,k,j)=0.
enddo
enddo
enddo
!
!
!
!
! prelims finished, now go real for every grid point
!
if(cugd_spread.gt.0.or.smoothh.eq.1)then
!if(its.eq.ips)ifs=max(its-1,ids)
!if(ite.eq.ipe)ife=min(ite+1,ide-1)
!if(jts.eq.jps)jfs=max(jts-1,jds)
!if(jte.eq.jpe)jfe=min(jte+1,jde-1)
ifs=max(its-1,ids)
ife=min(ite+1,ide-1)
jfs=max(jts-1,jds)
jfe=min(jte+1,jde-1)
endif
! *** jm note -- for smoothing this goes out one row/column beyond tile in i and j
do j=jfs,jfe
do i=ifs,ife
!
do k=kts,kte
RTHcutent(i,k,j)=cugd_tten(i,k,j)
RQVcutent(i,k,j)=cugd_qvten(i,k,j)
enddo
!
! for high res run, spread the subsidence
! this is tricky......only consider grid points where there was no rain,
! so cugd_tten and such are zero!
!
if(cugd_spread.gt.0)then
do k=kts,kte
do nn=-1,1,1
jdo=max(j+nn,jds)
jdo=min(jdo,jde-1)
do kk=-1,1,1
ido=max(i+kk,ids)
ido=min(ido,ide-1)
RTHcutent(i,k,j)=RTHcutent(i,k,j) &
+Qmem(ido,jdo)*cugd_ttens(ido,k,jdo)
RQVcutent(i,k,j)=RQVcutent(i,k,j) &
+Qmem(ido,jdo)*cugd_qvtens(ido,k,jdo)
enddo
enddo
enddo
endif
!
! end spreading
if(cugd_spread.eq.0)then
do k=kts,kte
RTHcutent(i,k,j)=RTHcutent(i,k,j)+cugd_ttens(i,k,j)
RQVcutent(i,k,j)=RQVcutent(i,k,j)+cugd_qvtens(i,k,j)
enddo
endif
enddo ! end j
enddo ! end i
! smooth
do k=kts,kte
if(smoothh.eq.0)then
ifs=max(its,ids+4)
ife=min(ite,ide-5)
jfs=max(jts,jds+4)
jfe=min(jte,jde-5)
do i=ifs,ife
do j=jfs,jfe
rthcuten(i,k,j)=RTHcutent(i,k,j)
rqvcuten(i,k,j)=RQVcutent(i,k,j)
enddo ! end j
enddo ! end j
else if(smoothh.eq.1)then ! smooth
ifs=max(its,ids)
ife=min(ite,ide-1)
jfs=max(jts,jds)
jfe=min(jte,jde-1)
! we need an extra row for j (halo comp)
!if(jts.eq.jps)jfs=max(jts-1,jds)
!if(jte.eq.jpe)jfe=min(jte+1,jde-1)
jfs=max(jts-1,jds)
jfe=min(jte+1,jde-1)
do i=ifs,ife
do j=jfs,jfe
smTT(i,j)=.25*(RTHcutent(i-1,k,j)+2.*RTHcutent(i,k,j)+RTHcutent(i+1,k,j))
smTQ(i,j)=.25*(RQVcutent(i-1,k,j)+2.*RQVcutent(i,k,j)+RQVcutent(i+1,k,j))
enddo ! end j
enddo ! end j
ifs=max(its,ids+4)
ife=min(ite,ide-5)
jfs=max(jts,jds+4)
jfe=min(jte,jde-5)
do i=ifs,ife
do j=jfs,jfe
rthcuten(i,k,j)=.25*(smTT(i,j-1)+2.*smTT(i,j)+smTT(i,j+1))
rqvcuten(i,k,j)=.25*(smTQ(i,j-1)+2.*smTQ(i,j)+smTQ(i,j+1))
enddo ! end j
enddo ! end i
endif ! smoothh
enddo ! end k
!
! check moistening rates
!
ifs=max(its,ids+4)
ife=min(ite,ide-5)
jfs=max(jts,jds+4)
jfe=min(jte,jde-5)
do j=jfs,jfe
do i=ifs,ife
Qmemf=1.
Thresh=1.e-20
do k=kts,kte
if(rqvcuten(i,k,j).lt.0.)then
Qmem1=moist_qv(i,k,j)+rqvcuten(i,k,j)*dt
if(Qmem1.lt.Thresh)then
Qmem1=rqvcuten(i,k,j)
Qmem2=(Thresh-moist_qv(i,k,j))/dt
Qmemf=min(Qmemf,Qmem2/Qmem1)
Qmemf=max(0.,Qmemf)
Qmemf=min(1.,Qmemf)
endif
endif
enddo
do k=kts,kte
rqvcuten(i,k,j)=rqvcuten(i,k,j)*Qmemf
rthcuten(i,k,j)=rthcuten(i,k,j)*Qmemf
enddo
if(present(rqccuten))then
if(f_qc) then
do k=kts,kte
rqccuten(i,k,j)=rqccuten(i,k,j)*Qmemf
enddo
endif
endif
if(present(rqicuten))then
if(f_qi) then
do k=kts,kte
rqicuten(i,k,j)=rqicuten(i,k,j)*Qmemf
enddo
endif
endif
raincv(I,J)=raincv(I,J)*Qmemf
pratec(I,J)=pratec(I,J)*Qmemf
!
! check heating rates
!
Thresh=200.
Qmemf=1.
Qmem1=0.
do k=kts,kte
Qmem1=abs(rthcuten(i,k,j))*86400.
if(Qmem1.gt.Thresh)then
Qmem2=Thresh/Qmem1
Qmemf=min(Qmemf,Qmem2)
Qmemf=max(0.,Qmemf)
endif
enddo
raincv(i,j)=raincv(i,j)*Qmemf
pratec(i,j)=pratec(i,j)*Qmemf
do k=kts,kte
rqvcuten(i,k,j)=rqvcuten(i,k,j)*Qmemf
rthcuten(i,k,j)=rthcuten(i,k,j)*Qmemf
enddo
if(present(rqccuten))then
if(f_qc) then
do k=kts,kte
rqccuten(i,k,j)=rqccuten(i,k,j)*Qmemf
enddo
endif
endif
if(present(rqicuten))then
if(f_qi) then
do k=kts,kte
rqicuten(i,k,j)=rqicuten(i,k,j)*Qmemf
enddo
endif
endif
if(smoothv.eq.1)then
!
! smooth for now
!
do k=kts+2,kte-2
conv_TRASHT(k)= .25*(rthcuten(i,k-1,j)+2.*rthcuten(i,k,j)+rthcuten(i,k+1,j))
conv_TRASHQ(k)= .25*(rqvcuten(i,k-1,j)+2.*rqvcuten(i,k,j)+rqvcuten(i,k+1,j))
enddo
do k=kts+2,kte-2
rthcuten(i,k,j)=conv_TRASHT(k)
rqvcuten(i,k,j)=conv_TRASHQ(k)
enddo
endif
do k=kts,kte
rthcuten(i,k,j)=rthcuten(i,k,j)/pi_phy(i,k,j)
enddo
enddo ! end j
enddo ! end i
END SUBROUTINE CONV_GRELL_SPREAD3D
!-------------------------------------------------------
END MODULE module_cu_g3