MODULE GOCART_SEASALT CONTAINS subroutine gocart_seasalt_driver(ktau,dt,config_flags,julday,alt,t_phy,moist,u_phy, &,3 v_phy,chem,rho_phy,dz8w,u10,v10,p8w, & xland,xlat,xlong,dx,g,emis_seas, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) USE module_configure USE module_state_description USE module_model_constants, ONLY: mwdry IMPLICIT NONE TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags INTEGER, INTENT(IN ) :: julday, ktau, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte REAL, DIMENSION( ims:ime, kms:kme, jms:jme, num_moist ), & INTENT(IN ) :: moist REAL, DIMENSION( ims:ime, kms:kme, jms:jme, num_chem ), & INTENT(INOUT ) :: chem REAL, DIMENSION( ims:ime, 1, jms:jme,num_emis_seas),OPTIONAL,& INTENT(INOUT ) :: & emis_seas REAL, DIMENSION( ims:ime , jms:jme ) , & INTENT(IN ) :: & u10, & v10, & xland, & xlat, & xlong REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & INTENT(IN ) :: & alt, & t_phy, & dz8w,p8w, & u_phy,v_phy,rho_phy REAL, INTENT(IN ) :: dt,dx,g ! ! local variables ! integer :: ipr,nmx,i,j,k,ndt,imx,jmx,lmx integer,dimension (1,1) :: ilwi real*8, DIMENSION (4) :: tc,bems real*8, dimension (1,1) :: w10m,gwet,airden,airmas real*8, dimension (1) :: dxy real*8 conver,converi conver=1.d-9 converi=1.d9 ! ! number of dust bins ! imx=1 jmx=1 lmx=1 nmx=4 k=kts do j=jts,jte do i=its,ite ! ! donį¹« do dust over water!!! ! if(xland(i,j).gt.1.5)then ilwi(1,1)=0 tc(1)=chem(i,kts,j,p_seas_1)*conver tc(2)=chem(i,kts,j,p_seas_2)*conver tc(3)=chem(i,kts,j,p_seas_3)*conver tc(4)=chem(i,kts,j,p_seas_4)*conver w10m(1,1)=sqrt(u10(i,j)*u10(i,j)+v10(i,j)*v10(i,j)) airmas(1,1)=-(p8w(i,kts+1,j)-p8w(i,kts,j))*dx*dx/g ! ! we donį¹« trust the u10,v10 values, is model layers are very thin near surface ! if(dz8w(i,kts,j).lt.12.)w10m=sqrt(u_phy(i,kts,j)*u_phy(i,kts,j)+v_phy(i,kts,j)*v_phy(i,kts,j)) ! dxy(1)=dx*dx ipr=0 call source_ss( imx,jmx,lmx,nmx, dt, tc,ilwi, dxy, w10m, airmas, bems,ipr) chem(i,kts,j,p_seas_1)=tc(1)*converi chem(i,kts,j,p_seas_2)=tc(2)*converi chem(i,kts,j,p_seas_3)=tc(3)*converi chem(i,kts,j,p_seas_4)=tc(4)*converi ! for output diagnostics emis_seas(i,1,j,p_edust1)=bems(1) emis_seas(i,1,j,p_edust2)=bems(2) emis_seas(i,1,j,p_edust3)=bems(3) emis_seas(i,1,j,p_edust4)=bems(4) endif enddo enddo ! end subroutine gocart_seasalt_driver ! SUBROUTINE source_ss(imx,jmx,lmx,nmx, dt1, tc, & 1 ilwi, dxy, w10m, airmas, & bems,ipr) ! **************************************************************************** ! * Evaluate the source of each seasalt particles size classes (kg/m3) ! * by soil emission. ! * Input: ! * SSALTDEN Sea salt density (kg/m3) ! * DXY Surface of each grid cell (m2) ! * NDT1 Time step (s) ! * W10m Velocity at the anemometer level (10meters) (m/s) ! * ! * Output: ! * DSRC Source of each sea salt bins (kg/timestep/cell) ! * ! * ! * Number flux density: Original formula by Monahan et al. (1986) adapted ! * by Sunling Gong (JGR 1997 (old) and GBC 2003 (new)). The new version is ! * to better represent emission of sub-micron sea salt particles. ! ! * dFn/dr = c1*u10**c2/(r**A) * (1+c3*r**c4)*10**(c5*exp(-B**2)) ! * where B = (b1 -log(r))/b2 ! * see c_old, c_new, b_old, b_new below for the constants. ! * number fluxes are at 80% RH. ! * ! * To calculate the flux: ! * 1) Calculate dFn based on Monahan et al. (1986) and Gong (2003) ! * 2) Assume that wet radius r at 80% RH = dry radius r_d *frh ! * 3) Convert particles flux to mass flux : ! * dFM/dr_d = 4/3*pi*rho_d*r_d^3 *(dr/dr_d) * dFn/dr ! * = 4/3*pi*rho_d*r_d^3 * frh * dFn/dr ! * where rho_p is particle density [kg/m3] ! * The factor 1.e-18 is to convert in micro-meter r_d^3 ! **************************************************************************** USE module_data_gocart_seas IMPLICIT NONE INTEGER, INTENT(IN) :: nmx,imx,jmx,lmx,ipr INTEGER, INTENT(IN) :: ilwi(imx,jmx) REAL*8, INTENT(IN) :: dxy(jmx), w10m(imx,jmx) REAL*8, INTENT(IN) :: airmas(imx,jmx,lmx) REAL*8, INTENT(INOUT) :: tc(imx,jmx,lmx,nmx) REAL*8, INTENT(OUT) :: bems(imx,jmx,nmx) REAL*8 :: c0(5), b0(2) ! REAL*8, PARAMETER :: c_old(5)=(/1.373, 3.41, 0.057, 1.05, 1.190/) ! REAL*8, PARAMETER :: c_new(5)=(/1.373, 3.41, 0.057, 3.45, 1.607/) ! Change suggested by MC REAL*8, PARAMETER :: c_old(5)=(/1.373, 3.2, 0.057, 1.05, 1.190/) REAL*8, PARAMETER :: c_new(5)=(/1.373, 3.2, 0.057, 3.45, 1.607/) REAL*8, PARAMETER :: b_old(2)=(/0.380, 0.650/) REAL*8, PARAMETER :: b_new(2)=(/0.433, 0.433/) REAL*8, PARAMETER :: dr=5.0D-2 ! um REAL*8, PARAMETER :: theta=30.0 ! Swelling coefficient frh (d rwet / d rd) !!! REAL*8, PARAMETER :: frh = 1.65 REAL*8, PARAMETER :: frh = 2.d0 LOGICAL, PARAMETER :: old=.TRUE., new=.FALSE. REAL*8 :: rho_d, r0, r1, r, r_w, a, b, dfn, r_d, dfm, src INTEGER :: i, j, n, nr, ir REAL :: dt1 REAL*8 :: tcmw(nmx), ar(nmx), tcvv(nmx) REAL*8 :: ar_wetdep(nmx), kc(nmx) CHARACTER(LEN=20) :: tcname(nmx), tcunits(nmx) LOGICAL :: aerosol(nmx) REAL*8 :: tc1(imx,jmx,lmx,nmx) REAL*8, TARGET :: tcms(imx,jmx,lmx,nmx) ! tracer mass (kg; kgS for sulfur case) REAL*8, TARGET :: tcgm(imx,jmx,lmx,nmx) ! g/m3 !----------------------------------------------------------------------- ! sea salt specific !----------------------------------------------------------------------- ! REAL*8, DIMENSION(nmx) :: ra, rb ! REAL*8 :: ch_ss(nmx,12) !----------------------------------------------------------------------- ! emissions (input) !----------------------------------------------------------------------- REAL*8 :: e_an(imx,jmx,2,nmx), e_bb(imx,jmx,nmx), & e_ac(imx,jmx,lmx,nmx) !----------------------------------------------------------------------- ! diagnostics (budget) !----------------------------------------------------------------------- ! ! tendencies per time step and process ! REAL*8, TARGET :: bems(imx,jmx,nmx), bdry(imx,jmx,nmx), bstl(imx,jmx,nmx) ! REAL*8, TARGET :: bwet(imx,jmx,nmx), bcnv(imx,jmx,nmx)! ! ! integrated tendencies per process ! REAL*8, TARGET :: tems(imx,jmx,nmx), tstl(imx,jmx,nmx) ! REAL*8, TARGET :: tdry(imx,jmx,nmx), twet(imx,jmx,nmx), tcnv(imx,jmx,nmx) ! global mass balance per time step REAL*8 :: tmas0(nmx), tmas1(nmx) REAL*8 :: dtems(nmx), dttrp(nmx), dtdif(nmx), dtcnv(nmx) REAL*8 :: dtwet(nmx), dtdry(nmx), dtstl(nmx) REAL*8 :: dtems2(nmx), dttrp2(nmx), dtdif2(nmx), dtcnv2(nmx) REAL*8 :: dtwet2(nmx), dtdry2(nmx), dtstl2(nmx) ! detailed integrated budgets for individual emissions REAL*8, TARGET :: ems_an(imx,jmx,nmx), ems_bb(imx,jmx,nmx), ems_tp(imx,jmx) REAL*8, TARGET :: ems_ac(imx,jmx,lmx,nmx) REAL*8, TARGET :: ems_co(imx,jmx,nmx) ! executable statements DO n = 1,nmx ! if(ipr.eq.1)write(0,*)'in seasalt',n,ipr,ilwi bems(:,:,n) = 0.0 rho_d = den_seas(n) r0 = ra(n)*frh r1 = rb(n)*frh r = r0 nr = INT((r1-r0)/dr+.001) ! if(ipr.eq.1.and.n.eq.1)write(0,*)'in seasalt',nr,r1,r0,dr,rho_d DO ir = 1,nr r_w = r + dr*0.5 r = r + dr IF (new) THEN a = 4.7*(1.0 + theta*r_w)**(-0.017*r_w**(-1.44)) c0 = c_new b0 = b_new ELSE a = 3.0 c0 = c_old b0 = b_old END IF ! b = (b0(1) - LOG10(r_w))/b0(2) dfn = (c0(1)/r_w**a)*(1.0 + c0(3)*r_w**c0(4))* & 10**(c0(5)*EXP(-(b**2))) r_d = r_w/frh*1.0D-6 ! um -> m dfm = 4.0/3.0*pi*r_d**3*rho_d*frh*dfn*dr*dt1 DO i = 1,imx DO j = 1,jmx ! IF (water(i,j) > 0.0) THEN IF (ilwi(i,j) == 0) THEN ! src = dfm*dxy(j)*water(i,j)*w10m(i,j)**c0(2) src = dfm*dxy(j)*w10m(i,j)**c0(2) ! src = ch_ss(n,dt(1)%mn)*dfm*dxy(j)*w10m(i,j)**c0(2) tc(i,j,1,n) = tc(i,j,1,n) + src/airmas(i,j,1) ! if(ipr.eq.1)write(0,*)n,dfm,c0(2),dxy(j),w10m(i,j),src,airmas(i,j,1) ELSE src = 0.0 END IF bems(i,j,n) = bems(i,j,n) + src END DO ! i END DO ! j END DO ! ir END DO ! n END SUBROUTINE source_ss END MODULE GOCART_SEASALT