!
#define DEBUG_OUT
#define DEBUG_PRINT
!#define FUEL_LEFT
!#define DEBUG_OUT_FUEL_LEFT
module module_fr_fire_core 2
use module_fr_fire_phys
, only: fire_params , fire_ros
use module_fr_fire_util
! The mathematical core of the fire spread model. No physical constants here.
!
! subroutine fire_core: only this routine should be called from the outside.
! subroutine fuel_left: compute remaining fuel from time of ignition.
! subroutine prop_ls: propagation of curve in normal direction.
! describe one ignition line
type ignition_line_type
REAL ros, & ! subscale rate of spread during the ignition process
stop_time, & ! when the ignition process stops from ignition start (s)
wind_red, & ! wind reduction factor at the ignition line
wrdist, & ! distance from the ignition line when the wind reduction stops
wrupwind, & ! use distance interpolated between 0. = nearest 1. = upwind
start_x, & ! x coordinate of the ignition line start point (m, or long/lat)
start_y, & ! y coordinate of the ignition line start point
end_x, & ! x coordinate of the ignition line end point
end_y, & ! y coordinate of the ignition line end point
start_time, & ! ignition time for the start point from simulation start (s)
end_time, & ! ignition time for the end poin from simulation start (s)
radius ! all within this radius ignites immediately
end type ignition_line_type
contains
!
!****************************************
!
subroutine init_no_fire(& 1,1
ifds,ifde,jfds,jfde, &
ifms,ifme,jfms,jfme, &
ifts,ifte,jfts,jfte, &
fdx,fdy,time_now, & ! scalars in
fuel_frac,fire_area,lfn,tign) ! arrays out
implicit none
!*** purpose: initialize model to no fire
!*** arguments
integer, intent(in):: ifds,ifde,jfds,jfde ! fire domain bounds
integer, intent(in):: ifts,ifte,jfts,jfte ! fire tile bounds
integer, intent(in):: ifms,ifme,jfms,jfme ! array bounds
real, intent(in) :: fdx,fdy,time_now ! mesh spacing, time
real, intent(out), dimension (ifms:ifme,jfms:jfme) :: &
fuel_frac,fire_area,lfn,tign ! model state
!*** calls
intrinsic epsilon
!*** local
integer:: i,j
real lfn_init,time_init
lfn_init = 2*max((ifde-ifds+1)*fdx,(jfde-jfds+1)*fdy) ! more than domain diameter
time_init=time_now + max(time_now,1.0)*epsilon(time_now) ! a bit in future
do j=jfts,jfte
do i=ifts,ifte
fuel_frac(i,j)=1. ! fuel at start is 1 by definition
fire_area(i,j)=0. ! nothing burning
tign(i,j) = time_init ! ignition in future
lfn(i,j) = lfn_init ! no fire
enddo
enddo
call message
('init_no_fire: state set to no fire')
end subroutine init_no_fire
!
!******************
!
subroutine ignite_fire( ifds,ifde,jfds,jfde, & ! fire domain dims - the whole domain 1,12
ifms,ifme,jfms,jfme, &
ifts,ifte,jfts,jfte, &
ignition_line, &
start_ts,end_ts, &
coord_xf,coord_yf, &
unit_xf,unit_yf, &
lfn,tign,ignited)
implicit none
!*** purpose: ignite a circular/line fire
!*** description
! ignite fire in the region within radius r from the line (sx,sy) to (ex,ey).
! the coordinates of nodes are given as the arrays coord_xf and coord_yf
! r is given in m
! one unit of coord_xf is unit_xf m
! one unit of coord_yf is unit_yf m
! so a node (i,j) will be ignited iff for some (x,y) on the line
! || ( (coord_xf(i,j) - x)*unit_xf , (coord_yf(i,j) - y)*unit_yf ) || <= r
!*** arguments
integer, intent(in):: ifds,ifde,jfds,jfde ! fire domain bounds
integer, intent(in):: ifts,ifte,jfts,jfte ! fire tile bounds
integer, intent(in):: ifms,ifme,jfms,jfme ! array bounds
type(ignition_line_type), intent(in):: ignition_line ! description of the ignition line
real, intent(in):: start_ts,end_ts ! the time step start and end
real, dimension(ifms:ifme, jfms:jfme), intent(in):: &
coord_xf,coord_yf ! node coordinates
real, intent(in):: unit_xf,unit_yf ! coordinate units in m
real, intent(inout), dimension (ifms:ifme,jfms:jfme) :: &
lfn, tign ! level function, ignition time (state)
integer, intent(out):: ignited ! number of nodes newly ignited
!*** local
integer:: i,j
real::lfn_new,time_ign,ax,ay,rels,rele,d
real:: sx,sy ! start of ignition line, from lower left corner
real:: ex,ey ! end of ignition line, or zero
real:: st,et ! start and end of time of the ignition line
character(len=128):: msg
real::cx2,cy2,dmax,axmin,axmax,aymin,aymax,dmin
real:: start_x,start_y ! start of ignition line, from lower left corner
real:: end_x,end_y ! end of ignition line, or zero
real:: radius ! all within the radius of the line will ignite
real:: start_time,end_time ! the ignition time for the start and the end of the line
real:: ros,tos ! ignition rate and time of spread
!*** executable
! copy ignition line fields to local variables
start_x = ignition_line%start_x ! x coordinate of the ignition line start point (m, or long/lat)
start_y = ignition_line%start_y ! y coordinate of the ignition line start point
end_x = ignition_line%end_x ! x coordinate of the ignition line end point
end_y = ignition_line%end_y ! y coordinate of the ignition line end point
start_time = ignition_line%start_time ! ignition time for the start point from simulation start (s)
end_time = ignition_line%end_time! ignition time for the end poin from simulation start (s)
radius = ignition_line%radius ! all within this radius ignites immediately
ros = ignition_line%ros ! rate of spread
tos = radius/ros ! time of spread to the given radius
st = start_time ! the start time of ignition considered in this time step
et = min(end_ts,end_time) ! the end time of the ignition segment in this time step
! this should be called whenever (start_ts, end_ts) \subset (start_time, end_time + tos)
if(start_ts>et+tos .or. end_ts<st)return ! too late or too early, nothing to do
if(start_time < end_time)then ! we really want to test start_time .ne. end_time, but avoiding test of floats on equality
! segment of nonzero length
!rels = (st - start_time) / (end_time - start_time) ! relative position of st in the segment (start,end)
!sx = start_x + rels * (end_x - start_x)
!sy = start_y + rels * (end_y - start_y)
rels = 0.
sx = start_x
sy = start_y
rele = (et - start_time) / (end_time - start_time) ! relative position of et in the segment (start,end)
ex = start_x + rele * (end_x - start_x)
ey = start_y + rele * (end_y - start_y)
else
! just a point
rels = 0.
rele = 1.
sx = start_x
sy = start_y
ex = end_x
ey = end_y
endif
cx2=unit_xf*unit_xf
cy2=unit_yf*unit_yf
axmin=coord_xf(ifts,jfts)
aymin=coord_yf(ifts,jfts)
axmax=coord_xf(ifte,jfte)
aymax=coord_yf(ifte,jfte)
!$OMP CRITICAL(FIRE_CORE_CRIT)
write(msg,'(a,2f11.6,a,2f11.6)')'IGN from ',sx,sy,' to ',ex,ey
call message
(msg)
write(msg,'(a,2f10.2,a,2f10.2,a)')'IGN timestep [',start_ts,end_ts,'] in [',start_time,end_time,']'
call message
(msg)
write(msg,'(a,2g13.6,a,2g13.6)')'IGN tile coord from ',axmin,aymin,' to ',axmax,aymax
call message
(msg)
!$OMP END CRITICAL(FIRE_CORE_CRIT)
ignited=0
dmax=0
dmin=huge(dmax)
11 format('IGN ',6(a,g17.7,1x))
12 format('IGN ',4(a,2g13.7,1x))
do j=jfts,jfte
do i=ifts,ifte
ax=coord_xf(i,j)
ay=coord_yf(i,j)
! get d= distance from the nearest point on the ignition segment
! and time_ign = the ignition time there
call nearest
(d,time_ign,ax,ay,sx,sy,st,ex,ey,et,cx2,cy2)
dmax=max(d,dmax)
dmin=min(d,dmin)
lfn_new=d - min( radius, ros*(end_ts - time_ign) ) ! lft at end_ts
if(fire_print_msg.ge.3)then
!$OMP CRITICAL(FIRE_CORE_CRIT)
write(msg,*)'IGN1 i,j=',i,j,' lfn(i,j)=',lfn(i,j),' tign(i,j)=',tign(i,j)
call message
(msg)
write(msg,*)'IGN2 i,j=',i,j,' lfn_new= ',lfn_new, ' time_ign= ',time_ign,' d=',d
call message
(msg)
!$OMP END CRITICAL(FIRE_CORE_CRIT)
endif
if(.not.lfn_new>0.) then
ignited=ignited+1 ! count
endif
if(lfn(i,j)>0. .and. .not. lfn_new > 0.) then
tign(i,j)=time_ign + d/ros ! newly ignited now
if(fire_print_msg.ge.3)then
!$OMP CRITICAL(FIRE_CORE_CRIT)
write(msg,'(a,2i6,a,2g13.6,a,f10.2,a,2f10.2,a)')'IGN ignited cell ',i,j,' at',ax,ay, &
' time',tign(i,j),' in [',start_ts,end_ts,']'
call message
(msg)
write(msg,'(a,g10.3,a,f10.2,a,2f10.2,a)')'IGN distance',d,' from ignition line at',time_ign,' in [',st,et,']'
call message
(msg)
!$OMP END CRITICAL(FIRE_CORE_CRIT)
endif
if(tign(i,j) < start_ts .or. tign(i,j) > end_ts )then
!$OMP CRITICAL(FIRE_CORE_CRIT)
write(msg,'(a,2i6,a,f11.6,a,2f11.6,a)')'WARNING ',i,j, &
' fixing ignition time ',tign(i,j),' outside of the time step [',start_ts,end_ts,']'
call message
(msg)
!$OMP END CRITICAL(FIRE_CORE_CRIT)
tign(i,j) = min(max(tign(i,j),start_ts),end_ts)
endif
endif
lfn(i,j)=min(lfn(i,j),lfn_new) ! update the level set function
if(fire_print_msg.ge.3)then
!$OMP CRITICAL(FIRE_CORE_CRIT)
write(msg,*)'IGN3 i,j=',i,j,' lfn(i,j)=',lfn(i,j),' tign(i,j)=',tign(i,j)
call message
(msg)
!$OMP END CRITICAL(FIRE_CORE_CRIT)
endif
enddo
enddo
!$OMP CRITICAL(FIRE_CORE_CRIT)
write(msg,'(a,2g13.2,a,g10.2,a,g10.2)')'IGN units ',unit_xf,unit_yf,' m max dist ',dmax,' min',dmin
call message
(msg)
write(msg,'(a,f6.1,a,f8.1,a,i10)')'IGN radius ',radius,' time of spread',tos,' ignited nodes',ignited
call message
(msg)
!$OMP END CRITICAL(FIRE_CORE_CRIT)
return
99 continue
end subroutine ignite_fire
! called from the inside of a loop, inline if possible
!DEC$ ATTRIBUTES FORCEINLINE
SUBROUTINE nearest(d,t,ax,ay,sx,sy,st,ex,ey,et,cx2,cy2) 1,6
implicit none
!*** arguments
real, intent(out):: d,t
real, intent(in):: ax,ay,sx,sy,st,ex,ey,et,cx2,cy2
! input:
! ax, ay coordinates of point a
! sx,sy,ex,ey coordinates of endpoints of segment [x,y]
! st,et values at the endpoints x,y
! cx2,cy2 x and y unit squared for computing distance
! output
! d the distance of a and the nearest point z on the segment [x,y]
! t linear interpolation from the values st,et to the point z
!
! method: compute d as the distance (ax,ay) from the midpoint (mx,my)
! minus a correction (because of rounding errors): |a-c|^2 = |a-m|^2 - |m-c|^2
! when |m-c| >= |s-e|/2 the nearest point is one of the endpoints
! the computation work also for the case when s=e exactly or approximately
!
!
! a
! /| \
! s---m-c--e
!
! |m-c| = |a-m| cos (a-m,e-s)
! = |a-m| (a-m).(e-s))/(|a-m|*|e-s|)
!*** local
real:: mx,my,dam2,dames,am_es,cos2,dmc2,mcrel,mid_t,dif_t,des2,cx,cy
character(len=128):: msg
!*** executable
11 format('IGN ',6(a,g17.7,1x))
12 format('IGN ',4(a,2g13.7,1x))
! midpoint m = (mx,my)
mx = (sx + ex)*0.5
my = (sy + ey)*0.5
dam2=(ax-mx)*(ax-mx)*cx2+(ay-my)*(ay-my)*cy2 ! |a-m|^2
des2 = (ex-sx)*(ex-sx)*cx2+(ey-sy)*(ey-sy)*cy2 ! des2 = |e-s|^2
dames = dam2*des2
am_es=(ax-mx)*(ex-sx)*cx2+(ay-my)*(ey-sy)*cy2 ! am_es = (a-m).(e-s)
if(dames>0)then
cos2 = (am_es*am_es)/dames ! cos2 = cos^2 (a-m,e-s)
else ! point a already is the midpoint
cos2 = 0.
endif
dmc2 = dam2*cos2 ! dmc2 = |m-c|^2
if(4.*dmc2 < des2)then ! if |m-c|<=|e-s|/2
! d = sqrt(max(dam2 - dmc2,0.)) ! d=|a-m|^2 - |m-c|^2, guard rounding
mcrel = sign(sqrt(4.*dmc2/des2),am_es) ! relative distance of c from m
elseif(am_es>0)then ! if cos > 0, closest is e
mcrel = 1.0
else ! closest is s
mcrel = -1.0
endif
cx = (ex + sx)*0.5 + mcrel*(ex - sx)*0.5 ! interpolate to c by going from m
cy = (ey + sy)*0.5 + mcrel*(ey - sy)*0.5 ! interpolate to c by going from m
d=sqrt((ax-cx)*(ax-cx)*cx2+(ay-cy)*(ay-cy)*cy2) ! |a-c|^2
t = (et + st)*0.5 + mcrel*(et - st)*0.5 ! interpolate to c by going from m
if(fire_print_msg.ge.3)then
!$OMP CRITICAL(FIRE_CORE_CRIT)
write(msg,12)'find nearest to [',ax,ay,'] from [',sx,sy,'] [',ex,ey,']' ! DEB
call message
(msg)
write(msg,12)'end times',st,et,' scale squared',cx2,cy2 ! DEB
call message
(msg)
write(msg,11)'nearest at mcrel=',mcrel,'from the midpoint, t=',t ! DEB
call message
(msg)
write(msg,12)'nearest is [',cx,cy,'] d=',d ! DEB
call message
(msg)
write(msg,11)'dam2=',dam2,'des2=',des2,'dames=',dames
call message
(msg)
write(msg,11)'am_es=',am_es,'cos2=',cos2,'dmc2=',dmc2 ! DEB
call message
(msg)
!$OMP END CRITICAL(FIRE_CORE_CRIT)
endif
END SUBROUTINE nearest
!
!**********************
!
subroutine fuel_left(& 1,16
ims,ime,jms,jme, &
its,ite,jts,jte, &
ifs,ife,jfs,jfe, &
lfn, tign, fuel_time, time_now, fuel_frac, fire_area)
implicit none
!*** purpose: determine fraction of fuel remaining
!*** NOTE: because variables are cell centered, need halo/sync width 1 before
!*** arguments
integer, intent(in) :: its,ite,jts,jte,ims,ime,jms,jme,ifs,ife,jfs,jfe
real, intent(in), dimension(ims:ime,jms:jme)::lfn,tign,fuel_time
real, intent(in):: time_now
real, intent(out), dimension(ifs:ife,jfs:jfe)::fuel_frac
real, intent(out), dimension(ims:ime,jms:jme):: fire_area
! ims,ime,jms,jme in memory dimensions
! its,ite,jts,jte in tile dimensions (cells where fuel_frac computed)
! ifs,ife,jfs,jfe in fuel_frac memory dimensions
! lfn in level function, at nodes at midpoints of cells
! tign in ignition time, at nodes at nodes at midpoints of cells
! fuel_time in time constant of fuel, per cell
! time_now in time now
! fuel_frac out fraction of fuel remaining, per cell
! fire_area out fraction of cell area on fire
!*** local
integer::i,j,ir,jr,icl,jcl,isubcl,jsubcl,i2,j2,ii,jj
real::fmax,frat,helpsum1,helpsum2,fuel_left_ff,fire_area_ff,rx,ry,tignf(2,2)
! help variables instead of arrays fuel_left_f and fire_area_f
real::lffij,lffi1j,lffij1,lffi1j1,tifij,tifi1j,tifij1,tifi1j1,tx,ty,txx,tyy
! variables for calculation instead of lff(i,j) and tif(i,j)is lffij,tifij etc..#define IFCELLS (ite-its+1)*fuel_left_irl
#define JFCELLS (jte-jts+1)*fuel_left_jrl
character(len=128)::msg
integer::m,omp_get_thread_num
call check_mesh_2dim
(its-1,ite+1,jts-1,jte+1,ims,ime,jms,jme)
call check_mesh_2dim
(its,ite,jts,jte,ifs,ife,jfs,jfe)
! refinement
ir=fuel_left_irl
jr=fuel_left_jrl
if ((ir.ne.2).or.(jr.ne.2)) then
call crash
('fuel_left: ir.ne.2 or jr.ne.2 ')
endif
rx=1./ir
ry=1./jr
! interpolate level set function to finer grid
#ifdef DEBUG_OUT_FUEL_LEFT
call write_array_m
(1,IFCELLS+1,1,JFCELLS+1,1,IFCELLS+1,1,JFCELLS+1,lff,'lff',0)
call write_array_m
(1,IFCELLS+1,1,JFCELLS+1,1,IFCELLS+1,1,JFCELLS+1,tif,'tif',0)
#endif
!
! example for ir=2:
!
! | coarse cell |
! its-1 its ite ite+1
! -------X------------|-----.-----X-----.-----|--........----|----------X----------|---------X
! fine node 1 2 3 2*(ite-its+1)
! fine cell 1 2 cell 2*(ite-its+1)
! Loop over cells in Tile
! Changes made by Volodymyr Kondratenko 09/24/2009
do icl=its,ite
do jcl=jts,jte
helpsum1=0
helpsum2=0
! Loop over subcells in cell #(icl,jcl)
do isubcl=1,ir
do jsubcl=1,jr
i=(icl-its)*ir+isubcl
j=(jcl-jts)*jr+jsubcl
! Direct calculation tif and lff, avoiding arrays, just for case ir=jr=2
if ((isubcl.eq.1).and.(jsubcl.eq.1)) then
i2=icl-1
j2=jcl-1
ty=0.5
tx=0.5
tyy=1.0
txx=1.0
else if ((isubcl.eq.2).and.(jsubcl.eq.1)) then
i2=icl
j2=jcl-1
ty=0.5
tx=0
tyy=1.0
txx=0.5
else if ((isubcl.eq.1).and.(jsubcl.eq.2)) then
i2=icl-1
j2=jcl
tx=0.5
ty=0
txx=1.0
tyy=0.5
else if ((isubcl.eq.2).and.(jsubcl.eq.2)) then
i2=icl
j2=jcl
tx=0
ty=0
txx=0.5
tyy=0.5
else
call crash
('fuel_left: isubcl,jsubcl should be only 1 or 2')
endif
! calculation lff and tif in 4 endpoints of subcell
lffij= &
(1-tx)*(1-ty)*lfn(i2,j2) &
+ (1-tx)*ty *lfn(i2,j2+1) &
+ tx*(1-ty)*lfn(i2+1,j2) &
+ tx*ty *lfn(i2+1,j2+1)
lffi1j= &
(1-txx)*(1-ty)*lfn(i2,j2) &
+ (1-txx)*ty *lfn(i2,j2+1) &
+ (txx)*(1-ty)*lfn(i2+1,j2) &
+ (txx)*ty *lfn(i2+1,j2+1)
lffij1= &
(1-tx)*(1-tyy)*lfn(i2,j2) &
+ (1-tx)*(tyy) *lfn(i2,j2+1) &
+ tx*(1-tyy)*lfn(i2+1,j2) &
+ tx*(tyy) *lfn(i2+1,j2+1)
lffi1j1 = &
(1-txx)*(1-tyy)*lfn(i2,j2) &
+ (1-txx)*(tyy) *lfn(i2,j2+1) &
+ (txx)*(1-tyy)*lfn(i2+1,j2) &
+ (txx)*(tyy) *lfn(i2+1,j2+1)
! get ready to fix up tign values to be interpolated
do ii=1,2
do jj=1,2
tignf(ii,jj)=tign(i2+ii-1,j2+jj-1)
enddo
enddo
tifij= &
(1-tx)*(1-ty)*tignf(1,1) &
+ (1-tx)*ty*tignf(1,1+1) &
+ tx*(1-ty)*tignf(1+1,1) &
+ tx*ty*tignf(1+1,1+1)
tifi1j= &
(1-txx)*(1-ty)*tignf(1,1) &
+ (1-txx)*ty*tignf(1,1+1) &
+ (txx)*(1-ty)*tignf(1+1,1) &
+ (txx)*(ty)*tignf(1+1,1+1)
tifij1= &
(1-tx)*(1-tyy)*tignf(1,1) &
+ (1-tx)*(tyy)*tignf(1,1+1) &
+ tx*(1-tyy)*tignf(1+1,1) &
+ tx*(tyy)*tignf(1+1,1+1)
tifi1j1= &
(1-txx)*(1-tyy)*tignf(1,1) &
+ (1-txx)*(tyy)*tignf(1,1+1) &
+ (txx)*(1-tyy)*tignf(1+1,1) &
+ (txx)*(tyy)*tignf(1+1,1+1)
if(fuel_left_method.eq.1)then
call fuel_left_cell_1
( fuel_left_ff, fire_area_ff, &
lffij,lffij1,lffi1j,lffi1j1,&
tifij,tifij1,tifi1j,tifi1j1,&
time_now, fuel_time(icl,jcl))
elseif(fuel_left_method.eq.2)then
fire_area_ff=0 ! initialize to something until computed in fuel_left_f(i,j)
fuel_left_ff=fuel_left_cell_2
( &
lffij,lffij1,lffi1j,lffi1j1,&
tifij,tifij1,tifi1j,tifi1j1,&
time_now, fuel_time(icl,jcl))
else
call crash
('fuel_left: unknown fuel_left_method')
endif
! consistency check
if(fire_area_ff.lt.-1e-6 .or. &
(fire_area_ff.eq.0. .and. fuel_left_ff.lt.1.-1e-6))then
!$OMP CRITICAL(FIRE_CORE_CRIT)
write(msg,'(a,2i6,2(a,f11.8))')'fuel_left: at node',i,j, &
' of refined mesh fuel burnt',1-fuel_left_ff,' fire area',fire_area_ff
!$OMP END CRITICAL(FIRE_CORE_CRIT)
call crash
(msg)
endif
helpsum1=helpsum1+fuel_left_ff
helpsum2=helpsum2+fire_area_ff
enddo
enddo
fuel_frac(icl,jcl)=helpsum1
fire_area(icl,jcl)=helpsum2
enddo
enddo
#ifdef DEBUG_OUT_FUEL_LEFT
call write_array_m
(its,ite,jts,jte,ims,ime,jms,jme,fire_area,'fire_area',0)
call write_array_m
(its,ite,jts,jte,ims,ime,jms,jme,fuel_frac,'fuel_frac',0)
call write_array_m
(1,IFCELLS,1,JFCELLS,1,IFCELLS,1,JFCELLS,fuel_left_f,'fuel_left_f',0)
call write_array_m
(1,IFCELLS,1,JFCELLS,1,IFCELLS,1,JFCELLS,fire_area_f,'fire_area_f',0)
#endif
! finish the averaging
do j=jts,jte
do i=its,ite
fuel_frac(i,j) = fuel_frac(i,j) /(ir*jr) ! multiply by weight for averaging over coarse cell
fire_area(i,j) = fire_area(i,j) /(ir*jr) !
enddo
enddo
! consistency check after sum
fmax=0
do j=jts,jte
do i=its,ite
if(fire_area(i,j).eq.0.)then
if(fuel_frac(i,j).lt.1.-1e-6)then
!$OMP CRITICAL(FIRE_CORE_CRIT)
write(msg,'(a,2i6,2(a,f11.8))')'fuel_left: at node',i,j, &
' fuel burnt',1-fuel_frac(i,j),' but fire area',fire_area(i,j)
!$OMP END CRITICAL(FIRE_CORE_CRIT)
call crash
(msg)
endif
else
frat=(1-fuel_frac(i,j))/fire_area(i,j)
fmax=max(fmax,frat)
endif
enddo
enddo
!$OMP CRITICAL(FIRE_CORE_CRIT)
write(msg,'(a,4i6,a,f10.7)')'fuel_left: tile',its,ite,jts,jte,' max fuel burnt/area',fmax
!$OMP END CRITICAL(FIRE_CORE_CRIT)
call message
(msg)
return
end subroutine fuel_left
!
!************************
!
subroutine fuel_left_cell_1( fuel_frac_left, fire_frac_area, & 1,3
lfn00,lfn01,lfn10,lfn11, &
tign00,tign01,tign10,tign11,&
time_now, fuel_time_cell)
!*** purpose: compute the fuel fraction left in one cell
implicit none
!*** arguments
real, intent(out):: fuel_frac_left, fire_frac_area !
real, intent(in)::lfn00,lfn01,lfn10,lfn11 ! level set function at 4 corners of the cell
real, intent(in)::tign00,tign01,tign10,tign11! ignition time at the 4 corners of the cell
real, intent(in)::time_now ! the time now
real, intent(in)::fuel_time_cell ! time to burns off to 1/e
!*** Description
! The area burning is given by the condition L <= 0, where the function P is
! interpolated from lfn(i,j)
!
! The time since ignition is the function T, interpolated in from tign(i,j)-time_now.
! The values of tign(i,j) where lfn(i,j)>=0 are ignored, tign(i,j)=0 is taken
! when lfn(i,j)=0.
!
! The function computes an approxmation of the integral
!
!
! /\
! |
! fuel_frac_left = 1 - | 1 - exp(-T(x,y)/fuel_time_cell)) dxdy
! |
! \/
! 0<x<1
! 0<y<1
! L(x,y)<=0
!
! When the cell is not burning at all (all lfn>=0), then fuel_frac(i,j)=1.
! Because of symmetries, the result should not depend on the mesh spacing dx dy
! so dx=1 and dy=1 assumed.
!
! Example:
!
! lfn<0 lfn>0
! (0,1) -----O--(1,1) O = points on the fireline, T=tnow
! | \ | A = the burning area for computing
! | \| fuel_frac(i,j)
! | A O
! | |
! | |
! (0,0)---------(1,0)
! lfn<0 lfn<0
!
! Approximations allowed:
! The fireline can be approximated by straight line(s).
! When all cell is burning, approximation by 1 point Gaussian quadrature is OK.
!
! Requirements:
! 1. The output should be a continuous function of the arrays lfn and
! tign whenever lfn(i,j)=0 implies tign(i,j)=tnow.
! 2. The output should be invariant to the symmetries of the input in each cell.
! 3. Arbitrary combinations of the signs of lfn(i,j) should work.
! 4. The result should be at least 1st order accurate in the sense that it is
! exact if the time from ignition is a linear function.
!
! If time from ignition is approximated by polynomial in the burnt
! region of the cell, this is integral of polynomial times exponential
! over a polygon, which can be computed exactly.
!
! Requirement 4 is particularly important when there is a significant decrease
! of the fuel fraction behind the fireline on the mesh scale, because the
! rate of fuel decrease right behind the fireline is much larger
! (exponential...). This will happen when
!
! change of time from ignition within one mesh cell / fuel_time_cell is not << 1
!
! This is the same as
!
! mesh cell size
! X = ------------------------- is not << 1
! fireline speed * fuel_time_cell
!
!
! When X is large then the fuel burnt in one timestep in the cell is
! approximately proportional to length of fireline in that cell.
!
! When X is small then the fuel burnt in one timestep in the cell is
! approximately proportional to the area of the burning region.
!
!*** calls
intrinsic tiny
!*** local
real::ps,aps,area,ta,out
real::t00,t01,t10,t11
real,parameter::safe=tiny(aps)
character(len=128)::msg
! the following algorithm is a very crude approximation
! minus time since ignition, 0 if no ignition yet
! it is possible to have 0 in fire region when ignitin time falls in
! inside the time step because lfn is updated at the beginning of the time step
t00=tign00-time_now
if(lfn00>0. .or. t00>0.)t00=0.
t01=tign01-time_now
if(lfn01>0. .or. t01>0.)t01=0.
t10=tign10-time_now
if(lfn10>0. .or. t10>0.)t10=0.
t11=tign11-time_now
if(lfn11>0. .or. t11>0.)t11=0.
! approximate burning area, between 0 and 1
ps = lfn00+lfn01+lfn10+lfn11
aps = abs(lfn00)+abs(lfn01)+abs(lfn10)+abs(lfn11)
aps=max(aps,safe)
area =(-ps/aps+1.)/2.
area = max(area,0.) ! make sure area is between 0 and 1
area = min(area,1.)
! average negative time since ignition
ta=0.25*(t00+t01+t10+t11)
! exp decay in the burning area
out=1.
!if(area>0.)out=1. - area*(1. - exp(ta/fuel_time_cell))
if(area>0)out=area*exp(ta/fuel_time_cell) + (1. - area)
if(out>1.)then
!$OMP CRITICAL(FIRE_CORE_CRIT)
write(msg,*)'out=',out,'>1 area=',area,' ta=',ta
call message
(msg)
write(msg,*)'tign=',tign00,tign01,tign10,tign11,' time_now=',time_now
!$OMP END CRITICAL(FIRE_CORE_CRIT)
call message
(msg)
!call message('WARNING: fuel_left_cell_1: fuel fraction > 1')
call crash
('fuel_left_cell_1: fuel fraction > 1')
endif
!out = max(out,0.) ! make sure out is between 0 and 1
!out = min(out,1.)
fuel_frac_left = out
fire_frac_area = area
end subroutine fuel_left_cell_1
!
!****************************************
!
real function fuel_left_cell_2( & 1,5
lfn00,lfn01,lfn10,lfn11, &
tign00,tign01,tign10,tign11,&
time_now, fuel_time_cell)
!*** purpose: compute the fuel fraction left in one cell
implicit none
!*** arguments
real, intent(in)::lfn00,lfn01,lfn10,lfn11 ! level set function at 4 corners of the cell
real, intent(in)::tign00,tign01,tign10,tign11! ignition time at the 4 corners of the cell
real, intent(in)::time_now ! the time now
real, intent(in)::fuel_time_cell ! time to burns off to 1/e
!*** Description
! The area burning is given by the condition L <= 0, where the function P is
! interpolated from lfn(i,j)
!
! The time since ignition is the function T, interpolated in from tign(i,j)-time_now.
! The values of tign(i,j) where lfn(i,j)>=0 are ignored, tign(i,j)=0 is taken
! when lfn(i,j)=0.
!
! The function computes an approxmation of the integral
!
!
! /\
! |
! fuel_frac_left = 1 - | 1 - exp(-T(x,y)/fuel_time_cell)) dxdy
! |
! \/
! 0<x<1
! 0<y<1
! L(x,y)<=0
!
! When the cell is not burning at all (all lfn>=0), then fuel_frac(i,j)=1.
! Because of symmetries, the result should not depend on the mesh spacing dx dy
! so dx=1 and dy=1 assumed.
!
! Example:
!
! lfn<0 lfn>0
! (0,1) -----O--(1,1) O = points on the fireline, T=tnow
! | \ | A = the burning area for computing
! | \| fuel_frac(i,j)
! | A O
! | |
! | |
! (0,0)---------(1,0)
! lfn<0 lfn<0
!
! Approximations allowed:
! The fireline can be approximated by straight line(s).
! When all cell is burning, approximation by 1 point Gaussian quadrature is OK.
!
! Requirements:
! 1. The output should be a continuous function of the arrays lfn and
! tign whenever lfn(i,j)=0 implies tign(i,j)=tnow.
! 2. The output should be invariant to the symmetries of the input in each cell.
! 3. Arbitrary combinations of the signs of lfn(i,j) should work.
! 4. The result should be at least 1st order accurate in the sense that it is
! exact if the time from ignition is a linear function.
!
! If time from ignition is approximated by polynomial in the burnt
! region of the cell, this is integral of polynomial times exponential
! over a polygon, which can be computed exactly.
!
! Requirement 4 is particularly important when there is a significant decrease
! of the fuel fraction behind the fireline on the mesh scale, because the
! rate of fuel decrease right behind the fireline is much larger
! (exponential...). This will happen when
!
! change of time from ignition within one mesh cell * fuel speed is not << 1
!
! This is the same as
!
! mesh cell size*fuel_speed
! ------------------------- is not << 1
! fireline speed
!
!
! When X is large then the fuel burnt in one timestep in the cell is
! approximately proportional to length of fireline in that cell.
!
! When X is small then the fuel burnt in one timestep in the cell is
! approximately proportional to the area of the burning region.
!
#ifndef FUEL_LEFT
call crash
('fuel_left_cell_2: not implemented, please use fire_fuel_left_method=1')
fuel_left_cell_2=0. ! to avoid compiler warning about value not set
end function fuel_left_cell_2
#else
!*** calls
intrinsic tiny
!*** local
real::ps,aps,area,ta,out
real::t00,t01,t10,t11
real,parameter::safe=tiny(aps)
character(len=128)::msg
!*** local
integer::i,j,k
! least squares
integer::mmax,nb,nmax,pmax,nin,nout
parameter(mmax=3,nb=64,nmax=8,pmax=8)
integer lda, ldb, lwork, info
parameter (lda=nmax, ldb=nmax, lwork=mmax+nmax+nb*(nmax+pmax))
integer n,m,p
real,dimension(lda,mmax):: mA
real,dimension(nmax):: vecD
real,dimension(lwork):: WORK
real,dimension(pmax):: vecY
real,dimension(mmax):: vecX
real,dimension(ldb,pmax)::mB
real,dimension(mmax)::u
real::tweight,tdist
integer::kk,ll,ss
real::rnorm
real,dimension(8,2)::xylist,xytlist
real,dimension(8)::tlist,llist,xt
real,dimension(5)::xx,yy
real,dimension(5)::lfn,tign
integer:: npoint
real::tt,x0,y0,xts,xte,yts,yte,xt1,xt2
real::lfn0,lfn1,dist,nr,c,s,errQ,ae,ce,ceae,a0,a1,a2,d,cet
real::s1,s2,s3
real::upper,lower,ah,ch,aa,cc,aupp,cupp,alow,clow
real,dimension(2,2)::mQ
real,dimension(2)::ut
!calls
intrinsic epsilon
real, parameter:: zero=0.,one=1.,eps=epsilon(zero)
! external functions
real::snrm2
double precision :: dnrm2
external dnrm2
external snrm2
! external subroutines
external sggglm
external dggglm
!executable statements
! a very crude approximation - replace by a better code
! call check_mesh_2dim(ids,ide+1,jds,jde+1,ims,ime,jms,jme)
t00=tign00-time_now
if(lfn00>=0. .or. t00>0.)t00=0.
t01=tign01-time_now
if(lfn01>=0. .or. t01>0.)t01=0.
t10=tign10-time_now
if(lfn10>=0. .or. t10>0.)t10=0.
t11=tign11-time_now
if(lfn11>=0. .or. t11>0.)t11=0.
!if (t00<0 .or. t01 <0 .or. t10<0 .or. t11<0) then
! print *,'tign00=',tign00,'tign10=',tign10,&
! 'tign01=',tign01,'tign11=',tign11
!end if
!*** case0 Do nothing
if ( lfn00>=0 .and. lfn10>=0 .and. lfn01>=0 .and. lfn11>=0 ) then
out = 1.0 ! fuel_left, no burning
!*** case4 all four coners are burning
else if (lfn00<=0 .and. lfn10<=0 .and. lfn01<=0 .and. lfn11<=0) then
! least squares, A matrix for points
mA(1,1)=0.0
mA(2,1)=1.0
mA(3,1)=0.0
mA(4,1)=1.0
mA(1,2)=0.0
mA(2,2)=0.0
mA(3,2)=1.0
mA(4,2)=1.0
mA(1,3)=1.0
mA(2,3)=1.0
mA(3,3)=1.0
mA(4,3)=1.0
! D vector, time from ignition
vecD(1)=time_now-tign00
vecD(2)=time_now-tign10
vecD(3)=time_now-tign01
vecD(4)=time_now-tign11
! B matrix, weights
do kk=1,4
do ll=1,4
mB(kk,ll)=0.0
end do
mB(kk,kk)=2.0
end do
! set the m,n,p
n=4 ! rows of matrix A and B
m=3 ! columns of matrix A
p=4 ! columns of matrix B
! call least squqres in LAPACK
call SGGGLM(N,M,P,mA,LDA,mB,LDB,vecD,vecX,vecY, &
WORK,LWORK,INFO)
rnorm=snrm2(p,vecY,1)
! integrate
u(1)=-vecX(1)/fuel_time_cell
u(2)=-vecX(2)/fuel_time_cell
u(3)=-vecX(3)/fuel_time_cell
!fuel_burn(i,j)=1-exp(u(3))*intexp(u(1)*dx)*intexp(u(2)*dy)
s1=u(1)
s2=u(2)
out=1-exp(u(3))*intexp(s1)*intexp(s2)
!print *,'intexp
if ( out<0 .or. out>1.0 ) then
print *,'case4, out should be between 0 and 1'
end if
!*** case 1,2,3
else
! set xx, yy for the coner points
! move these values out of i and j loop to speed up
xx(1) = -0.5
xx(2) = 0.5
xx(3) = 0.5
xx(4) = -0.5
xx(5) = -0.5
yy(1) = -0.5
yy(2) = -0.5
yy(3) = 0.5
yy(4) = 0.5
yy(5) = -0.5
lfn(1)=lfn00
lfn(2)=lfn10
lfn(3)=lfn11
lfn(4)=lfn01
lfn(5)=lfn00
tign(1)=t00
tign(2)=t10
tign(3)=t11
tign(4)=t01
tign(5)=t00
npoint = 0 ! number of points in polygon
!print *,'time_now=',time_now
!print *,'lfn00=',lfn00,'lfn10=',lfn10,&
! 'lfn01=',lfn01,'lfn11=',lfn11
!print *,'t00=',t00,'t10=',t10,&
! 't01=',t01,'t11=',t11
do k=1,4
lfn0=lfn(k )
lfn1=lfn(k+1)
if ( lfn0 <= 0.0 ) then
npoint = npoint + 1
xylist(npoint,1)=xx(k)
xylist(npoint,2)=yy(k)
tlist(npoint)=-tign(k)
llist(npoint)=lfn0
end if
if ( lfn0*lfn1 < 0 ) then
npoint = npoint + 1
tt=lfn0/(lfn0-lfn1)
x0=xx(k)+( xx(k+1)-xx(k) )*tt
y0=yy(k)+( yy(k+1)-yy(k) )*tt
xylist(npoint,1)=x0
xylist(npoint,2)=y0
tlist(npoint)=0 ! on fireline
llist(npoint)=0
end if
end do
! make the list circular
tlist(npoint+1)=tlist(1)
llist(npoint+1)=llist(1)
xylist(npoint+1,1)=xylist(1,1)
xylist(npoint+1,2)=xylist(1,2)
!* least squares, A matrix for points
do kk=1,npoint
mA(kk,1)=xylist(kk,1)
mA(kk,2)=xylist(kk,2)
mA(kk,3)=1.0
vecD(kk)=tlist(kk) ! D vector,time from ignition
end do
! B matrix, weights
do kk=1,ldb
do ll=1,pmax
mB(kk,ll)=0.0 ! clear
end do
end do
do kk=1,npoint
mb(kk,kk) = 10 ! large enough
do ll=1,npoint
if ( kk .ne. ll ) then
dist = sqrt( (xylist(kk,1)-xylist(ll,1))**2+ &
(xylist(kk,2)-xylist(ll,2))**2 )
mB(kk,kk)=min( mB(kk,kk) , dist )
end if
end do !ll
mB(kk,kk)=mB(kk,kk)+1.
end do ! kk
! set the m,n,p
n=npoint ! rows of matrix A and B
m=3 ! columns of matrix A
p=npoint ! columns of matrix B
!* call least squqres in LAPACK
call SGGGLM(N,M,P,mA,LDA,mB,LDB,vecD,vecX,vecY, &
WORK,LWORK,INFO)
!print *,'after LS in case3'
!print *,'vecX from LS',vecX
!print *,'tign inputed',tign00,tign10,tign11,tign01
rnorm=snrm2(p,vecY,1)
u(1)=vecX(1)
u(2)=vecX(2)
u(3)=vecX(3)
! rotate to gradient on x only
nr = sqrt(u(1)**2+u(2)**2)
if(.not.nr.gt.eps)then
out=1.
goto 900
endif
c = u(1)/nr
s = u(2)/nr
mQ(1,1)=c
mQ(1,2)=s
mQ(2,1)=-s
mQ(2,2)=c
! mat vec multiplication
call matvec
(mQ,2,2,u,3,ut,2,2,2)
errQ = ut(2) ! should be zero
ae = -ut(1)/fuel_time_cell
ce = -u(3)/fuel_time_cell
cet=ce!keep ce
call matmatp
(xylist,8,2,mQ,2,2,xytlist,8,2,npoint+1,2,2)
call sortxt
( xytlist, 8,2, xt,8,npoint )
out=0.0
aupp=0.0
cupp=0.0
alow=0.0
clow=0.0
do k=1,npoint-1
xt1=xt(k)
xt2=xt(k+1)
upper=0
lower=0
ah=0
ch=0
if ( xt2-xt1 > eps*100 ) then
do ss=1,npoint
xts=xytlist(ss,1)
yts=xytlist(ss,2)
xte=xytlist(ss+1,1)
yte=xytlist(ss+1,2)
if ( (xts>xt1 .and. xte>xt1) .or. &
(xts<xt2 .and. xte<xt2) ) then
aa = 0 ! do nothing
cc = 0
else
aa = (yts-yte)/(xts-xte)
cc = (xts*yte-xte*yts)/(xts-xte)
if (xte<xts) then
aupp = aa
cupp = cc
ah=ah+aa
ch=ch+cc
upper=upper+1
else
alow = aa
clow = cc
lower=lower+1
end if
end if!(xts>xt1 .and. xte>xt1)
end do ! ss
ce=cet !use stored ce
if (ae*xt1+ce > 0 ) then
ce=ce-(ae*xt1+ce)!shift small amounts exp(-**)
end if
if (ae*xt2+ce > 0) then
ce=ce-(ae*xt2+ce)
end if
ah = aupp-alow
ch = cupp-clow
! integrate (ah*x+ch)*(1-exp(ae*x+ce) from xt1 to xt2
! numerically sound for ae->0, ae -> infty
! this can be important for different model scales
! esp. if someone runs the model in single precision!!
! s1=int((ah*x+ch),x,xt1,xt2)
s1 = (xt2-xt1)*((1./2.)*ah*(xt2+xt1)+ch)
! s2=int((ch)*(-exp(ae*x+ce)),x,xt1,xt2)
ceae=ce/ae;
s2 = -ch*exp(ae*(xt1+ceae))*(xt2-xt1)*intexp(ae*(xt2-xt1))
! s3=int((ah*x)*(-exp(ae*x+ce)),x,xt1,xt2)
! s3=int((ah*x)*(-exp(ae*(x+ceae))),x,xt1,xt2)
! expand in Taylor series around ae=0
! collect(expand(taylor(int(x*(-exp(ae*(x+ceae))),x,xt1,xt2)*ae^2,ae,4)/ae^2),ae)
! =(1/8*xt1^4+1/3*xt1^3*ceae+1/4*xt1^2*ceae^2-1/8*xt2^4-1/3*xt2^3*ceae-1/4*xt2^2*ceae^2)*ae^2
! + (-1/3*xt2^3-1/2*xt2^2*ceae+1/3*xt1^3+1/2*xt1^2*ceae)*ae
! + 1/2*xt1^2-1/2*xt2^2
!
! coefficient at ae^2 in the expansion, after some algebra
a2=(xt1-xt2)*((1./4.)*(xt1+xt2)*ceae**2+(1./3.)* &
(xt1**2+xt1*xt2+xt2**2)*ceae+(1./8.)* &
(xt1**3+xt1*(xt2**2)+xt1**2*xt2+xt2**3))
d=(ae**4)*a2
if (abs(d)>eps) then
! since ae*xt1+ce<=0 ae*xt2+ce<=0 all fine for large ae
! for ae, ce -> 0 rounding error approx eps/ae^2
s3=( exp(ae*(xt1+ceae))*(ae*xt1-1)-&
exp(ae*(xt2+ceae))*(ae*xt2-1) )/(ae**2)
!we do not worry about rounding as xt1 -> xt2, then s3 -> 0
else
! coefficient at ae^1 in the expansion
a1=(xt1-xt2)*((1./2.)*ceae*(xt1+xt2)+(1./3.)*&
(xt1**2+xt1*xt2+xt2**2))
! coefficient at ae^0 in the expansion for ae->0
a0=(1./2.)*(xt1-xt2)*(xt1+xt2)
s3=a0+a1*ae+a2*ae**2; ! approximate the integral
end if
s3=ah*s3
out=out+s1+s2+s3
out=1-out !fuel_left
if(out<0 .or. out>1) then
print *,':fuel_fraction should be between 0 and 1'
!print *, 'eps= ', eps
!print *, 'xt1= ', xt1, 'xt2= ', xt2
!print *,'ae= ',ae,'ce= ',ce,'ah= ',ah,'ch= ',ch
!print *,'a0= ', a0,'a1= ', a1,'a2= ', a2
print *,'s1= ', s1,'s2= ', s2,'s3= ', s3
print *,':fuel_fraction =',out
end if!print
end if
end do ! k
end if ! if case0, elseif case4 ,else case123
900 continue
if(out>1. .or. out<0.)call crash
('fuel_left_cell_2: fuel fraction out of bounds [0,1]')
fuel_left_cell_2 = out
end function fuel_left_cell_2
!
!****************************************
!
real function intexp(ab)
implicit none
real::ab
!calls
intrinsic epsilon
real, parameter:: zero=0.,one=1.,eps=epsilon(zero)
!eps = 2.2204*(10.0**(-8))!from matlab
if ( eps < abs(ab)**3/6. ) then
intexp=(exp(ab)-1)/ab
else
intexp=1+ab/2.
end if
end function
!
!****************************************
!
subroutine sortxt(xytlist,nrow,ncolumn,xt,nxt,nvec) 1
implicit none
integer::nrow,ncolumn,nxt,nvec
real,dimension(nrow,ncolumn)::xytlist
real,dimension(nxt)::xt
integer::i,j
real::temp
do i=1,nvec
xt(i)=xytlist(i,1)
end do
do i=1,nvec-1
do j=i+1,nvec
if ( xt(i) > xt(j) ) then
temp = xt(i)
xt(i)=xt(j)
xt(j)=temp
end if
end do
end do
end subroutine !sortxt
!
!****************************************
!
subroutine matvec(A,m,n,V,nv,out,nout,nrow,ncolumn) 1
implicit none
integer::m,n,nv,nout,nrow,ncolumn
real,dimension(m,n)::A ! allocated m by n
real,dimension(nv)::V ! allocated nv
real,dimension(nout)::out! allocated nout
integer::i,j
do i=1,nrow
out(i)=0.0
do j=1,ncolumn
out(i)=out(i)+A(i,j)*V(j)
end do
end do
end subroutine
!
!****************************************
!
subroutine matmatp(A,mA,nA,B,mB,nB,C,mC,nC,nrow,ncolumn,nP) 1
implicit none
integer::mA,nA,mB,nB,mC,nC,nrow,ncolumn,nP
real,dimension(mA,nA)::A ! allocated m by n
real,dimension(mB,nB)::B ! allocated m by n
real,dimension(mC,nC)::C ! allocated m by n
integer::i,j,k
do i=1,nrow
do j=1,ncolumn
C(i,j)=0.0
do k=1,nP
C(i,j)=C(i,j)+A(i,k)*B(j,k) ! B'
end do
end do
end do
end subroutine
!
!****************************************
!
#endif
subroutine prop_ls( id, & ! for debug 1,19
ids,ide,jds,jde, & ! domain dims
ims,ime,jms,jme, & ! memory dims
ips,ipe,jps,jpe, & ! patch - nodes owned by this process
its,ite,jts,jte, & ! tile dims
ts,dt,dx,dy, & ! scalars in
tbound, & ! scalars out
lfn_in,lfn_out,tign,ros, & ! arrays inout
fp &
)
implicit none
!*** purpose: advance level function in time
!*** description
!
! Propagation of closed curve by a level function method. The level function
! lfn is defined by its values at the nodes of a rectangular grid.
! The area where lfn < 0 is inside the curve. The curve is
! described implicitly by lfn=0. Points where the curve intersects gridlines
! can be found by linear interpolation from nodes.
!
! The level function is advanced from time ts to time ts + dt.
!
! The level function should be initialized to (an approximation of) the signed
! distance from the curve. If the initial curve is a circle, the initial level
! function is simply the distance from the center minus the radius.
!
! The curve moves outside with speed given by function speed_func.
!
! Method: Godunov/ENO method for the normal motion. The timestep is checked for
! CFL condition. For a straight segment in a constant field and locally linear
! level function, the method reduces to the exact normal motion. The advantage of
! the level set method is that it treats automatically special cases such as
! the curve approaching itself and merging components of the area inside the curve.
!
! Based on S. Osher and R. Fedkiw, Level set methods and dynamic implicit surfaces,
! Springer, 2003, Sec. 6.4, as implemented in toolboxLS for Matlab by
! I. Mitchell, A toolbox of Level Set Methods (Version 1.1), TR-2007-11,
! Dept. Computer Science, University of British Columbia, 2007
! http://www.cs.ubc.ca/\~mitchell/Toolbo\LS
!
!*** arguments
! id in unique identification for prints and dumps
! ids,ide,jds,jde in domain dimensions
! ims,ime,jms,jme in memory dimensions
! its,ite,jts,jte in tile dimensions
! ts in start time
! dt in time step
! dx,dy in grid spacing
! tbound out bound on stable time step from CFL condition, if tbound>=dt then OK
! lfn_in,lfn_out inout,out the level set function at nodes
! tign inout the ignition time at nodes
! The dimensions are cell-based, the nodal value is associated with the south-west corner.
! The whole computation is on domain indices ids:ide+1,jds:jde+1.
!
! The region where new lfn and tign are computed is the tile its:ite,jts:jte
! except when the tile is at domain upper boundary, an extra band of points is added:
! if ite=ide then region goes up to ite+1, if jte=jde then region goes up to jte+1.
! The time step requires values from 2 rows of nodes beyond the region except when at the
! domain boundary one-sided derivatives are used. This is implemented by extending the input
! beyond the domain boundary so sufficient memory bounds must be allocated.
! The update on all tiles can be done in parallel. To avoid the race condition (different regions
! of the same array updated by different threads), the in and out versions of the
! arrays lft and tign are distinct. If the time step dt is larger
! that the returned tbound, the routine should be called again with timestep td<=tbound, and then
! having distinct inputs and outputs comes handy.
!*** calls
!
! tend_ls
!
integer,intent(in)::id,ims,ime,jms,jme,ids,ide,jds,jde,its,ite,jts,jte,ips,ipe,jps,jpe
real,dimension(ims:ime,jms:jme),intent(inout)::lfn_in,tign
real,dimension(ims:ime,jms:jme),intent(out)::lfn_out,ros
real,intent(in)::dx,dy,ts,dt
real,intent(out)::tbound
type(fire_params),intent(in)::fp
!*** local
! arrays
#define IMTS its-1
#define IMTE ite+1
#define JMTS jts-1
#define JMTE jte+1
real,dimension(IMTS:IMTE,JMTS:JMTE):: tend, lfn1 ! region-sized with halo
! scalars
real::grad2,rr,tbound2,a,a1 ! a=0 euler, a=0.5 heun
real::gradx,grady,aspeed,err,aerr,time_now
integer::ihs,ihe,jhs,jhe
integer::ihs2,ihe2,jhs2,jhe2
integer::i,j,its1,ite1,jts1,jte1,k,kk,id1
character(len=128)::msg
integer::nfirenodes,nfireline
real::sum_err,min_err,max_err,sum_aerr,min_aerr,max_aerr
! constants
integer,parameter :: mstep=1000, printl=1
real, parameter:: zero=0.,one=1.,eps=epsilon(zero),tol=100*eps, &
safe=2.,rmin=safe*tiny(zero),rmax=huge(zero)/safe
! f90 intrinsic function
intrinsic max,min,sqrt,nint,epsilon,tiny,huge
!*** executable
!$OMP CRITICAL(FIRE_CORE_CRIT)
write(msg,'(a8,i5,a6,i5,3(a1,i5))')'prop_ls:',id,' tile ',its,':',ite,',',jts,':',jte
!$OMP END CRITICAL(FIRE_CORE_CRIT)
call message
(msg)
a=fire_back_weight ! from module_fr_fire_util
a1=1. - a
! tend = F(lfn)
ihs2=max(its-2,ids) ! need lfn two beyond the tile but not outside the domain
ihe2=min(ite+2,ide)
jhs2=max(jts-2,jds)
jhe2=min(jte+2,jde)
ihs=max(its-1,ids) ! compute tend one beyond the tile but not outside the domain
ihe=min(ite+1,ide)
jhs=max(jts-1,jds)
jhe=min(jte+1,jde)
#ifdef DEBUG_OUT
call write_array_m
(ihs,ihe,jhs,jhe,ims,ime,jms,jme,lfn_in,'lfn_in',id)
#endif
! check array dimensions
call check_mesh_2dim
(ihs2,ihe2,jhs2,jhe2,ims,ime,jms,jme)
call print_2d_stats
(ihs2,ihe2,jhs2,jhe2,ims,ime,jms,jme, &
lfn_in,'prop_ls: lfn in')
! NOTE: tend_ls will extrapolate to one node strip at domain boundaries
! so that it can compute gradient at domain boundaries.
! To avoid copying, lfn_in is declared inout.
! At tile boundaries that are not domain boundaries values of lfn_in two nodes
! outside of the tile are needed.
id1 = id ! for debug prints
if(id1.ne.0)id1=id1+1000
call tend_ls
( id1, &
ims,ime,jms,jme, & ! memory dims for lfn_in
IMTS,IMTE,JMTS,JMTE, & ! memory dims for tend
ids,ide,jds,jde, & ! domain dims - where lfn exists
ips,ipe,jps,jpe, & ! patch - nodes owned by this process
ihs,ihe,jhs,jhe, & ! where tend computed
ims,ime,jms,jme, & ! memory dims for ros
its,ite,jts,jte, & ! tile dims - where to set ros
ts,dt,dx,dy, & ! scalars in
lfn_in, & ! arrays in
tbound, & ! scalars out
tend, ros, & ! arrays out
fp & ! params
)
#ifdef DEBUG_OUT
call write_array_m
(ihs,ihe,jhs,jhe,IMTS,IMTE,JMTS,JMTE,tend,'tend1',id)
#endif
! Euler method, the half-step, same region as ted
do j=jhs,jhe
do i=ihs,ihe
lfn1(i,j) = lfn_in(i,j) + dt*tend(i,j)
enddo
enddo
call print_2d_stats
(ihs,ihe,jhs,jhe,IMTS,IMTE,JMTS,JMTE, &
lfn1,'prop_ls: lfn1')
! tend = F(lfn1) on the tile (not beyond)
if(id1.ne.0)id1=id1+1000
call tend_ls
( id1,&
IMTS,IMTE,JMTS,JMTE, & ! memory dims for lfn
IMTS,IMTE,JMTS,JMTE, & ! memory dims for tend
ids,ide,jds,jde, & ! domain dims - where lfn exists
ips,ipe,jps,jpe, & ! patch - nodes owned by this process
its,ite,jts,jte, & ! tile dims - where is tend computed
ims,ime,jms,jme, & ! memory dims for ros
its,ite,jts,jte, & ! tile dims - where is ros set
ts+dt,dt,dx,dy, & ! scalars in
lfn1, & ! arrays in
tbound2, & ! scalars out
tend,ros, & ! arrays out
fp &
)
#ifdef DEBUG_OUT
call write_array_m
(its,ite,jts,jte,IMTS,IMTE,JMTS,JMTE,tend,'tend2',id)
#endif
call print_2d_stats
(its,ite,jts,jte,IMTS,IMTE,JMTS,JMTE,tend,'prop_ls: tend2')
tbound=min(tbound,tbound2)
!$OMP CRITICAL(FIRE_CORE_CRIT)
write(msg,'(a,f10.2,4(a,f7.2))')'prop_ls: time',ts,' dt=',dt,' bound',min(tbound,999.99), &
' dx=',dx,' dy=',dy
!$OMP END CRITICAL(FIRE_CORE_CRIT)
call message
(msg)
if(dt>tbound)then
!$OMP CRITICAL(FIRE_CORE_CRIT)
write(msg,'(2(a,f10.2))')'prop_ls: WARNING: time step ',dt, &
' > bound =',tbound
!$OMP END CRITICAL(FIRE_CORE_CRIT)
call message
(msg)
endif
! combine lfn1 and lfn_in + dt*tend -> lfn_out
do j=jts,jte
do i=its,ite
lfn_out(i,j) = a1*lfn1(i,j) + a*(lfn_in(i,j) + dt*tend(i,j))
lfn_out(i,j) = min(lfn_out(i,j),lfn_in(i,j)) ! fire area can only increase
enddo
enddo
! compute ignition time by interpolation
! the node was not burning at start but it is burning at end
! interpolate from the level functions at start and at end
! lfn_in is the level set function value at time ts
! lfn_out is the level set function value at time ts+dt
! 0 is the level set function value at time tign(i,j)
! thus assuming the level function is approximately linear =>
! tign(i,j)= ts + ((ts + td) - ts) * lfn_in / (lfn_in - lfn_out)
! = ts + dt * lfn_in / (lfn_in - lfn_out)
time_now=ts+dt
time_now = time_now + abs(time_now)*epsilon(time_now)*2.
do j=jts,jte
do i=its,ite
! interpolate the cross-over time
if (.not. lfn_out(i,j)>0 .and. lfn_in(i,j)>0)then
tign(i,j) = ts + dt * lfn_in(i,j) / (lfn_in(i,j) - lfn_out(i,j))
endif
! set the ignition time outside of burning region
if(lfn_out(i,j)>0.)tign(i,j)=time_now
enddo
enddo
! check local speed error and stats
! may not work correctly in parallel
! init stats
nfirenodes=0
nfireline=0
sum_err=0.
min_err=rmax
max_err=rmin
sum_aerr=0.
min_aerr=rmax
max_aerr=rmin
its1=its+1
jts1=jts+1
ite1=ite-1
jte1=jte-1
! loop over right inside of the domain
! cannot use values outside of the domain, would have to reflect and that
! would change lfn_out
! cannot use values outside of tile, not synchronized yet
! so in parallel mode the statistics is not accurate
do j=jts1,jte1
do i=its1,ite1
if(lfn_out(i,j)>0.0)then ! a point out of burning region
if(lfn_out(i+1,j)<=0.or.lfn_out(i,j+1)<=0.or. & ! neighbor in burning region
lfn_out(i-1,j)<=0.or.lfn_out(i,j-1)<=0)then ! point next to fireline
gradx=(lfn_out(i+1,j)-lfn_out(i-1,j))/(2.0*dx) ! central differences
grady=(lfn_out(i,j+1)-lfn_out(i,j-1))/(2.0*dy)
grad2=sqrt(gradx*gradx+grady*grady)
aspeed = (lfn_in(i,j)-lfn_out(i,j))/(dt*max(grad2,rmin))
rr = speed_func
(gradx,grady,dx,dy,i,j,fp)
err=aspeed-rr
sum_err=sum_err+err
min_err=min(min_err,err)
max_err=max(max_err,err)
aerr=abs(err)
sum_aerr=sum_aerr+aerr
min_aerr=min(min_aerr,aerr)
max_aerr=max(max_aerr,aerr)
nfireline=nfireline+1
endif
else
nfirenodes=nfirenodes+1
endif
enddo
enddo
!$OMP CRITICAL(FIRE_CORE_CRIT)
write(msg,'(2(a,i6,f8.4))')'prop_ls: nodes burning',nfirenodes, &
(100.*nfirenodes)/((ite1-its1+1)*(jte1-jts1+1)),'% next to fireline',nfireline
!$OMP END CRITICAL(FIRE_CORE_CRIT)
call message
(msg)
if(nfireline>0)then
call print_stat_line
('speed error',its1,ite1,jts1,jte1,min_err,max_err,sum_err/nfireline)
call print_stat_line
('abs(speed error)',its1,ite1,jts1,jte1,min_aerr,max_aerr,sum_aerr/nfireline)
endif
! check if the fire did not get to the domain boundary
do k=-1,1,2
! do kk=1,(boundary_guard*(ide-ids+1))/100 ! in %
do kk=1,boundary_guard ! measured in cells
i=ids+k*kk
if(i.ge.its.and.i.le.ite)then
do j=jts,jte
if(lfn_out(i,j)<=0.)goto 9
enddo
endif
enddo
! do kk=1,(boundary_guard*(jde-jds+1))/100
do kk=1,boundary_guard ! measured in cells
j=jds+k*kk
if(j.ge.jts.and.j.le.jte)then
do i=its,ite
if(lfn_out(i,j)<=0.)goto 9
enddo
endif
enddo
enddo
goto 10
9 continue
!$OMP CRITICAL(FIRE_CORE_CRIT)
write(msg,'(a,i2,a,2i8)')'prop_ls: fire',boundary_guard, &
' cells from domain boundary at node ',i,j
!$OMP END CRITICAL(FIRE_CORE_CRIT)
call message
(msg)
call crash
('prop_ls: increase the fire region')
10 continue
call print_2d_stats
(its,ite,jts,jte,ims,ime,jms,jme, &
lfn_out,'prop_ls: lfn out')
end subroutine prop_ls
!
!*****************************
!
subroutine tend_ls( id, & 2,20
lims,lime,ljms,ljme, & ! memory dims for lfn
tims,time,tjms,tjme, & ! memory dims for tend
ids,ide,jds,jde, & ! domain - nodes where lfn defined
ips,ipe,jps,jpe, & ! patch - nodes owned by this process
ints,inte,jnts,jnte, & ! region - nodes where tend computed
ims,ime,jms,jme, & ! memory dims for ros
its,ite,jts,jte, & ! tile dims - where is ros set
t,dt,dx,dy, & ! scalars in
lfn, & ! arrays in
tbound, & ! scalars out
tend, ros, & ! arrays out
fp &
)
implicit none
! purpose
! compute the right hand side of the level set equation
!*** arguments
integer,intent(in)::id,lims,lime,ljms,ljme,tims,time,tjms,tjme
integer,intent(in)::ims,ime,jms,jme,its,ite,jts,jte
integer, intent(in)::ids,ide,jds,jde,ints,inte,jnts,jnte,ips,ipe,jps,jpe
real,intent(in)::t ! time
real,intent(in)::dt,dx,dy ! mesh step
real,dimension(lims:lime,ljms:ljme),intent(inout)::lfn ! level set function
real,intent(out)::tbound ! max allowed time step
real,dimension(tims:time,tjms:tjme),intent(out)::tend ! tendency (rhs of the level set pde)
real,dimension(ims:ime,jms:jme),intent(out)::ros ! rate of spread
type(fire_params),intent(in)::fp
!*** local
real:: te,diffLx,diffLy,diffRx,diffRy, &
diffCx,diffCy,diff2x,diff2y,grad,rr, &
ros_base,ros_wind,ros_slope,ros_back,advx,advy,scale,nvx,nvy, &
speed,tanphi
integer::i,j,itso,iteo,jtso,jteo
character(len=128)msg
! constants
real, parameter:: eps=epsilon(0.0)
!intrinsic epsilon
real, parameter:: zero=0.,one=1.,tol=100*eps, &
safe=2.,rmin=safe*tiny(zero),rmax=huge(zero)/safe
! f90 intrinsic function
intrinsic max,min,sqrt,nint,tiny,huge
#ifdef DEBUG_OUT
real,dimension(tims:time,tjms:tjme)::rra,grada,speeda,tanphia
#endif
!*** executable
! check array dimensions
call check_mesh_2dim
(ints-1,inte+1,jnts-1,jnte+1,lims,lime,ljms,ljme)
call check_mesh_2dim
(ints,inte,jnts,jnte,tims,time,tjms,tjme)
call continue_at_boundary
(1,1,fire_lfn_ext_up, & !extend by extrapolation but never down
lims,lime,ljms,ljme, & ! memory dims
ids,ide,jds,jde, & ! domain - nodes where lfn defined
ips,ipe,jps,jpe, & ! patch - nodes owned by this process
ints,inte,jnts,jnte, & ! tile - nodes update by this thread
itso,iteo,jtso,jteo, & ! where set now
lfn) ! array
call print_2d_stats
(itso,iteo,jtso,jteo,lims,lime,ljms,ljme, &
lfn,'tend_ls: lfn cont')
#ifdef DEBUG_OUT
call write_array_m
(ints-1,inte+1,jnts-1,jnte+1,lims,lime,ljms,ljme,lfn,'tend_lfn_in',id)
#endif
tbound=0
do j=jnts,jnte
do i=ints,inte
! one sided differences
diffRx = (lfn(i+1,j)-lfn(i,j))/dx
diffLx = (lfn(i,j)-lfn(i-1,j))/dx
diffRy = (lfn(i,j+1)-lfn(i,j))/dy
diffLy = (lfn(i,j)-lfn(i,j-1))/dy
diffCx = diffLx+diffRx ! TWICE CENTRAL DIFFERENCE
diffCy = diffLy+diffRy
!upwinding - select right or left derivative
select case(fire_upwinding)
case(0) ! none
grad=sqrt(diffCx**2 + diffCy**2)
case(1) ! standard
diff2x=select_upwind
(diffLx,diffRx)
diff2y=select_upwind
(diffLy,diffRy)
grad=sqrt(diff2x*diff2x + diff2y*diff2y)
case(2) ! godunov per osher/fedkiw
diff2x=select_godunov
(diffLx,diffRx)
diff2y=select_godunov
(diffLy,diffRy)
grad=sqrt(diff2x*diff2x + diff2y*diff2y)
case(3) ! eno
diff2x=select_eno
(diffLx,diffRx)
diff2y=select_eno
(diffLy,diffRy)
grad=sqrt(diff2x*diff2x + diff2y*diff2y)
case(4) ! Sethian - twice stronger pushdown of bumps
grad=sqrt(max(diffLx,0.)**2+min(diffRx,0.)**2 &
+ max(diffLy,0.)**2+min(diffRy,0.)**2)
case default
grad=0.
end select
! normal direction, from central differences
scale=sqrt(diffCx*diffCx+diffCy*diffCy+eps)
nvx=diffCx/scale
nvy=diffCy/scale
! wind speed in direction of spread
speed = fp%vx(i,j)*nvx + fp%vy(i,j)*nvy
! get rate of spread from wind speed and slope
call fire_ros
(ros_base,ros_wind,ros_slope, &
nvx,nvy,i,j,fp)
rr=ros_base + ros_wind + ros_slope
if(fire_grows_only.gt.0)rr=max(rr,0.)
! set ros for output
if(i.ge.its.and.i.le.ite.and.j.ge.jts.and.j.le.jte)ros(i,j)=rr
if(fire_upwind_split.eq.0)then
! get rate of spread
te = -rr*grad ! normal term
else
! normal direction backing rate only
te = - ros_base*grad
! advection in wind direction
if (abs(speed)> eps) then
advx=fp%vx(i,j)*ros_wind/speed
advy=fp%vy(i,j)*ros_wind/speed
else
advx=0
advy=0
endif
tanphi = fp%dzdxf(i,j)*nvx + fp%dzdyf(i,j)*nvy
! advection from slope direction
if(abs(tanphi)>eps) then
advx=advx+fp%dzdxf(i,j)*ros_slope/tanphi
advy=advy+fp%dzdyf(i,j)*ros_slope/tanphi
endif
if(fire_upwind_split.eq.1)then
! one-sided upwinding
te = te - max(advx,0.)*diffLx - min(advx,0.)*diffRy &
- max(advy,0.)*diffLy - min(advy,0.)*diffRy
elseif(fire_upwind_split.eq.2)then
! Lax-Friedrichs
call crash
('prop_ls: bad fire_upwind_split, Lax-Friedrichs not done yet')
else
call crash
('prop_ls: bad fire_upwind_split')
endif
endif
! cfl condition
if (grad > 0.) then
tbound = max(tbound,rr*(abs(diff2x)/dx+abs(diff2y)/dy)/grad)
endif
! add numerical viscosity
te=te + fire_viscosity*abs(rr)*((diffRx-diffLx)+(diffRy-diffLy))
tend(i,j)=te
#ifdef DEBUG_OUT
rra(i,j)=rr
grada(i,j)=grad
speeda(i,j)=speed
tanphia(i,j)=tanphi
#endif
!write(msg,*)i,j,grad,dzdx,dzdy
!call message(msg)
!if(abs(te)>1e4)then
! write(msg,'(a,2i5,e12.3)')'tend_ls: tend out of bounds at ',i,j,te
! call crash(msg)
!endif
enddo
enddo
#ifdef DEBUG_OUT
call write_array_m
(ints,inte,jnts,jnte,tims,time,tjms,tjme,rra,'rr',id)
call write_array_m
(ints,inte,jnts,jnte,tims,time,tjms,tjme,grada,'grad',id)
call write_array_m
(ints,inte,jnts,jnte,tims,time,tjms,tjme,speeda,'speed',id)
call write_array_m
(ints,inte,jnts,jnte,tims,time,tjms,tjme,tanphia,'tanphi',id)
call write_array_m
(ints,inte,jnts,jnte,tims,time,tjms,tjme,tend,'tend',id)
#endif
call print_2d_stats
(ints,inte,jnts,jnte,tims,time,tjms,tjme, &
tend,'tend_ls: tend out')
! the final CFL bound
tbound = 1/(tbound+tol)
end subroutine tend_ls
!
!**************************
!
real function select_upwind(diffLx,diffRx) 2
implicit none
real, intent(in):: diffLx, diffRx
real diff2x
! upwind differences, L or R if bith same sign, otherwise zero
diff2x=0
if (diffLx>0.and.diffRx>0.)diff2x=diffLx
if (diffLx<0.and.diffRx<0.)diff2x=diffRx
select_upwind=diff2x
end function select_upwind
!
!**************************
!
real function select_godunov(diffLx,diffRx) 2
implicit none
real, intent(in):: diffLx, diffRx
real diff2x,diffCx
! Godunov scheme: upwind differences, L or R or none
! always test on > or < never = , much faster because of IEEE
! central diff >= 0 => take left diff if >0, ortherwise 0
! central diff <= 0 => take right diff if <0, ortherwise 0
diff2x=0
diffCx=diffRx+diffLx
if (diffLx>0.and..not.diffCx<0)diff2x=diffLx
if (diffRx<0.and. diffCx<0)diff2x=diffRx
select_godunov=diff2x
end function select_godunov
!
!**************************
!
real function select_eno(diffLx,diffRx) 2
implicit none
real, intent(in):: diffLx, diffRx
real diff2x
! 1st order ENO scheme
if (.not.diffLx>0 .and. .not.diffRx>0)then
diff2x=diffRx
elseif(.not.diffLx<0 .and. .not.diffRx<0)then
diff2x=diffLx
elseif(.not.diffLx<0 .and. .not.diffRx>0)then
if(.not. abs(diffRx) < abs(diffLx))then
diff2x=diffRx
else
diff2x=diffLx
endif
else
diff2x=0.
endif
select_eno=diff2x
end function select_eno
!
!**************************
!
real function speed_func(diffCx,diffCy,dx,dy,i,j,fp) 1,1
!*** purpose
! the level set method speed function
implicit none
!*** arguments
real, intent(in)::diffCx,diffCy ! x and y coordinates of the direction of propagation
real, intent(in)::dx,dy ! x and y coordinates of the direction of propagation
integer, intent(in)::i,j ! indices of the node to compute the speed at
type(fire_params),intent(in)::fp
!*** local
real::scale,nvx,nvy,r
real::ros_base , ros_wind , ros_slope
real, parameter:: eps=epsilon(0.0)
!*** executable
! normal direction, from central differences
scale=sqrt(diffCx*diffCx+diffCy*diffCy+eps)
nvx=diffCx/scale
nvy=diffCy/scale
! get rate of spread from wind speed and slope
call fire_ros
(ros_base,ros_wind,ros_slope, &
nvx,nvy,i,j,fp)
r=ros_base + ros_wind + ros_slope
if(fire_grows_only.gt.0)r=max(r,0.)
speed_func=r
end function speed_func
end module module_fr_fire_core