MODULE GOCART_SEASALT
CONTAINS
subroutine gocart_seasalt_driver(ktau,dt,config_flags,julday,alt,t_phy,moist,u_phy, &,3
v_phy,chem,rho_phy,dz8w,u10,v10,p8w, &
xland,xlat,xlong,dx,g,emis_seas, &
ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte )
USE module_configure
USE module_state_description
USE module_model_constants
, ONLY: mwdry
IMPLICIT NONE
TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags
INTEGER, INTENT(IN ) :: julday, ktau, &
ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte
REAL, DIMENSION( ims:ime, kms:kme, jms:jme, num_moist ), &
INTENT(IN ) :: moist
REAL, DIMENSION( ims:ime, kms:kme, jms:jme, num_chem ), &
INTENT(INOUT ) :: chem
REAL, DIMENSION( ims:ime, 1, jms:jme,num_emis_seas),OPTIONAL,&
INTENT(INOUT ) :: &
emis_seas
REAL, DIMENSION( ims:ime , jms:jme ) , &
INTENT(IN ) :: &
u10, &
v10, &
xland, &
xlat, &
xlong
REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), &
INTENT(IN ) :: &
alt, &
t_phy, &
dz8w,p8w, &
u_phy,v_phy,rho_phy
REAL, INTENT(IN ) :: dt,dx,g
!
! local variables
!
integer :: ipr,nmx,i,j,k,ndt,imx,jmx,lmx
integer,dimension (1,1) :: ilwi
real*8, DIMENSION (4) :: tc,bems
real*8, dimension (1,1) :: w10m,gwet,airden,airmas
real*8, dimension (1) :: dxy
real*8 conver,converi
conver=1.d-9
converi=1.d9
!
! number of dust bins
!
imx=1
jmx=1
lmx=1
nmx=4
k=kts
do j=jts,jte
do i=its,ite
!
! donį¹« do dust over water!!!
!
if(xland(i,j).gt.1.5)then
ilwi(1,1)=0
tc(1)=chem(i,kts,j,p_seas_1)*conver
tc(2)=chem(i,kts,j,p_seas_2)*conver
tc(3)=chem(i,kts,j,p_seas_3)*conver
tc(4)=chem(i,kts,j,p_seas_4)*conver
w10m(1,1)=sqrt(u10(i,j)*u10(i,j)+v10(i,j)*v10(i,j))
airmas(1,1)=-(p8w(i,kts+1,j)-p8w(i,kts,j))*dx*dx/g
!
! we donį¹« trust the u10,v10 values, is model layers are very thin near surface
!
if(dz8w(i,kts,j).lt.12.)w10m=sqrt(u_phy(i,kts,j)*u_phy(i,kts,j)+v_phy(i,kts,j)*v_phy(i,kts,j))
!
dxy(1)=dx*dx
ipr=0
call source_ss
( imx,jmx,lmx,nmx, dt, tc,ilwi, dxy, w10m, airmas, bems,ipr)
chem(i,kts,j,p_seas_1)=tc(1)*converi
chem(i,kts,j,p_seas_2)=tc(2)*converi
chem(i,kts,j,p_seas_3)=tc(3)*converi
chem(i,kts,j,p_seas_4)=tc(4)*converi
! for output diagnostics
emis_seas(i,1,j,p_edust1)=bems(1)
emis_seas(i,1,j,p_edust2)=bems(2)
emis_seas(i,1,j,p_edust3)=bems(3)
emis_seas(i,1,j,p_edust4)=bems(4)
endif
enddo
enddo
!
end subroutine gocart_seasalt_driver
!
SUBROUTINE source_ss(imx,jmx,lmx,nmx, dt1, tc, & 1
ilwi, dxy, w10m, airmas, &
bems,ipr)
! ****************************************************************************
! * Evaluate the source of each seasalt particles size classes (kg/m3)
! * by soil emission.
! * Input:
! * SSALTDEN Sea salt density (kg/m3)
! * DXY Surface of each grid cell (m2)
! * NDT1 Time step (s)
! * W10m Velocity at the anemometer level (10meters) (m/s)
! *
! * Output:
! * DSRC Source of each sea salt bins (kg/timestep/cell)
! *
! *
! * Number flux density: Original formula by Monahan et al. (1986) adapted
! * by Sunling Gong (JGR 1997 (old) and GBC 2003 (new)). The new version is
! * to better represent emission of sub-micron sea salt particles.
!
! * dFn/dr = c1*u10**c2/(r**A) * (1+c3*r**c4)*10**(c5*exp(-B**2))
! * where B = (b1 -log(r))/b2
! * see c_old, c_new, b_old, b_new below for the constants.
! * number fluxes are at 80% RH.
! *
! * To calculate the flux:
! * 1) Calculate dFn based on Monahan et al. (1986) and Gong (2003)
! * 2) Assume that wet radius r at 80% RH = dry radius r_d *frh
! * 3) Convert particles flux to mass flux :
! * dFM/dr_d = 4/3*pi*rho_d*r_d^3 *(dr/dr_d) * dFn/dr
! * = 4/3*pi*rho_d*r_d^3 * frh * dFn/dr
! * where rho_p is particle density [kg/m3]
! * The factor 1.e-18 is to convert in micro-meter r_d^3
! ****************************************************************************
USE module_data_gocart_seas
IMPLICIT NONE
INTEGER, INTENT(IN) :: nmx,imx,jmx,lmx,ipr
INTEGER, INTENT(IN) :: ilwi(imx,jmx)
REAL*8, INTENT(IN) :: dxy(jmx), w10m(imx,jmx)
REAL*8, INTENT(IN) :: airmas(imx,jmx,lmx)
REAL*8, INTENT(INOUT) :: tc(imx,jmx,lmx,nmx)
REAL*8, INTENT(OUT) :: bems(imx,jmx,nmx)
REAL*8 :: c0(5), b0(2)
! REAL*8, PARAMETER :: c_old(5)=(/1.373, 3.41, 0.057, 1.05, 1.190/)
! REAL*8, PARAMETER :: c_new(5)=(/1.373, 3.41, 0.057, 3.45, 1.607/)
! Change suggested by MC
REAL*8, PARAMETER :: c_old(5)=(/1.373, 3.2, 0.057, 1.05, 1.190/)
REAL*8, PARAMETER :: c_new(5)=(/1.373, 3.2, 0.057, 3.45, 1.607/)
REAL*8, PARAMETER :: b_old(2)=(/0.380, 0.650/)
REAL*8, PARAMETER :: b_new(2)=(/0.433, 0.433/)
REAL*8, PARAMETER :: dr=5.0D-2 ! um
REAL*8, PARAMETER :: theta=30.0
! Swelling coefficient frh (d rwet / d rd)
!!! REAL*8, PARAMETER :: frh = 1.65
REAL*8, PARAMETER :: frh = 2.d0
LOGICAL, PARAMETER :: old=.TRUE., new=.FALSE.
REAL*8 :: rho_d, r0, r1, r, r_w, a, b, dfn, r_d, dfm, src
INTEGER :: i, j, n, nr, ir
REAL :: dt1
REAL*8 :: tcmw(nmx), ar(nmx), tcvv(nmx)
REAL*8 :: ar_wetdep(nmx), kc(nmx)
CHARACTER(LEN=20) :: tcname(nmx), tcunits(nmx)
LOGICAL :: aerosol(nmx)
REAL*8 :: tc1(imx,jmx,lmx,nmx)
REAL*8, TARGET :: tcms(imx,jmx,lmx,nmx) ! tracer mass (kg; kgS for sulfur case)
REAL*8, TARGET :: tcgm(imx,jmx,lmx,nmx) ! g/m3
!-----------------------------------------------------------------------
! sea salt specific
!-----------------------------------------------------------------------
! REAL*8, DIMENSION(nmx) :: ra, rb
! REAL*8 :: ch_ss(nmx,12)
!-----------------------------------------------------------------------
! emissions (input)
!-----------------------------------------------------------------------
REAL*8 :: e_an(imx,jmx,2,nmx), e_bb(imx,jmx,nmx), &
e_ac(imx,jmx,lmx,nmx)
!-----------------------------------------------------------------------
! diagnostics (budget)
!-----------------------------------------------------------------------
! ! tendencies per time step and process
! REAL*8, TARGET :: bems(imx,jmx,nmx), bdry(imx,jmx,nmx), bstl(imx,jmx,nmx)
! REAL*8, TARGET :: bwet(imx,jmx,nmx), bcnv(imx,jmx,nmx)!
! ! integrated tendencies per process
! REAL*8, TARGET :: tems(imx,jmx,nmx), tstl(imx,jmx,nmx)
! REAL*8, TARGET :: tdry(imx,jmx,nmx), twet(imx,jmx,nmx), tcnv(imx,jmx,nmx)
! global mass balance per time step
REAL*8 :: tmas0(nmx), tmas1(nmx)
REAL*8 :: dtems(nmx), dttrp(nmx), dtdif(nmx), dtcnv(nmx)
REAL*8 :: dtwet(nmx), dtdry(nmx), dtstl(nmx)
REAL*8 :: dtems2(nmx), dttrp2(nmx), dtdif2(nmx), dtcnv2(nmx)
REAL*8 :: dtwet2(nmx), dtdry2(nmx), dtstl2(nmx)
! detailed integrated budgets for individual emissions
REAL*8, TARGET :: ems_an(imx,jmx,nmx), ems_bb(imx,jmx,nmx), ems_tp(imx,jmx)
REAL*8, TARGET :: ems_ac(imx,jmx,lmx,nmx)
REAL*8, TARGET :: ems_co(imx,jmx,nmx)
! executable statements
DO n = 1,nmx
! if(ipr.eq.1)write(0,*)'in seasalt',n,ipr,ilwi
bems(:,:,n) = 0.0
rho_d = den_seas(n)
r0 = ra(n)*frh
r1 = rb(n)*frh
r = r0
nr = INT((r1-r0)/dr+.001)
! if(ipr.eq.1.and.n.eq.1)write(0,*)'in seasalt',nr,r1,r0,dr,rho_d
DO ir = 1,nr
r_w = r + dr*0.5
r = r + dr
IF (new) THEN
a = 4.7*(1.0 + theta*r_w)**(-0.017*r_w**(-1.44))
c0 = c_new
b0 = b_new
ELSE
a = 3.0
c0 = c_old
b0 = b_old
END IF
!
b = (b0(1) - LOG10(r_w))/b0(2)
dfn = (c0(1)/r_w**a)*(1.0 + c0(3)*r_w**c0(4))* &
10**(c0(5)*EXP(-(b**2)))
r_d = r_w/frh*1.0D-6 ! um -> m
dfm = 4.0/3.0*pi*r_d**3*rho_d*frh*dfn*dr*dt1
DO i = 1,imx
DO j = 1,jmx
! IF (water(i,j) > 0.0) THEN
IF (ilwi(i,j) == 0) THEN
! src = dfm*dxy(j)*water(i,j)*w10m(i,j)**c0(2)
src = dfm*dxy(j)*w10m(i,j)**c0(2)
! src = ch_ss(n,dt(1)%mn)*dfm*dxy(j)*w10m(i,j)**c0(2)
tc(i,j,1,n) = tc(i,j,1,n) + src/airmas(i,j,1)
! if(ipr.eq.1)write(0,*)n,dfm,c0(2),dxy(j),w10m(i,j),src,airmas(i,j,1)
ELSE
src = 0.0
END IF
bems(i,j,n) = bems(i,j,n) + src
END DO ! i
END DO ! j
END DO ! ir
END DO ! n
END SUBROUTINE source_ss
END MODULE GOCART_SEASALT