!WRF:MODEL_LAYER:PHYSICS
!--- The code is based on Lin and Colle (A New Bulk Microphysical Scheme
! that Includes Riming Intensity and Temperature Dependent Ice Characteristics, 2011, MWR)
! and Lin et al. (Parameterization of riming intensity and its impact on ice fall speed using ARM data, 2011, MWR)
!--- NOTE: 1) Prognose variables are: qi,PI(precipitating ice, qs, which includes snow, partially rimed snow and graupel),qw,qr
!--- 2) Sedimentation flux is based on Prudue Lin scheme
!--- 2) PI has varying properties depending on riming intensity (Ri, diagnosed currently following Lin et al. (2011, MWR) and T
!--- 3) Autoconverion is based on Liu and Daum (2004)
!--- 4) PI size distribution assuming Gamma distribution, but mu_s=0 (Exponential) currently
!--- 5) No density dependent fall speed since the V-D is derived using Best number approach, which already includes density effect
!--- 6) Future work will include radar equivalent reflectivity using the new PI property (A-D, M-D, N(D)). If you use RIP for reflectivity
!--- computation, please note that snow is (1-Ri)*qs and graupel is Ri*qs. Otherwise, reflectivity will be underestimated.
!--- 7) The Liu and Daum autoconverion is quite sensitive on Nt_c. For mixed-phase cloud and marine environment, Nt_c of 10 or 20 is suggested.
!--- default value is 10E.6. Change accordingly for your use.
MODULE module_mp_sbu_ylin 1
USE module_wrf_error
!
!..Parameters user might change based on their need
REAL, PARAMETER, PRIVATE :: RH = 1.0
REAL, PARAMETER, PRIVATE :: xnor = 8.0e6
REAL, PARAMETER, PRIVATE :: Nt_c = 10.E6
!..Water vapor and air gas constants at constant pressure
REAL, PARAMETER, PRIVATE :: Rvapor = 461.5
REAL, PARAMETER, PRIVATE :: oRv = 1./Rvapor
REAL, PARAMETER, PRIVATE :: Rair = 287.04
REAL, PARAMETER, PRIVATE :: Cp = 1004.0
REAL, PARAMETER, PRIVATE :: grav = 9.81
REAL, PARAMETER, PRIVATE :: rhowater = 1000.0
REAL, PARAMETER, PRIVATE :: rhosnow = 100.0
REAL, PARAMETER, PRIVATE :: SVP1=0.6112
REAL, PARAMETER, PRIVATE :: SVP2=17.67
REAL, PARAMETER, PRIVATE :: SVP3=29.65
REAL, PARAMETER, PRIVATE :: SVPT0=273.15
REAL, PARAMETER, PRIVATE :: EP1=Rvapor/Rair-1.
REAL, PARAMETER, PRIVATE :: EP2=Rair/Rvapor
!..Enthalpy of sublimation, vaporization, and fusion at 0C.
REAL, PARAMETER, PRIVATE :: XLS = 2.834E6
REAL, PARAMETER, PRIVATE :: XLV = 2.5E6
REAL, PARAMETER, PRIVATE :: XLF = XLS - XLV
!
REAL, PARAMETER, PRIVATE :: &
qi0 = 1.0e-3, & !--- ice aggregation to snow threshold
xmi50 = 4.8e-10, xmi40 = 2.46e-10, &
xni0 = 1.0e-2, xmnin = 1.05e-18, bni = 0.5, &
di50 = 1.0e-4, xmi = 4.19e-13, & !--- parameters used in BF process
bv_r = 0.8, bv_i = 0.25, &
o6 = 1./6., cdrag = 0.6, &
avisc = 1.49628e-6, adiffwv = 8.7602e-5, &
axka = 1.4132e3, cw = 4.187e3, ci = 2.093e3
CONTAINS
!-------------------------------------------------------------------
! Lin et al., 1983, JAM, 1065-1092, and
! Rutledge and Hobbs, 1984, JAS, 2949-2972
!-------------------------------------------------------------------
SUBROUTINE sbu_ylin(th & 1,1
,qv, ql, qr &
,qi, qs, Ri3D &
,rho, pii, p &
,dt_in &
,z,ht, dz8w &
,RAINNC, RAINNCV &
,ids,ide, jds,jde, kds,kde &
,ims,ime, jms,jme, kms,kme &
,its,ite, jts,jte, kts,kte &
)
!-------------------------------------------------------------------
IMPLICIT NONE
!-------------------------------------------------------------------
!
!
INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , &
ims,ime, jms,jme, kms,kme , &
its,ite, jts,jte, kts,kte
REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), &
INTENT(INOUT) :: &
th, &
qv, &
qi,ql, &
qs,qr
! YLIN
! Adding RI3D as a variable to the interface
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), &
INTENT(INOUT) :: Ri3D
!
REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), &
INTENT(IN ) :: &
rho, &
pii, &
z,p, &
dz8w
REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN) :: ht
REAL, INTENT(IN ) :: dt_in
REAL, DIMENSION( ims:ime , jms:jme ), &
INTENT(INOUT) :: RAINNC, &
RAINNCV
! LOCAL VAR
INTEGER :: min_q, max_q
REAL, DIMENSION( its:ite , jts:jte ) &
:: rain, snow,ice
REAL, DIMENSION( kts:kte ) :: qvz, qlz, qrz, &
qiz, qsz, qgz, &
thz, &
tothz, rhoz, &
orhoz, sqrhoz, &
prez, zz, &
dzw
! Added vertical profile of Ri (riz) as a variable
REAL, DIMENSION( kts:kte ) :: riz
!
REAL :: dt, pptice, pptrain, pptsnow, pptgraul, rhoe_s
INTEGER :: i,j,k
dt=dt_in
rhoe_s=1.29
j_loop: DO j = jts, jte
i_loop: DO i = its, ite
!
!- write data from 3-D to 1-D
!
DO k = kts, kte
qvz(k)=qv(i,k,j)
qlz(k)=ql(i,k,j)
qrz(k)=qr(i,k,j)
qiz(k)=qi(i,k,j)
qsz(k)=qs(i,k,j)
thz(k)=th(i,k,j)
rhoz(k)=rho(i,k,j)
orhoz(k)=1./rhoz(k)
prez(k)=p(i,k,j)
! sqrhoz(k)=sqrt(rhoe_s*orhoz(k))
! no density dependence of fall speed as Note #5, you can turn it on to increase fall speed at low pressure.
sqrhoz(k)=1.0
tothz(k)=pii(i,k,j)
zz(k)=z(i,k,j)
dzw(k)=dz8w(i,k,j)
END DO
!
pptrain=0.
pptsnow=0.
pptice =0.
! CALL wrf_debug ( 100 , 'microphysics_driver: calling clphy1d_ylin' )
CALL clphy1d_ylin
( dt, qvz, qlz, qrz, qiz, qsz, &
thz, tothz, rhoz, orhoz, sqrhoz, &
prez, zz, dzw, ht(I,J), &
pptrain, pptsnow, pptice, &
kts, kte, i, j, riz )
!
! Precipitation from cloud microphysics -- only for one time step
!
! unit is transferred from m to mm
!
rain(i,j)= pptrain
snow(i,j)= pptsnow
ice(i,j) = pptice
!
RAINNCV(i,j)= pptrain + pptsnow + pptice
RAINNC(i,j) = RAINNC(i,j) + pptrain + pptsnow + pptice
!
!- update data from 1-D back to 3-D
!
DO k = kts, kte
qv(i,k,j)=qvz(k)
ql(i,k,j)=qlz(k)
qr(i,k,j)=qrz(k)
th(i,k,j)=thz(k)
qi(i,k,j)=qiz(k)
qs(i,k,j)=qsz(k)
ri3d(i,k,j)=riz(k)
END DO
!
ENDDO i_loop
ENDDO j_loop
END SUBROUTINE sbu_ylin
!-----------------------------------------------------------------------
SUBROUTINE clphy1d_ylin(dt, qvz, qlz, qrz, qiz, qsz, & 1,12
thz, tothz, rho, orho, sqrho, &
prez, zz, dzw, zsfc, pptrain, pptsnow,pptice, &
kts, kte, i, j,riz )
!-----------------------------------------------------------------------
IMPLICIT NONE
!-----------------------------------------------------------------------
! This program handles the vertical 1-D cloud micphysics
!-----------------------------------------------------------------------
! avisc: constant in empirical formular for dynamic viscosity of air
! =1.49628e-6 [kg/m/s] = 1.49628e-5 [g/cm/s]
! adiffwv: constant in empirical formular for diffusivity of water
! vapor in air
! = 8.7602e-5 [kgm/s3] = 8.7602 [gcm/s3]
! axka: constant in empirical formular for thermal conductivity of air
! = 1.4132e3 [m2/s2/K] = 1.4132e7 [cm2/s2/K]
! qi0: mixing ratio threshold for cloud ice aggregation [kg/kg]
! xmi50: mass of a 50 micron ice crystal
! = 4.8e-10 [kg] =4.8e-7 [g]
! xmi40: mass of a 40 micron ice crystal
! = 2.46e-10 [kg] = 2.46e-7 [g]
! di50: diameter of a 50 micro (radius) ice crystal
! =1.0e-4 [m]
! xmi: mass of one cloud ice crystal
! =4.19e-13 [kg] = 4.19e-10 [g]
! oxmi=1.0/xmi
!
! xni0=1.0e-2 [m-3] The value given in Lin et al. is wrong.(see
! Hsie et al.(1980) and Rutledge and Hobbs(1983) )
! bni=0.5 [K-1]
! xmnin: mass of a natural ice nucleus
! = 1.05e-18 [kg] = 1.05e-15 [g] This values is suggested by
! Hsie et al. (1980)
! = 1.0e-12 [kg] suggested by Rutlegde and Hobbs (1983)
! av_r: av_r in empirical formular for terminal
! velocity of raindrop
! =2115.0 [cm**(1-b)/s] = 2115.0*0.01**(1-b) [m**(1-b)/s]
! bv_r: bv_r in empirical formular for terminal
! velocity of raindrop
! =0.8
! av_i: av_i in empirical formular for terminal
! velocity of snow
! =152.93 [cm**(1-d)/s] = 152.93*0.01**(1-d) [m**(1-d)/s]
! bv_i: bv_i in empirical formular for terminal
! velocity of snow
! =0.25
! vf1r: ventilation factors for rain =0.78
! vf2r: ventilation factors for rain =0.31
! vf1s: ventilation factors for snow =0.65
! vf2s: ventilation factors for snow =0.44
!
!----------------------------------------------------------------------
INTEGER, INTENT(IN ) :: kts, kte, i, j
REAL, DIMENSION( kts:kte ), &
INTENT(INOUT) :: qvz, qlz, qrz, qiz, qsz, &
thz
REAL, DIMENSION( kts:kte ), &
INTENT(IN ) :: tothz, rho, orho, sqrho, &
prez, zz, dzw
REAL, INTENT(INOUT) :: pptrain, pptsnow, pptice
REAL, INTENT(IN ) :: dt, zsfc
! local vars
REAL :: obp4, bp3, bp5, bp6, odp4, &
dp3, dp5, dp5o2
! temperary vars
REAL :: tmp, tmp0, tmp1, tmp2,tmp3, &
tmp4, tmpa,tmpb,tmpc,tmpd,alpha1, &
qic, abi,abr, abg, odtberg, &
vti50,eiw,eri,esi,esr, esw, &
erw,delrs,term0,term1, &
Ap, Bp, &
factor, tmp_r, tmp_s,tmp_g, &
qlpqi, rsat, a1, a2, xnin
!
REAL, DIMENSION( kts:kte ) :: oprez, tem, temcc, theiz, qswz, &
qsiz, qvoqswz, qvoqsiz, qvzodt, &
qlzodt, qizodt, qszodt, qrzodt
!--- microphysical processes
REAL, DIMENSION( kts:kte ) :: psnow, psaut, psfw, psfi, praci, &
piacr, psaci, psacw, psdep, pssub, &
pracs, psacr, psmlt, psmltevp, &
prain, praut, pracw, prevp, pvapor, &
pclw, pladj, pcli, pimlt, pihom, &
pidw, piadj, pgfr, &
qschg
!
REAL, DIMENSION( kts:kte ) :: qvsbar, rs0, viscmu, visc, diffwv, &
schmidt, xka
!---- new snow parameters
REAL, DIMENSION( kts:kte ):: ab_s,ab_r,ab_riming,lamc
REAL, DIMENSION( kts:kte ):: cap_s !---- capacitance of snow
REAL, PARAMETER :: vf1s = 0.65, vf2s = 0.44, vf1r =0.78 , vf2r = 0.31
REAL, PARAMETER :: am_c1=0.004, am_c2= 6e-5, am_c3=0.15
REAL, PARAMETER :: bm_c1=1.85, bm_c2= 0.003, bm_c3=1.25
REAL, PARAMETER :: aa_c1=1.28, aa_c2= -0.012, aa_c3=-0.6
REAL, PARAMETER :: ba_c1=1.5, ba_c2= 0.0075, ba_c3=0.5
REAL, PARAMETER :: best_a=1.08 , best_b = 0.499
REAL, DIMENSION(kts:kte):: am_s,bm_s,av_s,bv_s,Ri,N0_s,tmp_ss,lams
REAL, DIMENSION(kts:kte):: aa_s,ba_s,tmp_sa
REAL, PARAMETER :: mu_s=0.,mu_i=0.,mu_r=0.
REAL :: tc0, disp, Dc_liu, eta, mu_c, R6c !--- for Liu's autoconversion
! Adding variable Riz, which will duplicate Ri but be a copy passed upward
REAL, DIMENSION(kts:kte) :: Riz
REAL, DIMENSION( kts:kte ) :: vtr, vts, &
vtrold, vtsold, vtiold, &
xlambdar, xlambdas, &
olambdar, olambdas
REAL :: episp0k, dtb, odtb, pi, pio4, &
pio6, oxLf, xLvocp, xLfocp, av_r, &
av_i, ocdrag, gambp4, gamdp4, &
gam4pt5, Cpor, oxmi, gambp3, gamdp3,&
gambp6, gam3pt5, gam2pt75, gambp5o2,&
gamdp5o2, cwoxlf, ocp, xni50, es
!
REAL :: qvmin=1.e-20
REAL :: temc1,save1,save2,xni50mx
! for terminal velocity flux
INTEGER :: min_q, max_q, max_ri_k, k
REAL :: max_ri
REAL :: t_del_tv, del_tv, flux, fluxin, fluxout ,tmpqrz
LOGICAL :: notlast
!
mu_c = AMIN1(15., (1000.E6/Nt_c + 2.))
R6c = 10.0E-6 !---- 10 micron, threshold radius of cloud droplet
dtb=dt
odtb=1./dtb
pi =acos(-1.)
pio4=acos(-1.)/4.
pio6=acos(-1.)/6.
ocp=1./cp
oxLf=1./xLf
xLvocp=xLv/cp
xLfocp=xLf/cp
Cpor=cp/Rair
oxmi=1.0/xmi
cwoxlf=cw/xlf
av_r=2115.0*0.01**(1-bv_r)
av_i=152.93*0.01**(1-bv_i)
ocdrag=1./Cdrag
episp0k=RH*ep2*1000.*svp1
!
gambp4=ggamma
(bv_r+4.)
gamdp4=ggamma
(bv_i+4.)
gambp3=ggamma
(bv_r+3.)
gambp6=ggamma
(bv_r+6)
gambp5o2=ggamma
((bv_r+5.)/2.)
gamdp5o2=ggamma
((bv_i+5.)/2.)
!
! oprez 1./prez ( prez : pressure)
! qsw saturated mixing ratio on water surface
! qsi saturated mixing ratio on ice surface
! episp0k RH*e*saturated pressure at 273.15 K = 611.2 hPa (Rogers and Yau 1989)
! qvoqsw qv/qsw
! qvoqsi qv/qsi
! qvzodt qv/dt
! qlzodt ql/dt
! qizodt qi/dt
! qszodt qs/dt
! qrzodt qr/dt
! temcc temperature in dregee C
!
obp4=1.0/(bv_r+4.0)
bp3=bv_r+3.0
bp5=bv_r+5.0
bp6=bv_r+6.0
odp4=1.0/(bv_i+4.0)
dp3=bv_i+3.0
dp5=bv_i+5.0
dp5o2=0.5*(bv_i+5.0)
!
do k=kts,kte
oprez(k)=1./prez(k)
qlz(k)=amax1( 0.0,qlz(k) )
qiz(k)=amax1( 0.0,qiz(k) )
qvz(k)=amax1( qvmin,qvz(k) )
qsz(k)=amax1( 0.0,qsz(k) )
qrz(k)=amax1( 0.0,qrz(k) )
tem(k)=thz(k)*tothz(k)
temcc(k)=tem(k)-273.15
es=1000.*svp1*exp( svp2*temcc(k)/(tem(k)-svp3) ) !--- RY89 Eq(2.17)
qswz(k)=ep2*es/(prez(k)-es)
if (tem(k) .lt. 273.15 ) then
es=1000.*svp1*exp( 21.8745584*(tem(k)-273.16)/(tem(k)-7.66) )
qsiz(k)=ep2*es/(prez(k)-es)
if (temcc(k) .lt. -40.0) qswz(k)=qsiz(k)
else
qsiz(k)=qswz(k)
endif
!
qvoqswz(k)=qvz(k)/qswz(k)
qvoqsiz(k)=qvz(k)/qsiz(k)
qvzodt(k)=amax1( 0.0,odtb*qvz(k) )
qlzodt(k)=amax1( 0.0,odtb*qlz(k) )
qizodt(k)=amax1( 0.0,odtb*qiz(k) )
qszodt(k)=amax1( 0.0,odtb*qsz(k) )
qrzodt(k)=amax1( 0.0,odtb*qrz(k) )
theiz(k)=thz(k)+(xlvocp*qvz(k)-xlfocp*qiz(k))/tothz(k)
enddo
do k=kts,kte
psnow(k)=0.0
psaut(k)=0.0
psfw(k)=0.0
psfi(k)=0.0
praci(k)=0.0
piacr(k)=0.0
psaci(k)=0.0
psacw(k)=0.0
psdep(k)=0.0
pssub(k)=0.0
pracs(k)=0.0
psacr(k)=0.0
psmlt(k)=0.0
psmltevp(k)=0.0
prain(k)=0.0
praut(k)=0.0
pracw(k)=0.0
prevp(k)=0.0
pgfr(k)=0.0
pvapor(k)=0.0
pclw(k)=0.0
pladj(k)=0.0
pcli(k)=0.0
pimlt(k)=0.0
pihom(k)=0.0
pidw(k)=0.0
piadj(k)=0.0
qschg(k)=0.
enddo
!***********************************************************************
!***** compute viscosity,difusivity,thermal conductivity, and ******
!***** Schmidt number ******
!***********************************************************************
!c------------------------------------------------------------------
!c viscmu: dynamic viscosity of air kg/m/s
!c visc: kinematic viscosity of air = viscmu/rho (m2/s)
!c avisc=1.49628e-6 kg/m/s=1.49628e-5 g/cm/s
!c viscmu=1.718e-5 kg/m/s in RH
!c diffwv: Diffusivity of water vapor in air
!c adiffwv = 8.7602e-5 (8.794e-5 in MM5) kgm/s3
!c = 8.7602 (8.794 in MM5) gcm/s3
!c diffwv(k)=2.26e-5 m2/s
!c schmidt: Schmidt number=visc/diffwv
!c xka: thermal conductivity of air J/m/s/K (Kgm/s3/K)
!c xka(k)=2.43e-2 J/m/s/K in RH
!c axka=1.4132e3 (1.414e3 in MM5) m2/s2/k = 1.4132e7 cm2/s2/k
!c------------------------------------------------------------------
DO k=kts,kte
viscmu(k)=avisc*tem(k)**1.5/(tem(k)+120.0)
visc(k)=viscmu(k)*orho(k)
diffwv(k)=adiffwv*tem(k)**1.81*oprez(k)
schmidt(k)=visc(k)/diffwv(k)
xka(k)=axka*viscmu(k)
rs0(k)=ep2*1000.*svp1/(prez(k)-1000.*svp1)
END DO
!
! ---- YLIN, set snow variables
!
!---- A+B in depositional growth, the first try just take from Rogers and Yau(1989)
! ab_s(k) = lsub*lsub*orv/(tcond(k)*temp(k))+&
! rv*temp(k)/(diffu(k)*qvsi(k))
do k = kts, kte
tc0 = tem(k)-273.15
if (rho(k)*qlz(k) .gt. 1e-5 .AND. rho(k)*qsz(k) .gt. 1e-5) then
Ri(k) = 1.0/(1.0+6e-5/(rho(k)**1.170*qlz(k)*qsz(k)**0.170))
else
Ri(k) = 0
endif
enddo
!
!--- make sure Ri does not decrease downward in a column
!
max_ri_k = MAXLOC(Ri,dim=1)
max_ri = MAXVAL(Ri)
do k = kts, max_ri_k
Ri(k) = max_ri
enddo
!--- YLIN, get PI properties
do k = kts, kte
Ri(k) = AMAX1(0.,AMIN1(Ri(k),1.0))
! Store the value of Ri(k) as Riz(k)
Riz(k) = Ri(k)
cap_s(k)= 0.25*(1+Ri(k))
tc0 = AMIN1(-0.1, tem(k)-273.15)
N0_s(k) = amin1(2.0E8, 2.0E6*exp(-0.12*tc0))
am_s(k) = am_c1+am_c2*tc0+am_c3*Ri(k)*Ri(k) !--- Heymsfield 2007
am_s(k) = AMAX1(0.000023,am_s(k)) !--- use the a_min in table 1 of Heymsfield
bm_s(k) = bm_c1+bm_c2*tc0+bm_c3*Ri(k)
bm_s(k) = AMIN1(bm_s(k),3.0) !---- capped by 3
!--- converting from cgs to SI unit
am_s(k) = 10**(2*bm_s(k)-3.0)*am_s(k)
aa_s(k) = aa_c1 + aa_c2*tc0 + aa_c3*Ri(k)
ba_s(k) = ba_c1 + ba_c2*tc0 + ba_c3*Ri(k)
!--- convert to SI unit as in paper
aa_s(k) = (1e-2)**(2.0-ba_s(k))*aa_s(k)
!---- get v from Mitchell 1996
av_s(k) = best_a*viscmu(k)*(2*grav*am_s(k)/rho(k)/aa_s(k)/(viscmu(k)**2))**best_b
bv_s(k) = best_b*(bm_s(k)-ba_s(k)+2)-1
tmp_ss(k)= bm_s(k)+mu_s+1
tmp_sa(k)= ba_s(k)+mu_s+1
enddo
!
!***********************************************************************
! Calculate precipitation fluxes due to terminal velocities.
!***********************************************************************
!
!- Calculate termianl velocity (vt?) of precipitation q?z
!- Find maximum vt? to determine the small delta t
!
!-- rain
!
! CALL wrf_debug ( 100 , 'module_ylin, start precip fluxes' )
t_del_tv=0.
del_tv=dtb
notlast=.true.
DO while (notlast)
!
min_q=kte
max_q=kts-1
!
do k=kts,kte-1
if (qrz(k) .gt. 1.0e-8) then
min_q=min0(min_q,k)
max_q=max0(max_q,k)
tmp1=sqrt(pi*rhowater*xnor/rho(k)/qrz(k))
tmp1=sqrt(tmp1)
vtrold(k)=o6*av_r*gambp4*sqrho(k)/tmp1**bv_r
if (k .eq. 1) then
del_tv=amin1(del_tv,0.9*(zz(k)-zsfc)/vtrold(k))
else
del_tv=amin1(del_tv,0.9*(zz(k)-zz(k-1))/vtrold(k))
endif
else
vtrold(k)=0.
endif
enddo
if (max_q .ge. min_q) then
!
!- Check if the summation of the small delta t >= big delta t
! (t_del_tv) (del_tv) (dtb)
t_del_tv=t_del_tv+del_tv
!
if ( t_del_tv .ge. dtb ) then
notlast=.false.
del_tv=dtb+del_tv-t_del_tv
endif
!
fluxin=0.
do k=max_q,min_q,-1
fluxout=rho(k)*vtrold(k)*qrz(k)
flux=(fluxin-fluxout)/rho(k)/dzw(k)
tmpqrz=qrz(k)
qrz(k)=qrz(k)+del_tv*flux
fluxin=fluxout
enddo
if (min_q .eq. 1) then
pptrain=pptrain+fluxin*del_tv
else
qrz(min_q-1)=qrz(min_q-1)+del_tv* &
fluxin/rho(min_q-1)/dzw(min_q-1)
endif
!
else
notlast=.false.
endif
ENDDO
!
!-- snow
!
t_del_tv=0.
del_tv=dtb
notlast=.true.
DO while (notlast)
!
min_q=kte
max_q=kts-1
!
do k=kts,kte-1
if (qsz(k) .gt. 1.0e-8) then
min_q=min0(min_q,k)
max_q=max0(max_q,k)
tmp1= (am_s(k)*N0_s(k)*ggamma(tmp_ss(k))*orho(k)/qsz(k))&
**(1./tmp_ss(k))
vtsold(k)= sqrho(k)*av_s(k)*ggamma(bv_s(k)+tmp_ss(k))/ &
ggamma(tmp_ss(k))/(tmp1**bv_s(k))
if (k .eq. 1) then
del_tv=amin1(del_tv,0.9*(zz(k)-zsfc)/vtsold(k))
else
del_tv=amin1(del_tv,0.9*(zz(k)-zz(k-1))/vtsold(k))
endif
else
vtsold(k)=0.
endif
enddo
if (max_q .ge. min_q) then
!
!
!- Check if the summation of the small delta t >= big delta t
! (t_del_tv) (del_tv) (dtb)
t_del_tv=t_del_tv+del_tv
if ( t_del_tv .ge. dtb ) then
notlast=.false.
del_tv=dtb+del_tv-t_del_tv
endif
!
fluxin=0.
do k=max_q,min_q,-1
fluxout=rho(k)*vtsold(k)*qsz(k)
flux=(fluxin-fluxout)/rho(k)/dzw(k)
qsz(k)=qsz(k)+del_tv*flux
qsz(k)=amax1(0.,qsz(k))
fluxin=fluxout
enddo
if (min_q .eq. 1) then
pptsnow=pptsnow+fluxin*del_tv
else
qsz(min_q-1)=qsz(min_q-1)+del_tv* &
fluxin/rho(min_q-1)/dzw(min_q-1)
endif
!
else
notlast=.false.
endif
ENDDO
!
!-- cloud ice (03/21/02) using Heymsfield and Donner (1990) Vi=3.29*qi^0.16
!
t_del_tv=0.
del_tv=dtb
notlast=.true.
!
DO while (notlast)
!
min_q=kte
max_q=kts-1
!
do k=kts,kte-1
if (qiz(k) .gt. 1.0e-8) then
min_q=min0(min_q,k)
max_q=max0(max_q,k)
vtiold(k)= 3.29 * (rho(k)* qiz(k))** 0.16 ! Heymsfield and Donner
if (k .eq. 1) then
del_tv=amin1(del_tv,0.9*(zz(k)-zsfc)/vtiold(k))
else
del_tv=amin1(del_tv,0.9*(zz(k)-zz(k-1))/vtiold(k))
endif
else
vtiold(k)=0.
endif
enddo
if (max_q .ge. min_q) then
!
!- Check if the summation of the small delta t >= big delta t
! (t_del_tv) (del_tv) (dtb)
t_del_tv=t_del_tv+del_tv
if ( t_del_tv .ge. dtb ) then
notlast=.false.
del_tv=dtb+del_tv-t_del_tv
endif
fluxin=0.
do k=max_q,min_q,-1
fluxout=rho(k)*vtiold(k)*qiz(k)
flux=(fluxin-fluxout)/rho(k)/dzw(k)
qiz(k)=qiz(k)+del_tv*flux
qiz(k)=amax1(0.,qiz(k))
fluxin=fluxout
enddo
if (min_q .eq. 1) then
pptice=pptice+fluxin*del_tv
else
qiz(min_q-1)=qiz(min_q-1)+del_tv* &
fluxin/rho(min_q-1)/dzw(min_q-1)
endif
!
else
notlast=.false.
endif
!
ENDDO
! CALL wrf_debug ( 100 , 'module_ylin: end precip flux' )
! Microphpysics processes
DO 2000 k=kts,kte
!
qvzodt(k)=amax1( 0.0,odtb*qvz(k) )
qlzodt(k)=amax1( 0.0,odtb*qlz(k) )
qizodt(k)=amax1( 0.0,odtb*qiz(k) )
qszodt(k)=amax1( 0.0,odtb*qsz(k) )
qrzodt(k)=amax1( 0.0,odtb*qrz(k) )
!***********************************************************************
!***** diagnose mixing ratios (qrz,qsz), terminal *****
!***** velocities (vtr,vts), and slope parameters in size *****
!***** distribution(xlambdar,xlambdas) of rain and snow *****
!***** follows Nagata and Ogura, 1991, MWR, 1309-1337. Eq (A7) *****
!***********************************************************************
!
!**** assuming no cloud water can exist in the top two levels due to
!**** radiation consideration
!
!! if
!! unsaturated,
!! no cloud water, rain, ice, snow
!! then
!! skip these processes and jump to line 2000
!
!
tmp=qiz(k)+qlz(k)+qsz(k)+qrz(k)
if( qvz(k)+qlz(k)+qiz(k) .lt. qsiz(k) &
.and. tmp .eq. 0.0 ) go to 2000
!
!! calculate terminal velocity of rain
!
if (qrz(k) .gt. 1.0e-8) then
tmp1=sqrt(pi*rhowater*xnor*orho(k)/qrz(k))
xlambdar(k)=sqrt(tmp1)
olambdar(k)=1.0/xlambdar(k)
vtrold(k)=o6*av_r*gambp4*sqrho(k)*olambdar(k)**bv_r
else
vtrold(k)=0.
olambdar(k)=0.
endif
!
if (qrz(k) .gt. 1.0e-8) then
tmp1=sqrt(pi*rhowater*xnor*orho(k)/qrz(k))
xlambdar(k)=sqrt(tmp1)
olambdar(k)=1.0/xlambdar(k)
vtr(k)=o6*av_r*gambp4*sqrho(k)*olambdar(k)**bv_r
else
vtr(k)=0.
olambdar(k)=0.
endif
!
!! calculate terminal velocity of snow
!
if (qsz(k) .gt. 1.0e-8) then
tmp1= (am_s(k)*N0_s(k)*ggamma(tmp_ss(k))*orho(k)/qsz(k))&
**(1./tmp_ss(k))
olambdas(k)=1.0/tmp1
vtsold(k)= sqrho(k)*av_s(k)*ggamma(bv_s(k)+tmp_ss(k))/ &
ggamma(tmp_ss(k))/(tmp1**bv_s(k))
else
vtsold(k)=0.
olambdas(k)=0.
endif
!
if (qsz(k) .gt. 1.0e-8) then
tmp1= (am_s(k)*N0_s(k)*ggamma(tmp_ss(k))*orho(k)/qsz(k))&
**(1./tmp_ss(k))
olambdas(k)=1.0/tmp1
vts(k)= sqrho(k)*av_s(k)*ggamma(bv_s(k)+tmp_ss(k))/ &
ggamma(tmp_ss(k))/(tmp1**bv_s(k))
else
vts(k)=0.
olambdas(k)=0.
endif
!---------- start of snow/ice processes below freezing
if (tem(k) .lt. 273.15) then
!
!***********************************************************************
!********* snow production processes for T < 0 C **********
!***********************************************************************
!c
!c (1) ICE CRYSTAL AGGREGATION TO SNOW (Psaut): Lin (21)
!c! psaut=alpha1*(qi-qi0)
!c! alpha1=1.0e-3*exp(0.025*(T-T0))
!c
alpha1=1.0e-3*exp( 0.025*temcc(k) )
!
if(temcc(k) .lt. -20.0) then
tmp1=-7.6+4.0*exp( -0.2443e-3*(abs(temcc(k))-20)**2.455 )
qic=1.0e-3*exp(tmp1)*orho(k)
else
qic=qi0
end if
tmp1=odtb*(qiz(k)-qic)*(1.0-exp(-alpha1*dtb))
psaut(k)=amax1( 0.0,tmp1 )
!c
!c (2) BERGERON PROCESS TRANSFER OF CLOUD WATER TO SNOW (Psfw)
!c this process only considered when -31 C < T < 0 C
!c Lin (33) and Hsie (17)
!c
!c!
!c! parama1 and parama2 functions must be user supplied
!c!
if( qlz(k) .gt. 1.0e-10 ) then
temc1=amax1(-30.99,temcc(k))
a1=parama1
( temc1 )
a2=parama2
( temc1 )
tmp1=1.0-a2
!! change unit from cgs to mks
a1=a1*0.001**tmp1
!! dtberg is the time needed for a crystal to grow from 40 to 50 um
!! odtberg=1.0/dtberg
odtberg=(a1*tmp1)/(xmi50**tmp1-xmi40**tmp1)
!
!! compute terminal velocity of a 50 micron ice cystal
!
vti50=av_i*di50**bv_i*sqrho(k)
!
eiw=1.0
save1=a1*xmi50**a2
save2=0.25*pi*eiw*rho(k)*di50*di50*vti50
!
tmp2=( save1 + save2*qlz(k) )
!
!! maximum number of 50 micron crystals limited by the amount
!! of supercool water
!
xni50mx=qlzodt(k)/tmp2
!
!! number of 50 micron crystals produced
!
xni50=qiz(k)*( 1.0-exp(-dtb*odtberg) )/xmi50
xni50=amin1(xni50,xni50mx)
!
tmp3=odtb*tmp2/save2*( 1.0-exp(-save2*xni50*dtb) )
psfw(k)=amin1( tmp3,qlzodt(k) )
!c
!c (3) REDUCTION OF CLOUD ICE BY BERGERON PROCESS (Psfi): Lin (34)
!c this process only considered when -31 C < T < 0 C
!c
tmp1=xni50*xmi50-psfw(k)
psfi(k)=amin1(tmp1,qizodt(k))
end if
!
!
if(qrz(k) .le. 0.0) go to 1000
!
! Processes (4) and (5) only need when qrz > 0.0
!
!c
!c (4) CLOUD ICE ACCRETION BY RAIN (Praci): Lin (25)
!c produce PI
!c
eri=1.0
save1=pio4*eri*xnor*av_r*sqrho(k)
tmp1=save1*gambp3*olambdar(k)**bp3
praci(k)=qizodt(k)*( 1.0-exp(-tmp1*dtb) )
!c
!c (5) RAIN ACCRETION BY CLOUD ICE (Piacr): Lin (26)
!c
tmp2=qiz(k)*save1*rho(k)*pio6*rhowater*gambp6*oxmi* &
olambdar(k)**bp6
piacr(k)=amin1( tmp2,qrzodt(k) )
!
1000 continue
!
if(qsz(k) .le. 0.0) go to 1200
!
! Compute the following processes only when qsz > 0.0
!
!c
!c (6) ICE CRYSTAL ACCRETION BY SNOW (Psaci): Lin (22)
!c
esi=exp( 0.025*temcc(k) )
save1 = aa_s(k)*sqrho(k)*N0_s(k)* &
ggamma(bv_s(k)+tmp_sa(k))*olambdas(k)**(bv_s(k)+tmp_sa(k))
tmp1=esi*save1
psaci(k)=qizodt(k)*( 1.0-exp(-tmp1*dtb) )
!c
!c (7) CLOUD WATER ACCRETION BY SNOW (Psacw): Lin (24)
!c
esw=1.0
tmp1=esw*save1
psacw(k)=qlzodt(K)*( 1.0-exp(-tmp1*dtb) )
!c
!c (8) DEPOSITION/SUBLIMATION OF SNOW (Psdep/Pssub): Lin (31)
!c includes consideration of ventilation effect
!c
tmpa=rvapor*xka(k)*tem(k)*tem(k)
tmpb=xls*xls*rho(k)*qsiz(k)*diffwv(k)
tmpc=tmpa*qsiz(k)*diffwv(k)
abi=4.0*pi*cap_s(k)*(qvoqsiz(k)-1.0)*tmpc/(tmpa+tmpb)
tmp1=av_s(k)*sqrho(k)*olambdas(k)**(5+bv_s(k)+2*mu_s)/visc(k)
!---- YLIN, here there is some approximation assuming mu_s =1, so gamma(2)=1, etc.
tmp2= abi*N0_s(k)*( vf1s*olambdas(k)*olambdas(k)+ &
vf2s*schmidt(k)**0.33334* &
ggamma(2.5+0.5*bv_s(k)+mu_s)*sqrt(tmp1) )
tmp3=odtb*( qvz(k)-qsiz(k) )
!
if( tmp2 .le. 0.0) then
tmp2=amax1( tmp2,tmp3)
pssub(k)=amax1( tmp2,-qszodt(k) )
psdep(k)=0.0
else
psdep(k)=amin1( tmp2,tmp3 )
pssub(k)=0.0
end if
!
if(qrz(k) .le. 0.0) go to 1200
!
! Compute processes (9) and (10) only when qsz > 0.0 and qrz > 0.0
! these two terms need to be refined in the future, they should be equal
!c
!c (9) ACCRETION OF SNOW BY RAIN (Pracs): Lin (27)
!c
esr=1.0
tmpa=olambdar(k)*olambdar(k)
tmpb=olambdas(k)*olambdas(k)
tmpc=olambdar(k)*olambdas(k)
tmp1=pi*pi*esr*xnor*N0_s(k)*abs( vtr(k)-vts(k) )*orho(k)
tmp2=tmpb*tmpb*olambdar(k)*(5.0*tmpb+2.0*tmpc+0.5*tmpa)
tmp3=tmp1*rhosnow*tmp2
pracs(k)=amin1( tmp3,qszodt(k) )
pracs(k)=0.0
!c
!c (10) ACCRETION OF RAIN BY SNOW (Psacr): Lin (28)
!c
tmp3=tmpa*tmpa*olambdas(k)*(5.0*tmpa+2.0*tmpc+0.5*tmpb)
tmp4=tmp1*rhowater*tmp3
psacr(k)=amin1( tmp4,qrzodt(k) )
!
!c
!c (2) FREEZING OF RAIN TO FORM GRAUPEL (pgfr): Lin (45), added to PI
!c positive value
!c Constant in Bigg freezing Aplume=Ap=0.66 /k
!c Constant in raindrop freezing equ. Bplume=Bp=100./m/m/m/s
!
if (qrz(k) .gt. 1.e-8 ) then
Bp=100.
Ap=0.66
tmp1=olambdar(k)*olambdar(k)*olambdar(k)
tmp2=20.*pi*pi*Bp*xnor*rhowater*orho(k)* &
(exp(-Ap*temcc(k))-1.0)*tmp1*tmp1*olambdar(k)
pgfr(k)=amin1( tmp2,qrzodt(k) )
else
pgfr(k)=0
endif
1200 continue
!
else
!
!***********************************************************************
!********* snow production processes for T > 0 C **********
!***********************************************************************
!
if (qsz(k) .le. 0.0) go to 1400
!c
!c (1) CLOUD WATER ACCRETION BY SNOW (Psacw): Lin (24)
!c
esw=1.0
save1 =aa_s(k)*sqrho(k)*N0_s(k)* &
ggamma(bv_s(k)+tmp_sa(k))*olambdas(k)**(bv_s(k)+tmp_sa(k))
tmp1=esw*save1
psacw(k)=qlzodt(k)*( 1.0-exp(-tmp1*dtb) )
!c
!c (2) ACCRETION OF RAIN BY SNOW (Psacr): Lin (28)
!c
esr=1.0
tmpa=olambdar(k)*olambdar(k)
tmpb=olambdas(k)*olambdas(k)
tmpc=olambdar(k)*olambdas(k)
tmp1=pi*pi*esr*xnor*N0_s(k)*abs( vtr(k)-vts(k) )*orho(k)
tmp2=tmpa*tmpa*olambdas(k)*(5.0*tmpa+2.0*tmpc+0.5*tmpb)
tmp3=tmp1*rhowater*tmp2
psacr(k)=amin1( tmp3,qrzodt(k) )
!c
!c (3) MELTING OF SNOW (Psmlt): Lin (32)
!c Psmlt is negative value
!
delrs=rs0(k)-qvz(k)
term1=2.0*pi*orho(k)*( xlv*diffwv(k)*rho(k)*delrs- &
xka(k)*temcc(k) )
tmp1= av_s(k)*sqrho(k)*olambdas(k)**(5+bv_s(k)+2*mu_s)/visc(k)
tmp2= N0_s(k)*( vf1s*olambdas(k)*olambdas(k)+ &
vf2s*schmidt(k)**0.33334* &
ggamma(2.5+0.5*bv_s(k)+mu_s)*sqrt(tmp1) )
tmp3=term1*oxlf*tmp2-cwoxlf*temcc(k)*( psacw(k)+psacr(k) )
tmp4=amin1(0.0,tmp3)
psmlt(k)=amax1( tmp4,-qszodt(k) )
!c
!c (4) EVAPORATION OF MELTING SNOW (Psmltevp): HR (A27)
!c but use Lin et al. coefficience
!c Psmltevp is a negative value
!c
tmpa=rvapor*xka(k)*tem(k)*tem(k)
tmpb=xlv*xlv*rho(k)*qswz(k)*diffwv(k)
tmpc=tmpa*qswz(k)*diffwv(k)
tmpd=amin1( 0.0,(qvoqswz(k)-0.90)*qswz(k)*odtb )
abr=2.0*pi*(qvoqswz(k)-0.90)*tmpc/(tmpa+tmpb)
!
!**** allow evaporation to occur when RH less than 90%
!**** here not using 100% because the evaporation cooling
!**** of temperature is not taking into account yet; hence,
!**** the qsw value is a little bit larger. This will avoid
!**** evaporation can generate cloud.
!
tmp1=av_s(k)*sqrho(k)*olambdas(k)**(5+bv_s(k)+2*mu_s)/visc(k)
tmp2= N0_s(k)*( vf1s*olambdas(k)*olambdas(k)+ &
vf2s*schmidt(k)**0.33334* &
ggamma(2.5+0.5*bv_s(k)+mu_s)*sqrt(tmp1) )
tmp3=amin1(0.0,tmp2)
tmp3=amax1( tmp3,tmpd )
psmltevp(k)=amax1( tmp3,-qszodt(k) )
1400 continue
!
end if !---- end of snow/ice processes
! CALL wrf_debug ( 100 , 'module_ylin: finish ice/snow processes' )
!***********************************************************************
!********* rain production processes **********
!***********************************************************************
!c
!c (1) AUTOCONVERSION OF RAIN (Praut): using Liu and Daum (2004)
!c
!---- YLIN, autoconversion use Liu and Daum (2004), unit = g cm-3 s-1, in the scheme kg/kg s-1, so
if (qlz(k) .gt. 1e-6) then
lamc(k) = (Nt_c*rhowater*pi*ggamma(4.+mu_c)/(6.*rho(k)*qlz(k))/ & !--- N(D) = N0*D^mu*exp(-lamc*D)
ggamma(1+mu_c))**0.3333
Dc_liu = (ggamma(6+1+mu_c)/ggamma(1+mu_c))**(1./6.)/lamc(k) !----- R6 in m
if (Dc_liu .gt. R6c) then
disp = 1./(mu_c+1.) !--- square of relative dispersion
eta = (0.75/pi/(1e-3*rhowater))**2*1.9e11*((1+3*disp)*(1+4*disp)*&
(1+5*disp)/(1+disp)/(1+2*disp))
praut(k) = eta*(1e-3*rho(k)*qlz(k))**3/(1e-6*Nt_c) !--- g cm-3 s-1
praut(k) = praut(k)/(1e-3*rho(k)) !--- kg kg-1 s-1
else
praut(k) = 0.0
endif
else
praut(k) = 0.0
endif
!c
!c (2) ACCRETION OF CLOUD WATER BY RAIN (Pracw): Lin (51)
!c
erw=1.0
tmp1=pio4*erw*xnor*av_r*sqrho(k)* &
gambp3*olambdar(k)**bp3
pracw(k)=qlzodt(k)*( 1.0-exp(-tmp1*dtb) )
!c
!c (3) EVAPORATION OF RAIN (Prevp): Lin (52)
!c Prevp is negative value
!c
!c Sw=qvoqsw : saturation ratio
!c
tmpa=rvapor*xka(k)*tem(k)*tem(k)
tmpb=xlv*xlv*rho(k)*qswz(k)*diffwv(k)
tmpc=tmpa*qswz(k)*diffwv(k)
tmpd=amin1(0.0,(qvoqswz(k)-0.90)*qswz(k)*odtb)
abr=2.0*pi*(qvoqswz(k)-0.90)*tmpc/(tmpa+tmpb)
tmp1=av_r*sqrho(k)*olambdar(k)**bp5/visc(k)
tmp2=abr*xnor*( vf1r*olambdar(k)*olambdar(k)+ &
vf2r*schmidt(k)**0.33334*gambp5o2*sqrt(tmp1) )
tmp3=amin1( 0.0,tmp2 )
tmp3=amax1( tmp3,tmpd )
prevp(k)=amax1( tmp3,-qrzodt(k) )
! CALL wrf_debug ( 100 , 'module_ylin: finish rain processes' )
!c
!c**********************************************************************
!c***** combine all processes together and avoid negative *****
!c***** water substances
!***********************************************************************
!c
if ( temcc(k) .lt. 0.0) then
!c
!c combined water vapor depletions
!c
tmp=psdep(k)
if ( tmp .gt. qvzodt(k) ) then
factor=qvzodt(k)/tmp
psdep(k)=psdep(k)*factor
end if
!c
!c combined cloud water depletions
!c
tmp=praut(k)+psacw(k)+psfw(k)+pracw(k)
if ( tmp .gt. qlzodt(k) ) then
factor=qlzodt(k)/tmp
praut(k)=praut(k)*factor
psacw(k)=psacw(k)*factor
psfw(k)=psfw(k)*factor
pracw(k)=pracw(k)*factor
end if
!c
!c combined cloud ice depletions
!c
tmp=psaut(k)+psaci(k)+praci(k)+psfi(k)
if (tmp .gt. qizodt(k) ) then
factor=qizodt(k)/tmp
psaut(k)=psaut(k)*factor
psaci(k)=psaci(k)*factor
praci(k)=praci(k)*factor
psfi(k)=psfi(k)*factor
endif
!c
!c combined all rain processes
!c
tmp_r=piacr(k)+psacr(k)-prevp(k)-praut(k)-pracw(k)+pgfr(k)
if (tmp_r .gt. qrzodt(k) ) then
factor=qrzodt(k)/tmp_r
piacr(k)=piacr(k)*factor
psacr(k)=psacr(k)*factor
prevp(k)=prevp(k)*factor
pgfr(k)=pgfr(k)*factor
endif
!c
!c combined all snow processes
!c
tmp_s=-pssub(k)-(psaut(k)+psaci(k)+psacw(k)+psfw(k)+pgfr(k)+ &
psfi(k)+praci(k)+piacr(k)+ &
psdep(k)+psacr(k)-pracs(k))
if ( tmp_s .gt. qszodt(k) ) then
factor=qszodt(k)/tmp_s
pssub(k)=pssub(k)*factor
Pracs(k)=Pracs(k)*factor
endif
!c
!c calculate new water substances, thetae, tem, and qvsbar
!c
pvapor(k)=-pssub(k)-psdep(k)-prevp(k)
qvz(k)=amax1( qvmin,qvz(k)+dtb*pvapor(k) )
pclw(k)=-praut(k)-pracw(k)-psacw(k)-psfw(k)
qlz(k)=amax1( 0.0,qlz(k)+dtb*pclw(k) )
pcli(k)=-psaut(k)-psfi(k)-psaci(k)-praci(k)
qiz(k)=amax1( 0.0,qiz(k)+dtb*pcli(k) )
tmp_r=piacr(k)+psacr(k)-prevp(k)-praut(k)-pracw(k)+pgfr(k)-pracs(k)
prain(k)=-tmp_r
qrz(k)=amax1( 0.0,qrz(k)+dtb*prain(k) )
tmp_s=-pssub(k)-(psaut(k)+psaci(k)+psacw(k)+psfw(k)+pgfr(k)+ &
psfi(k)+praci(k)+piacr(k)+ &
psdep(k)+psacr(k)-pracs(k))
psnow(k)=-tmp_s
qsz(k)=amax1( 0.0,qsz(k)+dtb*psnow(k) )
qschg(k)=qschg(k)+psnow(k)
qschg(k)=psnow(k)
tmp=ocp/tothz(k)*xLf*qschg(k)
theiz(k)=theiz(k)+dtb*tmp
thz(k)=theiz(k)-(xLvocp*qvz(k)-xLfocp*qiz(k))/tothz(k)
tem(k)=thz(k)*tothz(k)
temcc(k)=tem(k)-273.15
if( temcc(k) .lt. -40.0 ) qswz(k)=qsiz(k)
qlpqi=qlz(k)+qiz(k)
if ( qlpqi .eq. 0.0 ) then
qvsbar(k)=qsiz(k)
else
qvsbar(k)=( qiz(k)*qsiz(k)+qlz(k)*qswz(k) )/qlpqi
endif
!
else !>0 C
!c
!c combined cloud water depletions
!c
tmp=praut(k)+psacw(k)+pracw(k)
if ( tmp .gt. qlzodt(k) ) then
factor=qlzodt(k)/tmp
praut(k)=praut(k)*factor
psacw(k)=psacw(k)*factor
pracw(k)=pracw(k)*factor
end if
!c
!c combined all snow processes
!c
tmp_s=-(psmlt(k)+psmltevp(k))
if (tmp_s .gt. qszodt(k) ) then
factor=qszodt(k)/tmp_s
psmlt(k)=psmlt(k)*factor
psmltevp(k)=psmltevp(k)*factor
endif
!c
!c combined all rain processes
!c
tmp_r=-prevp(k)-(praut(k)+pracw(k)+psacw(k)-psmlt(k))
if (tmp_r .gt. qrzodt(k) ) then
factor=qrzodt(k)/tmp_r
prevp(k)=prevp(k)*factor
endif
!c
!c calculate new water substances and thetae
!c
pvapor(k)=-psmltevp(k)-prevp(k)
qvz(k)=amax1( qvmin,qvz(k)+dtb*pvapor(k))
pclw(k)=-praut(k)-pracw(k)-psacw(k)
qlz(k)=amax1( 0.0,qlz(k)+dtb*pclw(k) )
pcli(k)=0.0
qiz(k)=amax1( 0.0,qiz(k)+dtb*pcli(k) )
tmp_r=-prevp(k)-(praut(k)+pracw(k)+psacw(k)-psmlt(k))
prain(k)=-tmp_r
tmpqrz=qrz(k)
qrz(k)=amax1( 0.0,qrz(k)+dtb*prain(k) )
tmp_s=-(psmlt(k)+psmltevp(k))
psnow(k)=-tmp_s
qsz(k)=amax1( 0.0,qsz(k)+dtb*psnow(k) )
qschg(k)=psnow(k)
!
tmp=ocp/tothz(k)*xLf*qschg(k)
theiz(k)=theiz(k)+dtb*tmp
thz(k)=theiz(k)-(xLvocp*qvz(k)-xLfocp*qiz(k))/tothz(k)
tem(k)=thz(k)*tothz(k)
temcc(k)=tem(k)-273.15
es=1000.*svp1*exp( svp2*temcc(k)/(tem(k)-svp3) )
qswz(k)=ep2*es/(prez(k)-es)
qsiz(k)=qswz(k)
qvsbar(k)=qswz(k)
!
end if
! CALL wrf_debug ( 100 , 'module_ylin: finish sum of all processes' )
!
!***********************************************************************
!********** saturation adjustment **********
!***********************************************************************
!
! allow supersaturation exits linearly from 0% at 500 mb to 50%
! above 300 mb
! 5.0e-5=1.0/(500mb-300mb)
!
rsat=1.0
if( qvz(k)+qlz(k)+qiz(k) .lt. rsat*qvsbar(k) ) then
!c
!c unsaturated
!c
qvz(k)=qvz(k)+qlz(k)+qiz(k)
qlz(k)=0.0
qiz(k)=0.0
thz(k)=theiz(k)-(xLvocp*qvz(k)-xLfocp*qiz(k))/tothz(k)
tem(k)=thz(k)*tothz(k)
temcc(k)=tem(k)-273.15
go to 1800
!
else
!c
!c saturated
!c
pladj(k)=qlz(k)
piadj(k)=qiz(k)
!
CALL satadj
(qvz, qlz, qiz, prez, theiz, thz, tothz, kts, kte, &
k, xLvocp, xLfocp, episp0k, EP2,SVP1,SVP2,SVP3,SVPT0)
!
pladj(k)=odtb*(qlz(k)-pladj(k))
piadj(k)=odtb*(qiz(k)-piadj(k))
!
pclw(k)=pclw(k)+pladj(k)
pcli(k)=pcli(k)+piadj(k)
pvapor(k)=pvapor(k)-( pladj(k)+piadj(k) )
!
thz(k)=theiz(k)-(xLvocp*qvz(k)-xLfocp*qiz(k))/tothz(k)
tem(k)=thz(k)*tothz(k)
temcc(k)=tem(k)-273.15
es=1000.*svp1*exp( svp2*temcc(k)/(tem(k)-svp3) )
qswz(k)=ep2*es/(prez(k)-es)
if (tem(k) .lt. 273.15 ) then
es=1000.*svp1*exp( 21.8745584*(tem(k)-273.16)/(tem(k)-7.66) )
qsiz(k)=ep2*es/(prez(k)-es)
if (temcc(k) .lt. -40.0) qswz(k)=qsiz(k)
else
qsiz(k)=qswz(k)
endif
qlpqi=qlz(k)+qiz(k)
if ( qlpqi .eq. 0.0 ) then
qvsbar(k)=qsiz(k)
else
qvsbar(k)=( qiz(k)*qsiz(k)+qlz(k)*qswz(k) )/qlpqi
endif
end if
!
!***********************************************************************
!***** melting and freezing of cloud ice and cloud water *****
!***********************************************************************
qlpqi=qlz(k)+qiz(k)
if(qlpqi .le. 0.0) go to 1800
!
!c
!c (1) HOMOGENEOUS NUCLEATION WHEN T< -40 C (Pihom)
!c
if(temcc(k) .lt. -40.0) pihom(k)=qlz(k)*odtb
!c
!c (2) MELTING OF ICE CRYSTAL WHEN T> 0 C (Pimlt)
!c
if(temcc(k) .gt. 0.0) pimlt(k)=qiz(k)*odtb
!c
!c (3) PRODUCTION OF CLOUD ICE BY BERGERON PROCESS (Pidw): Hsie (p957)
!c this process only considered when -31 C < T < 0 C
!c
if(temcc(k) .lt. 0.0 .and. temcc(k) .gt. -31.0) then
!c!
!c! parama1 and parama2 functions must be user supplied
!c!
a1=parama1
( temcc(k) )
a2=parama2
( temcc(k) )
!! change unit from cgs to mks
a1=a1*0.001**(1.0-a2)
xnin=xni0*exp(-bni*temcc(k))
pidw(k)=xnin*orho(k)*(a1*xmnin**a2)
end if
!
pcli(k)=pcli(k)+pihom(k)-pimlt(k)+pidw(k)
pclw(k)=pclw(k)-pihom(k)+pimlt(k)-pidw(k)
qlz(k)=amax1( 0.0,qlz(k)+dtb*(-pihom(k)+pimlt(k)-pidw(k)) )
qiz(k)=amax1( 0.0,qiz(k)+dtb*(pihom(k)-pimlt(k)+pidw(k)) )
!
CALL satadj
(qvz, qlz, qiz, prez, theiz, thz, tothz, kts, kte, &
k, xLvocp, xLfocp, episp0k ,EP2,SVP1,SVP2,SVP3,SVPT0)
thz(k)=theiz(k)-(xLvocp*qvz(k)-xLfocp*qiz(k))/tothz(k)
tem(k)=thz(k)*tothz(k)
temcc(k)=tem(k)-273.15
es=1000.*svp1*exp( svp2*temcc(k)/(tem(k)-svp3) )
qswz(k)=ep2*es/(prez(k)-es)
if (tem(k) .lt. 273.15 ) then
es=1000.*svp1*exp( 21.8745584*(tem(k)-273.16)/(tem(k)-7.66) )
qsiz(k)=ep2*es/(prez(k)-es)
if (temcc(k) .lt. -40.0) qswz(k)=qsiz(k)
else
qsiz(k)=qswz(k)
endif
qlpqi=qlz(k)+qiz(k)
if ( qlpqi .eq. 0.0 ) then
qvsbar(k)=qsiz(k)
else
qvsbar(k)=( qiz(k)*qsiz(k)+qlz(k)*qswz(k) )/qlpqi
endif
1800 continue
!
!***********************************************************************
!********** integrate the productions of rain and snow **********
!***********************************************************************
!
2000 continue
!
!**** below if qv < qvmin then qv=qvmin, ql=0.0, and qi=0.0
!
do k=kts+1,kte
if ( qvz(k) .lt. qvmin ) then
qlz(k)=0.0
qiz(k)=0.0
qvz(k)=amax1( qvmin,qvz(k)+qlz(k)+qiz(k) )
end if
enddo
!
! CALL wrf_debug ( 100 , 'module_ylin: finish saturation adjustment' )
END SUBROUTINE clphy1d_ylin
!---------------------------------------------------------------------
! SATURATED ADJUSTMENT
!---------------------------------------------------------------------
SUBROUTINE satadj(qvz, qlz, qiz, prez, theiz, thz, tothz, & 4
kts, kte, k, xLvocp, xLfocp, episp0k, EP2,SVP1,SVP2,SVP3,SVPT0)
!---------------------------------------------------------------------
IMPLICIT NONE
!---------------------------------------------------------------------
! This program use Newton's method for finding saturated temperature
! and saturation mixing ratio.
!
! In this saturation adjustment scheme we assume
! (1) the saturation mixing ratio is the mass weighted average of
! saturation values over liquid water (qsw), and ice (qsi)
! following Lord et al., 1984 and Tao, 1989
!
! (2) the percentage of cloud liquid and cloud ice will
! be fixed during the saturation calculation
!---------------------------------------------------------------------
!
INTEGER, INTENT(IN ) :: kts, kte, k
REAL, DIMENSION( kts:kte ), &
INTENT(INOUT) :: qvz, qlz, qiz
!
REAL, DIMENSION( kts:kte ), &
INTENT(IN ) :: prez, theiz, tothz
REAL, INTENT(IN ) :: xLvocp, xLfocp, episp0k
REAL, INTENT(IN ) :: EP2,SVP1,SVP2,SVP3,SVPT0
! LOCAL VARS
INTEGER :: n
REAL, DIMENSION( kts:kte ) :: thz, tem, temcc, qsiz, &
qswz, qvsbar
REAL :: qsat, qlpqi, ratql, t0, t1, tmp1, ratqi, tsat, absft, &
denom1, denom2, dqvsbar, ftsat, dftsat, qpz,es
!
!---------------------------------------------------------------------
thz(k)=theiz(k)-(xLvocp*qvz(k)-xLfocp*qiz(k))/tothz(k)
tem(k)=tothz(k)*thz(k)
if (tem(k) .gt. 273.15) then
! qsat=episp0k/prez(k)* &
! exp( svp2*(tem(k)-273.15)/(tem(k)-svp3) )
es=1000.*svp1*exp( svp2*(tem(k)-svpt0)/(tem(k)-svp3) )
qsat=ep2*es/(prez(k)-es)
else
qsat=episp0k/prez(k)* &
exp( 21.8745584*(tem(k)-273.15)/(tem(k)-7.66) )
end if
qpz=qvz(k)+qlz(k)+qiz(k)
if (qpz .lt. qsat) then
qvz(k)=qpz
qiz(k)=0.0
qlz(k)=0.0
go to 400
end if
qlpqi=qlz(k)+qiz(k)
if( qlpqi .ge. 1.0e-5) then
ratql=qlz(k)/qlpqi
ratqi=qiz(k)/qlpqi
else
t0=273.15
! t1=233.15
t1=248.15
tmp1=( t0-tem(k) )/(t0-t1)
tmp1=amin1(1.0,tmp1)
tmp1=amax1(0.0,tmp1)
ratqi=tmp1
ratql=1.0-tmp1
end if
!
!
!-- saturation mixing ratios over water and ice
!-- at the outset we will follow Bolton 1980 MWR for
!-- the water and Murray JAS 1967 for the ice
!
!-- dqvsbar=d(qvsbar)/dT
!-- ftsat=F(Tsat)
!-- dftsat=d(F(T))/dT
!
! First guess of tsat
tsat=tem(k)
absft=1.0
!
do 200 n=1,20
denom1=1.0/(tsat-svp3)
denom2=1.0/(tsat-7.66)
! qswz(k)=episp0k/prez(k)* &
! exp( svp2*denom1*(tsat-273.15) )
es=1000.*svp1*exp( svp2*denom1*(tsat-svpt0) )
qswz(k)=ep2*es/(prez(k)-es)
if (tem(k) .lt. 273.15) then
! qsiz(k)=episp0k/prez(k)* &
! exp( 21.8745584*denom2*(tsat-273.15) )
es=1000.*svp1*exp( 21.8745584*denom2*(tsat-273.15) )
qsiz(k)=ep2*es/(prez(k)-es)
if (tem(k) .lt. 233.15) qswz(k)=qsiz(k)
else
qsiz(k)=qswz(k)
endif
qvsbar(k)=ratql*qswz(k)+ratqi*qsiz(k)
!
! if( absft .lt. 0.01 .and. n .gt. 3 ) go to 300
if( absft .lt. 0.01 ) go to 300
!
dqvsbar=ratql*qswz(k)*svp2*243.5*denom1*denom1+ &
ratqi*qsiz(k)*21.8745584*265.5*denom2*denom2
ftsat=tsat+(xlvocp+ratqi*xlfocp)*qvsbar(k)- &
tothz(k)*theiz(k)-xlfocp*ratqi*(qvz(k)+qlz(k)+qiz(k))
dftsat=1.0+(xlvocp+ratqi*xlfocp)*dqvsbar
tsat=tsat-ftsat/dftsat
absft=abs(ftsat)
200 continue
9020 format(1x,'point can not converge, absft,n=',e12.5,i5)
300 continue
if( qpz .gt. qvsbar(k) ) then
qvz(k)=qvsbar(k)
qiz(k)=ratqi*( qpz-qvz(k) )
qlz(k)=ratql*( qpz-qvz(k) )
else
qvz(k)=qpz
qiz(k)=0.0
qlz(k)=0.0
end if
400 continue
END SUBROUTINE satadj
!----------------------------------------------------------------
REAL FUNCTION parama1(temp) 4
!----------------------------------------------------------------
IMPLICIT NONE
!----------------------------------------------------------------
! This program calculate the parameter for crystal growth rate
! in Bergeron process
!----------------------------------------------------------------
REAL, INTENT (IN ) :: temp
REAL, DIMENSION(32) :: a1
INTEGER :: i1, i1p1
REAL :: ratio
data a1/0.100e-10,0.7939e-7,0.7841e-6,0.3369e-5,0.4336e-5, &
0.5285e-5,0.3728e-5,0.1852e-5,0.2991e-6,0.4248e-6, &
0.7434e-6,0.1812e-5,0.4394e-5,0.9145e-5,0.1725e-4, &
0.3348e-4,0.1725e-4,0.9175e-5,0.4412e-5,0.2252e-5, &
0.9115e-6,0.4876e-6,0.3473e-6,0.4758e-6,0.6306e-6, &
0.8573e-6,0.7868e-6,0.7192e-6,0.6513e-6,0.5956e-6, &
0.5333e-6,0.4834e-6/
i1=int(-temp)+1
i1p1=i1+1
ratio=-(temp)-float(i1-1)
parama1=a1(i1)+ratio*( a1(i1p1)-a1(i1) )
END FUNCTION parama1
!----------------------------------------------------------------
REAL FUNCTION parama2(temp) 4
!----------------------------------------------------------------
IMPLICIT NONE
!----------------------------------------------------------------
! This program calculate the parameter for crystal growth rate
! in Bergeron process
!----------------------------------------------------------------
REAL, INTENT (IN ) :: temp
REAL, DIMENSION(32) :: a2
INTEGER :: i1, i1p1
REAL :: ratio
data a2/0.0100,0.4006,0.4831,0.5320,0.5307,0.5319,0.5249, &
0.4888,0.3849,0.4047,0.4318,0.4771,0.5183,0.5463, &
0.5651,0.5813,0.5655,0.5478,0.5203,0.4906,0.4447, &
0.4126,0.3960,0.4149,0.4320,0.4506,0.4483,0.4460, &
0.4433,0.4413,0.4382,0.4361/
i1=int(-temp)+1
i1p1=i1+1
ratio=-(temp)-float(i1-1)
parama2=a2(i1)+ratio*( a2(i1p1)-a2(i1) )
END FUNCTION parama2
!+---+-----------------------------------------------------------------+
! THIS FUNCTION CALCULATES THE LIQUID SATURATION VAPOR MIXING RATIO AS
! A FUNCTION OF TEMPERATURE AND PRESSURE
!
REAL FUNCTION RSLF(P,T) 7
IMPLICIT NONE
REAL, INTENT(IN):: P, T
REAL:: ESL,X
REAL, PARAMETER:: C0= .611583699E03
REAL, PARAMETER:: C1= .444606896E02
REAL, PARAMETER:: C2= .143177157E01
REAL, PARAMETER:: C3= .264224321E-1
REAL, PARAMETER:: C4= .299291081E-3
REAL, PARAMETER:: C5= .203154182E-5
REAL, PARAMETER:: C6= .702620698E-8
REAL, PARAMETER:: C7= .379534310E-11
REAL, PARAMETER:: C8=-.321582393E-13
X=MAX(-80.,T-273.16)
! ESL=612.2*EXP(17.67*X/(T-29.65))
ESL=C0+X*(C1+X*(C2+X*(C3+X*(C4+X*(C5+X*(C6+X*(C7+X*C8)))))))
RSLF=.622*ESL/(P-ESL)
END FUNCTION RSLF
!
!+---+-----------------------------------------------------------------+
! THIS FUNCTION CALCULATES THE ICE SATURATION VAPOR MIXING RATIO AS A
! FUNCTION OF TEMPERATURE AND PRESSURE
!
REAL FUNCTION RSIF(P,T) 3
IMPLICIT NONE
REAL, INTENT(IN):: P, T
REAL:: ESI,X
REAL, PARAMETER:: C0= .609868993E03
REAL, PARAMETER:: C1= .499320233E02
REAL, PARAMETER:: C2= .184672631E01
REAL, PARAMETER:: C3= .402737184E-1
REAL, PARAMETER:: C4= .565392987E-3
REAL, PARAMETER:: C5= .521693933E-5
REAL, PARAMETER:: C6= .307839583E-7
REAL, PARAMETER:: C7= .105785160E-9
REAL, PARAMETER:: C8= .161444444E-12
X=MAX(-80.,T-273.16)
ESI=C0+X*(C1+X*(C2+X*(C3+X*(C4+X*(C5+X*(C6+X*(C7+X*C8)))))))
RSIF=.622*ESI/(P-ESI)
END FUNCTION RSIF
!+---+-----------------------------------------------------------------+
!----------------------------------------------------------------
REAL FUNCTION ggamma(X) 20,2
!----------------------------------------------------------------
IMPLICIT NONE
!----------------------------------------------------------------
REAL, INTENT(IN ) :: x
REAL, DIMENSION(8) :: B
INTEGER ::j, K1
REAL ::PF, G1TO2 ,TEMP
DATA B/-.577191652,.988205891,-.897056937,.918206857, &
-.756704078,.482199394,-.193527818,.035868343/
PF=1.
TEMP=X
DO 10 J=1,200
IF (TEMP .LE. 2) GO TO 20
TEMP=TEMP-1.
10 PF=PF*TEMP
! 100 FORMAT(//,5X,'module_mp_lin: INPUT TO GAMMA FUNCTION TOO LARGE, X=',E12.5)
! WRITE(wrf_err_message,100)X
! CALL wrf_error_fatal(wrf_err_message)
20 G1TO2=1.
TEMP=TEMP - 1.
DO 30 K1=1,8
30 G1TO2=G1TO2 + B(K1)*TEMP**K1
ggamma=PF*G1TO2
END FUNCTION ggamma
!----------------------------------------------------------------
END MODULE module_mp_sbu_ylin