!Comment the following out to turn off aerosol-radiation
!feedback between MOSAIC and GSFCSW. wig, 21-Feb-2005
MODULE module_ra_gsfcsw 2
REAL, PARAMETER, PRIVATE :: thresh=1.e-9
REAL, SAVE :: center_lat
! Assign co2 and trace gases amount (units are parts/part by volumn)
REAL, PARAMETER, PRIVATE :: co2 = 300.e-6
CONTAINS
SUBROUTINE GSFCSWRAD(rthraten,gsw,xlat,xlong & 1,15
,dz8w,rho_phy &
,alb,t3d,qv3d,qc3d,qr3d &
,qi3d,qs3d,qg3d,qndrop3d &
,p3d,p8w3d,pi3d,cldfra3d,rswtoa &
,gmt,cp,g,julday,xtime,declin,solcon &
,radfrq,degrad,taucldi,taucldc,warm_rain &
,tauaer300,tauaer400,tauaer600,tauaer999 & ! jcb
,gaer300,gaer400,gaer600,gaer999 & ! jcb
,waer300,waer400,waer600,waer999 & ! jcb
,aer_ra_feedback &
,f_qv,f_qc,f_qr,f_qi,f_qs,f_qg,f_qndrop &
,ids,ide, jds,jde, kds,kde &
,ims,ime, jms,jme, kms,kme &
,its,ite, jts,jte, kts,kte )
!------------------------------------------------------------------
IMPLICIT NONE
!------------------------------------------------------------------
INTEGER, PARAMETER :: np = 75
INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte
LOGICAL, INTENT(IN ) :: warm_rain
INTEGER, INTENT(IN ) :: JULDAY
REAL, INTENT(IN ) :: RADFRQ,DEGRAD, &
XTIME,DECLIN,SOLCON
!
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), &
INTENT(IN ) :: P3D, &
P8W3D, &
pi3D, &
T3D, &
dz8w, &
rho_phy, &
CLDFRA3D
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), &
INTENT(INOUT) :: RTHRATEN
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), &
OPTIONAL, &
INTENT(INOUT) :: taucldi, &
taucldc
!
REAL, DIMENSION( ims:ime, jms:jme ), &
INTENT(IN ) :: XLAT, &
XLONG, &
ALB
!
REAL, DIMENSION( ims:ime, jms:jme ), &
INTENT(INOUT) :: GSW, &
RSWTOA
!
REAL, INTENT(IN ) :: GMT,CP,G
!
!
! Optional
!
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), OPTIONAL , &
INTENT(IN ) :: tauaer300,tauaer400,tauaer600,tauaer999, & ! jcb
gaer300,gaer400,gaer600,gaer999, & ! jcb
waer300,waer400,waer600,waer999 ! jcb
INTEGER, INTENT(IN ), OPTIONAL :: aer_ra_feedback
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), &
OPTIONAL, &
INTENT(IN ) :: &
QV3D, &
QC3D, &
QR3D, &
QI3D, &
QS3D, &
QG3D, &
QNDROP3D
LOGICAL, OPTIONAL, INTENT(IN ) :: &
F_QV,F_QC,F_QR,F_QI,F_QS,F_QG, &
F_QNDROP
! LOCAL VARS
REAL, DIMENSION( its:ite ) :: &
ts, &
cosz, &
fp, &
rsuvbm, &
rsuvdf, &
rsirbm, &
rsirdf, &
p400, &
p700
INTEGER, DIMENSION( its:ite ) :: &
ict, &
icb
REAL, DIMENSION( its:ite, kts-1:kte, 2 ) :: taucld
REAL, DIMENSION( its:ite, kts-1:kte+1 ) :: flx, &
flxd
!
REAL, DIMENSION( its:ite, kts-1:kte ) :: O3
!
REAL, DIMENSION( its:ite, kts-1:kte, 11 ) :: &
taual, &
ssaal, &
asyal
REAL, DIMENSION( its:ite, kts-1:kte, 2 ) :: &
reff, &
cwc
REAL, DIMENSION( its: ite, kts-1:kte+1 ) :: &
P8W2D
REAL, DIMENSION( its: ite, kts-1:kte ) :: &
TTEN2D, &
qndrop2d, &
SH2D, &
P2D, &
T2D, &
fcld2D
REAL, DIMENSION( np, 5 ) :: pres, &
ozone
REAL, DIMENSION( np ) :: p
LOGICAL :: cldwater,overcast, predicate
!
INTEGER :: i,j,K,NK,ib,kk,mix,mkx
! iprof = 1 : mid-latitude summer profile
! = 2 : mid-latitude winter profile
! = 3 : sub-arctic summer profile
! = 4 : sub-arctic winter profile
! = 5 : tropical profile
!
INTEGER :: iprof, &
is_summer, &
ie_summer, &
lattmp
!
REAL :: XLAT0,XLONG0
REAL :: fac,latrmp
REAL :: xt24,tloctm,hrang,xxlat
real, dimension(11) :: midbands ! jcb
data midbands/.2,.235,.27,.2875,.3025,.305,.3625,.55,1.92,1.745,6.135/ ! jcb
real :: ang,slope ! jcb
character(len=200) :: msg !wig
real pi, third, relconst, lwpmin, rhoh2o
!
!--------------------------------------------------------------------------------
! data set 1
! mid-latitude summer (75 levels) : p(mb) o3(g/g)
! surface temp = 294.0
!
data (pres(i,1),i=1,np)/ &
0.0006244, 0.0008759, 0.0012286, 0.0017234, 0.0024174, &
0.0033909, 0.0047565, 0.0066720, 0.0093589, 0.0131278, &
0.0184145, 0.0258302, 0.0362323, 0.0508234, 0.0712906, &
0.1000000, 0.1402710, 0.1967600, 0.2759970, 0.3871430, &
0.5430, 0.7617, 1.0685, 1.4988, 2.1024, 2.9490, &
4.1366, 5.8025, 8.1392, 11.4170, 16.0147, 22.4640, &
31.5105, 44.2001, 62.0000, 85.7750, 109.5500, 133.3250, &
157.1000, 180.8750, 204.6500, 228.4250, 252.2000, 275.9750, &
299.7500, 323.5250, 347.3000, 371.0750, 394.8500, 418.6250, &
442.4000, 466.1750, 489.9500, 513.7250, 537.5000, 561.2750, &
585.0500, 608.8250, 632.6000, 656.3750, 680.1500, 703.9250, &
727.7000, 751.4750, 775.2500, 799.0250, 822.8000, 846.5750, &
870.3500, 894.1250, 917.9000, 941.6750, 965.4500, 989.2250, &
1013.0000/
!
data (ozone(i,1),i=1,np)/ &
0.1793E-06, 0.2228E-06, 0.2665E-06, 0.3104E-06, 0.3545E-06, &
0.3989E-06, 0.4435E-06, 0.4883E-06, 0.5333E-06, 0.5786E-06, &
0.6241E-06, 0.6698E-06, 0.7157E-06, 0.7622E-06, 0.8557E-06, &
0.1150E-05, 0.1462E-05, 0.1793E-05, 0.2143E-05, 0.2512E-05, &
0.2902E-05, 0.3313E-05, 0.4016E-05, 0.5193E-05, 0.6698E-05, &
0.8483E-05, 0.9378E-05, 0.9792E-05, 0.1002E-04, 0.1014E-04, &
0.9312E-05, 0.7834E-05, 0.6448E-05, 0.5159E-05, 0.3390E-05, &
0.1937E-05, 0.1205E-05, 0.8778E-06, 0.6935E-06, 0.5112E-06, &
0.3877E-06, 0.3262E-06, 0.2770E-06, 0.2266E-06, 0.2020E-06, &
0.1845E-06, 0.1679E-06, 0.1519E-06, 0.1415E-06, 0.1317E-06, &
0.1225E-06, 0.1137E-06, 0.1055E-06, 0.1001E-06, 0.9487E-07, &
0.9016E-07, 0.8641E-07, 0.8276E-07, 0.7930E-07, 0.7635E-07, &
0.7347E-07, 0.7065E-07, 0.6821E-07, 0.6593E-07, 0.6368E-07, &
0.6148E-07, 0.5998E-07, 0.5859E-07, 0.5720E-07, 0.5582E-07, &
0.5457E-07, 0.5339E-07, 0.5224E-07, 0.5110E-07, 0.4999E-07/
!--------------------------------------------------------------------------------
! data set 2
! mid-latitude winter (75 levels) : p(mb) o3(g/g)
! surface temp = 272.2
!
data (pres(i,2),i=1,np)/ &
0.0006244, 0.0008759, 0.0012286, 0.0017234, 0.0024174, &
0.0033909, 0.0047565, 0.0066720, 0.0093589, 0.0131278, &
0.0184145, 0.0258302, 0.0362323, 0.0508234, 0.0712906, &
0.1000000, 0.1402710, 0.1967600, 0.2759970, 0.3871430, &
0.5430, 0.7617, 1.0685, 1.4988, 2.1024, 2.9490, &
4.1366, 5.8025, 8.1392, 11.4170, 16.0147, 22.4640, &
31.5105, 44.2001, 62.0000, 85.9000, 109.8000, 133.7000, &
157.6000, 181.5000, 205.4000, 229.3000, 253.2000, 277.1000, &
301.0000, 324.9000, 348.8000, 372.7000, 396.6000, 420.5000, &
444.4000, 468.3000, 492.2000, 516.1000, 540.0000, 563.9000, &
587.8000, 611.7000, 635.6000, 659.5000, 683.4000, 707.3000, &
731.2000, 755.1000, 779.0000, 802.9000, 826.8000, 850.7000, &
874.6000, 898.5000, 922.4000, 946.3000, 970.2000, 994.1000, &
1018.0000/
!
data (ozone(i,2),i=1,np)/ &
0.2353E-06, 0.3054E-06, 0.3771E-06, 0.4498E-06, 0.5236E-06, &
0.5984E-06, 0.6742E-06, 0.7511E-06, 0.8290E-06, 0.9080E-06, &
0.9881E-06, 0.1069E-05, 0.1152E-05, 0.1319E-05, 0.1725E-05, &
0.2145E-05, 0.2581E-05, 0.3031E-05, 0.3497E-05, 0.3980E-05, &
0.4478E-05, 0.5300E-05, 0.6725E-05, 0.8415E-05, 0.1035E-04, &
0.1141E-04, 0.1155E-04, 0.1143E-04, 0.1093E-04, 0.1060E-04, &
0.9720E-05, 0.8849E-05, 0.7424E-05, 0.6023E-05, 0.4310E-05, &
0.2820E-05, 0.1990E-05, 0.1518E-05, 0.1206E-05, 0.9370E-06, &
0.7177E-06, 0.5450E-06, 0.4131E-06, 0.3277E-06, 0.2563E-06, &
0.2120E-06, 0.1711E-06, 0.1524E-06, 0.1344E-06, 0.1199E-06, &
0.1066E-06, 0.9516E-07, 0.8858E-07, 0.8219E-07, 0.7598E-07, &
0.6992E-07, 0.6403E-07, 0.5887E-07, 0.5712E-07, 0.5540E-07, &
0.5370E-07, 0.5214E-07, 0.5069E-07, 0.4926E-07, 0.4785E-07, &
0.4713E-07, 0.4694E-07, 0.4676E-07, 0.4658E-07, 0.4641E-07, &
0.4634E-07, 0.4627E-07, 0.4619E-07, 0.4612E-07, 0.4605E-07/
!--------------------------------------------------------------------------------
! data set 3
! sub-arctic summer (75 levels) : p(mb) o3(g/g)
! surface temp = 287.0
!
data (pres(i,3),i=1,np)/ &
0.0006244, 0.0008759, 0.0012286, 0.0017234, 0.0024174, &
0.0033909, 0.0047565, 0.0066720, 0.0093589, 0.0131278, &
0.0184145, 0.0258302, 0.0362323, 0.0508234, 0.0712906, &
0.1000000, 0.1402710, 0.1967600, 0.2759970, 0.3871430, &
0.5430, 0.7617, 1.0685, 1.4988, 2.1024, 2.9490, &
4.1366, 5.8025, 8.1392, 11.4170, 16.0147, 22.4640, &
31.5105, 44.2001, 62.0000, 85.7000, 109.4000, 133.1000, &
156.8000, 180.5000, 204.2000, 227.9000, 251.6000, 275.3000, &
299.0000, 322.7000, 346.4000, 370.1000, 393.8000, 417.5000, &
441.2000, 464.9000, 488.6000, 512.3000, 536.0000, 559.7000, &
583.4000, 607.1000, 630.8000, 654.5000, 678.2000, 701.9000, &
725.6000, 749.3000, 773.0000, 796.7000, 820.4000, 844.1000, &
867.8000, 891.5000, 915.2000, 938.9000, 962.6000, 986.3000, &
1010.0000/
!
data (ozone(i,3),i=1,np)/ &
0.1728E-06, 0.2131E-06, 0.2537E-06, 0.2944E-06, 0.3353E-06, &
0.3764E-06, 0.4176E-06, 0.4590E-06, 0.5006E-06, 0.5423E-06, &
0.5842E-06, 0.6263E-06, 0.6685E-06, 0.7112E-06, 0.7631E-06, &
0.1040E-05, 0.1340E-05, 0.1660E-05, 0.2001E-05, 0.2362E-05, &
0.2746E-05, 0.3153E-05, 0.3762E-05, 0.4988E-05, 0.6518E-05, &
0.8352E-05, 0.9328E-05, 0.9731E-05, 0.8985E-05, 0.7632E-05, &
0.6814E-05, 0.6384E-05, 0.5718E-05, 0.4728E-05, 0.4136E-05, &
0.3033E-05, 0.2000E-05, 0.1486E-05, 0.1121E-05, 0.8680E-06, &
0.6474E-06, 0.5164E-06, 0.3921E-06, 0.2996E-06, 0.2562E-06, &
0.2139E-06, 0.1723E-06, 0.1460E-06, 0.1360E-06, 0.1267E-06, &
0.1189E-06, 0.1114E-06, 0.1040E-06, 0.9678E-07, 0.8969E-07, &
0.8468E-07, 0.8025E-07, 0.7590E-07, 0.7250E-07, 0.6969E-07, &
0.6694E-07, 0.6429E-07, 0.6208E-07, 0.5991E-07, 0.5778E-07, &
0.5575E-07, 0.5403E-07, 0.5233E-07, 0.5067E-07, 0.4904E-07, &
0.4721E-07, 0.4535E-07, 0.4353E-07, 0.4173E-07, 0.3997E-07/
!--------------------------------------------------------------------------------
! data set 3
! sub-arctic winter (75 levels) : p(mb) o3(g/g)
! surface temp = 257.1
!
data (pres(i,4),i=1,np)/ &
0.0006244, 0.0008759, 0.0012286, 0.0017234, 0.0024174, &
0.0033909, 0.0047565, 0.0066720, 0.0093589, 0.0131278, &
0.0184145, 0.0258302, 0.0362323, 0.0508234, 0.0712906, &
0.1000000, 0.1402710, 0.1967600, 0.2759970, 0.3871430, &
0.5430, 0.7617, 1.0685, 1.4988, 2.1024, 2.9490, &
4.1366, 5.8025, 8.1392, 11.4170, 16.0147, 22.4640, &
31.5105, 44.2001, 62.0000, 85.7750, 109.5500, 133.3250, &
157.1000, 180.8750, 204.6500, 228.4250, 252.2000, 275.9750, &
299.7500, 323.5250, 347.3000, 371.0750, 394.8500, 418.6250, &
442.4000, 466.1750, 489.9500, 513.7250, 537.5000, 561.2750, &
585.0500, 608.8250, 632.6000, 656.3750, 680.1500, 703.9250, &
727.7000, 751.4750, 775.2500, 799.0250, 822.8000, 846.5750, &
870.3500, 894.1250, 917.9000, 941.6750, 965.4500, 989.2250, &
1013.0000/
!
data (ozone(i,4),i=1,np)/ &
0.2683E-06, 0.3562E-06, 0.4464E-06, 0.5387E-06, 0.6333E-06, &
0.7301E-06, 0.8291E-06, 0.9306E-06, 0.1034E-05, 0.1140E-05, &
0.1249E-05, 0.1360E-05, 0.1474E-05, 0.1855E-05, 0.2357E-05, &
0.2866E-05, 0.3383E-05, 0.3906E-05, 0.4437E-05, 0.4975E-05, &
0.5513E-05, 0.6815E-05, 0.8157E-05, 0.1008E-04, 0.1200E-04, &
0.1242E-04, 0.1250E-04, 0.1157E-04, 0.1010E-04, 0.9063E-05, &
0.8836E-05, 0.8632E-05, 0.8391E-05, 0.7224E-05, 0.6054E-05, &
0.4503E-05, 0.3204E-05, 0.2278E-05, 0.1833E-05, 0.1433E-05, &
0.9996E-06, 0.7440E-06, 0.5471E-06, 0.3944E-06, 0.2852E-06, &
0.1977E-06, 0.1559E-06, 0.1333E-06, 0.1126E-06, 0.9441E-07, &
0.7678E-07, 0.7054E-07, 0.6684E-07, 0.6323E-07, 0.6028E-07, &
0.5746E-07, 0.5468E-07, 0.5227E-07, 0.5006E-07, 0.4789E-07, &
0.4576E-07, 0.4402E-07, 0.4230E-07, 0.4062E-07, 0.3897E-07, &
0.3793E-07, 0.3697E-07, 0.3602E-07, 0.3506E-07, 0.3413E-07, &
0.3326E-07, 0.3239E-07, 0.3153E-07, 0.3069E-07, 0.2987E-07/
!--------------------------------------------------------------------------------
! data set 4
! tropical (75 levels) : p(mb) o3(g/g)
! surface temp = 300.0
!
data (pres(i,5),i=1,np)/ &
0.0006244, 0.0008759, 0.0012286, 0.0017234, 0.0024174, &
0.0033909, 0.0047565, 0.0066720, 0.0093589, 0.0131278, &
0.0184145, 0.0258302, 0.0362323, 0.0508234, 0.0712906, &
0.1000000, 0.1402710, 0.1967600, 0.2759970, 0.3871430, &
0.5430, 0.7617, 1.0685, 1.4988, 2.1024, 2.9490, &
4.1366, 5.8025, 8.1392, 11.4170, 16.0147, 22.4640, &
31.5105, 44.2001, 62.0000, 85.7750, 109.5500, 133.3250, &
157.1000, 180.8750, 204.6500, 228.4250, 252.2000, 275.9750, &
299.7500, 323.5250, 347.3000, 371.0750, 394.8500, 418.6250, &
442.4000, 466.1750, 489.9500, 513.7250, 537.5000, 561.2750, &
585.0500, 608.8250, 632.6000, 656.3750, 680.1500, 703.9250, &
727.7000, 751.4750, 775.2500, 799.0250, 822.8000, 846.5750, &
870.3500, 894.1250, 917.9000, 941.6750, 965.4500, 989.2250, &
1013.0000/
!
data (ozone(i,5),i=1,np)/ &
0.1993E-06, 0.2521E-06, 0.3051E-06, 0.3585E-06, 0.4121E-06, &
0.4661E-06, 0.5203E-06, 0.5748E-06, 0.6296E-06, 0.6847E-06, &
0.7402E-06, 0.7959E-06, 0.8519E-06, 0.9096E-06, 0.1125E-05, &
0.1450E-05, 0.1794E-05, 0.2156E-05, 0.2538E-05, 0.2939E-05, &
0.3362E-05, 0.3785E-05, 0.4753E-05, 0.6005E-05, 0.7804E-05, &
0.9635E-05, 0.1023E-04, 0.1067E-04, 0.1177E-04, 0.1290E-04, &
0.1134E-04, 0.9223E-05, 0.6667E-05, 0.3644E-05, 0.1545E-05, &
0.5355E-06, 0.2523E-06, 0.2062E-06, 0.1734E-06, 0.1548E-06, &
0.1360E-06, 0.1204E-06, 0.1074E-06, 0.9707E-07, 0.8960E-07, &
0.8419E-07, 0.7962E-07, 0.7542E-07, 0.7290E-07, 0.7109E-07, &
0.6940E-07, 0.6786E-07, 0.6635E-07, 0.6500E-07, 0.6370E-07, &
0.6244E-07, 0.6132E-07, 0.6022E-07, 0.5914E-07, 0.5884E-07, &
0.5855E-07, 0.5823E-07, 0.5772E-07, 0.5703E-07, 0.5635E-07, &
0.5570E-07, 0.5492E-07, 0.5412E-07, 0.5335E-07, 0.5260E-07, &
0.5167E-07, 0.5063E-07, 0.4961E-07, 0.4860E-07, 0.4761E-07/
!--------------------------------------------------------------------------------
#ifdef WRF_CHEM
IF ( aer_ra_feedback == 1) then
IF ( .NOT. &
( PRESENT(tauaer300) .AND. &
PRESENT(tauaer400) .AND. &
PRESENT(tauaer600) .AND. &
PRESENT(tauaer999) .AND. &
PRESENT(gaer300) .AND. &
PRESENT(gaer400) .AND. &
PRESENT(gaer600) .AND. &
PRESENT(gaer999) .AND. &
PRESENT(waer300) .AND. &
PRESENT(waer400) .AND. &
PRESENT(waer600) .AND. &
PRESENT(waer999) ) ) THEN
CALL wrf_error_fatal
( 'Warning: missing fields required for aerosol radiation' )
ENDIF
ENDIF
#endif
cldwater = .true.
overcast = .false.
mix=ite-its+1
mkx=kte-kts+1
is_summer=80
ie_summer=265
! testing, need to change iprof, which is function of lat and julian day
! iprof = 1 : mid-latitude summer profile
! = 2 : mid-latitude winter profile
! = 3 : sub-arctic summer profile
! = 4 : sub-arctic winter profile
! = 5 : tropical profile
IF (abs(center_lat) .le. 30. ) THEN ! tropic
iprof = 5
ELSE
IF (center_lat .gt. 0.) THEN
IF (center_lat .gt. 60. ) THEN ! arctic
IF (JULDAY .gt. is_summer .and. JULDAY .lt. ie_summer ) THEN
! arctic summer
iprof = 3
ELSE
! arctic winter
iprof = 4
ENDIF
ELSE ! midlatitude
IF (JULDAY .gt. is_summer .and. JULDAY .lt. ie_summer ) THEN
! north midlatitude summer
iprof = 1
ELSE
! north midlatitude winter
iprof = 2
ENDIF
ENDIF
ELSE
IF (center_lat .lt. -60. ) THEN ! antarctic
IF (JULDAY .lt. is_summer .or. JULDAY .gt. ie_summer ) THEN
! antarctic summer
iprof = 3
ELSE
! antarctic winter
iprof = 4
ENDIF
ELSE ! midlatitude
IF (JULDAY .lt. is_summer .or. JULDAY .gt. ie_summer ) THEN
! south midlatitude summer
iprof = 1
ELSE
! south midlatitude winter
iprof = 2
ENDIF
ENDIF
ENDIF
ENDIF
j_loop: DO J=jts,jte
DO K=kts,kte
DO I=its,ite
cwc(i,k,1) = 0.
cwc(i,k,2) = 0.
ENDDO
ENDDO
DO K=1,np
p(k)=pres(k,iprof)
ENDDO
! reverse vars
!
DO K=kts,kte+1
DO I=its,ite
NK=kme-K+kms
P8W2D(I,K)=p8w3d(i,nk,j)*0.01 ! P8w2D is in mb
ENDDO
ENDDO
DO I=its,ite
P8W2D(I,0)=.0
ENDDO
!
DO K=kts,kte
DO I=its,ite
NK=kme-1-K+kms
TTEN2D(I,K)=0.
T2D(I,K)=T3D(I,NK,J)
! SH2D specific humidity
SH2D(I,K)=QV3D(I,NK,J)/(1.+QV3D(I,NK,J))
SH2D(I,K)=max(0.,SH2D(I,K))
cwc(I,K,2)=QC3D(I,NK,J)
cwc(I,K,2)=max(0.,cwc(I,K,2))
P2D(I,K)=p3d(i,nk,j)*0.01 ! P2D is in mb
fcld2D(I,K)=CLDFRA3D(I,NK,J)
ENDDO
ENDDO
! This logic is tortured because cannot test F_QI unless
! it is present, and order of evaluation of expressions
! is not specified in Fortran
IF ( PRESENT ( F_QI ) ) THEN
predicate = F_QI
ELSE
predicate = .FALSE.
ENDIF
IF (.NOT. warm_rain .AND. .NOT. predicate ) THEN
DO K=kts,kte
DO I=its,ite
IF (T2D(I,K) .lt. 273.15) THEN
cwc(I,K,1)=cwc(I,K,2)
cwc(I,K,2)=0.
ENDIF
ENDDO
ENDDO
ENDIF
IF ( PRESENT( F_QNDROP ) ) THEN
IF ( F_QNDROP ) THEN
DO K=kts,kte
DO I=its,ite
NK=kme-1-K+kms
qndrop2d(I,K)=qndrop3d(I,NK,j)
ENDDO
ENDDO
qndrop2d(:,kts-1)=0.
END IF
END IF
DO I=its,ite
TTEN2D(I,0)=0.
T2D(I,0)=T2D(I,1)
! SH2D specific humidity
SH2D(I,0)=0.5*SH2D(i,1)
cwc(I,0,2)=0.
cwc(I,0,1)=0.
P2D(I,0)=0.5*(P8W2D(I,0)+P8W2D(I,1))
fcld2D(I,0)=0.
ENDDO
!
IF ( PRESENT( F_QI ) .AND. PRESENT( qi3d) ) THEN
IF ( (F_QI) ) THEN
DO K=kts,kte
DO I=its,ite
NK=kme-1-K+kms
cwc(I,K,1)=QI3D(I,NK,J)
cwc(I,K,1)=max(0.,cwc(I,K,1))
ENDDO
ENDDO
ENDIF
ENDIF
!
! ... Vertical profiles for ozone
!
call o3prof
(np, p, ozone(1,iprof), its, ite, kts-1, kte, P2D, O3)
! ... Vertical profiles for effective particle size
!
pi = 4.*atan(1.0)
third=1./3.
rhoh2o=1.e3
relconst=3/(4.*pi*rhoh2o)
! minimun liquid water path to calculate rel
! corresponds to optical depth of 1.e-3 for radius 4 microns.
lwpmin=3.e-5
do k = kts-1, kte
do i = its, ite
reff(i,k,2) = 10.
if( PRESENT( F_QNDROP ) ) then
if( F_QNDROP ) then
if ( cwc(i,k,2)*(P8W2D(I,K+1)-P8W2D(I,K)).gt.lwpmin.and. &
qndrop2d(i,k).gt.1000. ) then
reff(i,k,2)=(relconst*cwc(i,k,2)/qndrop2d(i,k))**third ! effective radius in m
! apply scaling from Martin et al., JAS 51, 1830.
reff(i,k,2)=1.1*reff(i,k,2)
reff(i,k,2)=reff(i,k,2)*1.e6 ! convert from m to microns
reff(i,k,2)=max(reff(i,k,2),4.)
reff(i,k,2)=min(reff(i,k,2),20.)
end if
end if
end if
reff(i,k,1) = 80.
end do
end do
!
! ... Level indices separating high, middle and low clouds
!
do i = its, ite
p400(i) = 1.e5
p700(i) = 1.e5
enddo
do k = kts-1,kte+1
do i = its, ite
if (abs(P8W2D(i,k) - 400.) .lt. p400(i)) then
p400(i) = abs(P8W2D(i,k) - 400.)
ict(i) = k
endif
if (abs(P8W2D(i,k) - 700.) .lt. p700(i)) then
p700(i) = abs(P8W2D(i,k) - 700.)
icb(i) = k
endif
end do
end do
!wig beg
! ... Aerosol effects. Added aerosol feedbacks with MOSAIC, Dec. 2005.
!
do ib = 1, 11
do k = kts-1,kte
do i = its,ite
taual(i,k,ib) = 0.
ssaal(i,k,ib) = 0.
asyal(i,k,ib) = 0.
end do
end do
end do
#ifdef WRF_CHEM
IF ( AER_RA_FEEDBACK == 1) then
!wig end
do ib = 1, 11
do k = kts-1,kte-1 !wig
do i = its,ite
! taual(i,kte-k,ib) = 0.
! ssaal(i,kte-k,ib) = 0.
! asyal(i,kte-k,ib) = 0.
!jcb beg
! convert optical properties at 300,400,600, and 999 to conform to the band wavelengths
! these are: 200,235,270,287.5,302.5,305,362.5,550,1920,1745,6135; why the emphasis on the UV?
! taual - use angstrom exponent
if(tauaer300(i,k+1,j).gt.thresh .and. tauaer999(i,k+1,j).gt.thresh) then
ang=log(tauaer300(i,k+1,j)/tauaer999(i,k+1,j))/log(999./300.)
! write(6,*)i,k,ang,tauaer300(i,k+1,j),tauaer999(i,k+1,j)
taual(i,kte-k,ib)=tauaer400(i,k+1,j)*(0.4/midbands(ib))**ang ! notice reserved variable
! write(6,10001)i,k,ang,tauaer300(i,k+1,j),tauaer999(i,k+1,j),midbands(ib),taual(i,k,ib)
!10001 format(i3,i3,5f12.6)
! ssa - linear interpolation; extrapolation
slope=(waer600(i,k+1,j)-waer400(i,k+1,j))/.2
ssaal(i,kte-k,ib) = slope*(midbands(ib)-.6)+waer600(i,k+1,j) ! notice reversed variables
if(ssaal(i,kte-k,ib).lt.0.4) ssaal(i,kte-k,ib)=0.4
if(ssaal(i,kte-k,ib).ge.1.0) ssaal(i,kte-k,ib)=1.0
! g - linear interpolation;extrapolation
slope=(gaer600(i,k+1,j)-gaer400(i,k+1,j))/.2
asyal(i,kte-k,ib) = slope*(midbands(ib)-.6)+gaer600(i,k+1,j) ! notice reversed varaibles
if(asyal(i,kte-k,ib).lt.0.5) asyal(i,kte-k,ib)=0.5
if(asyal(i,kte-k,ib).ge.1.0) asyal(i,kte-k,ib)=1.0
endif
!jcb end
end do
end do
end do
!wig beg
do ib = 1, 11
do i = its,ite
slope = 0. !use slope as a sum holder
do k = kts-1,kte
slope = slope + taual(i,k,ib)
end do
if( slope < 0. ) then
write(msg,'("ERROR: Negative total optical depth of ",f8.2," at point i,j,ib=",3i5)') slope,i,j,ib
call wrf_error_fatal
(msg)
else if( slope > 5. ) then
call wrf_message
("-------------------------")
write(msg,'("WARNING: Large total optical depth of ",f8.2," at point i,j,ib=",3i5)') slope,i,j,ib
call wrf_message
(msg)
call wrf_message
("Diagnostics 1: k, tauaer300, tauaer400, tauaer600, tauaer999")
do k=kts,kte
write(msg,'(i4,4f8.2)') k, tauaer300(i,k,j), tauaer400(i,k,j), &
tauaer600(i,k,j), tauaer999(i,k,j)
call wrf_message
(msg)
end do
call wrf_message
("Diagnostics 2: k, gaer300, gaer400, gaer600, gaer999")
do k=kts,kte
write(msg,'(i4,4f8.2)') k, gaer300(i,k,j), gaer400(i,k,j), &
gaer600(i,k,j), gaer999(i,k,j)
call wrf_message
(msg)
end do
call wrf_message
("Diagnostics 3: k, waer300, waer400, waer600, waer999")
do k=kts,kte
write(msg,'(i4,4f8.2)') k, waer300(i,k,j), waer400(i,k,j), &
waer600(i,k,j), waer999(i,k,j)
call wrf_message
(msg)
end do
call wrf_message
("Diagnostics 4: k, ssaal, asyal, taual")
do k=kts-1,kte
write(msg,'(i4,3f8.2)') k, ssaal(i,k,ib), asyal(i,k,ib), taual(i,k,ib)
call wrf_message
(msg)
end do
call wrf_message
("-------------------------")
end if
end do
end do
!wig end
endif
#endif
!
! ... Initialize output arrays
!
do ib = 1, 2
do k = kts-1, kte
do i = its, ite
taucld(i,k,ib) = 0.
end do
end do
end do
!
do k = kts-1,kte+1
do i = its,ite
flx(i,k) = 0.
flxd(i,k) = 0.
end do
end do
!
! ... Solar zenith angle
!
do i = its,ite
xt24 = mod(xtime + radfrq * 0.5, 1440.)
tloctm = GMT + xt24 / 60. + XLONG(i,j) / 15.
hrang = 15. * (tloctm - 12.) * degrad
xxlat = XLAT(i,j) * degrad
cosz(i) = sin(xxlat) * sin(declin) + &
cos(xxlat) * cos(declin) * cos(hrang)
rsuvbm(i) = ALB(i,j)
rsuvdf(i) = ALB(i,j)
rsirbm(i) = ALB(i,j)
rsirdf(i) = ALB(i,j)
end do
call sorad
(mix,1,1,mkx+1,p8w2D,t2D,sh2D,o3, &
overcast,cldwater,cwc,taucld,reff,fcld2D,ict,icb,&
taual,ssaal,asyal, &
cosz,rsuvbm,rsuvdf,rsirbm,rsirdf, &
flx,flxd)
!
! ... Convert the units of flx and flc from fraction to w/m^2
!
do k = kts, kte
do i = its, ite
nk=kme-1-k+kms
if(present(taucldc)) taucldc(i,nk,j)=taucld(i,k,2)
if(present(taucldi)) taucldi(i,nk,j)=taucld(i,k,1)
enddo
enddo
do k = kts, kte+1
do i = its, ite
if (cosz(i) .lt. thresh) then
flx(i,k) = 0.
else
flx(i,k) = flx(i,k) * SOLCON * cosz(i)
endif
end do
end do
!
! ... Calculate heating rate (deg/sec)
!
fac = .01 * g / Cp
do k = kts, kte
do i = its, ite
if (cosz(i) .gt. thresh) then
TTEN2D(i,k) = - fac * (flx(i,k) - flx(i,k+1))/ &
(p8w2d(i,k)-p8w2d(i,k+1))
endif
end do
end do
! upward top of atmosphere
do i = its, ite
if (cosz(i) .le. thresh) then
RSWTOA(i,j) = 0.
else
RSWTOA(i,j) = flx(i,kts) - flxd(i,kts) * SOLCON * cosz(i)
endif
end do
!
! ... Absorbed part in surface energy budget
!
do i = its, ite
if (cosz(i) .le. thresh) then
GSW(i,j) = 0.
else
GSW(i,j) = (1. - rsuvbm(i)) * flxd(i,kte+1) * SOLCON * cosz(i)
endif
end do
DO K=kts,kte
NK=kme-1-K+kms
DO I=its,ite
! FIX FROM GODDARD FOR NEGATIVE VALUES
TTEN2D(I,NK)=MAX(TTEN2D(I,NK),0.)
RTHRATEN(I,K,J)=RTHRATEN(I,K,J)+TTEN2D(I,NK)/pi3D(I,K,J)
ENDDO
ENDDO
!
ENDDO j_loop
END SUBROUTINE GSFCSWRAD
!********************* Version Solar-6 (May 8, 1997) *****************
subroutine sorad (m,n,ndim,np,pl,ta,wa,oa, & 1,3
overcast,cldwater,cwc,taucld,reff,fcld,ict,icb, &
taual,ssaal,asyal, &
cosz,rsuvbm,rsuvdf,rsirbm,rsirdf, &
flx,flxd)
!************************************************************************
!
! Version Solar-6 (May 8, 1997)
!
! New feature of this version is:
! (1) An option is added for scaling the cloud optical thickness. If
! the fractional cloud cover, fcld, in an atmospheric model is alway
! either 1 or 0 (i.e. partly cloudy sky is not allowed), it does
! not require the scaling of cloud optical thickness, and the
! option "overcast" can be set to .true. Computation is faster
! with this option than with overcast=.false.
!
!**********************************************************************
!
! Version Solar-5 (April 1997)
!
! New features of this version are:
! (1) Cloud optical properties can be computed from cloud water/ice
! amount and the effective particle size.
! (2) Aerosol optical properties are functions of height and band.
! (3) A maximum-random cloud overlapping approximation is applied.
!
!*********************************************************************
!
! This routine computes solar fluxes due to the absoption by water
! vapor, ozone, co2, o2, clouds, and aerosols and due to the
! scattering by clouds, aerosols, and gases.
!
! The solar spectrum is divided into one UV+visible band and three IR
! bands separated by the wavelength 0.7 micron. The UV+visible band
! is further divided into eight sub-bands.
!
! This is a vectorized code. It computes fluxes simultaneously for
! (m x n) soundings, which is a subset of (m x ndim) soundings.
! In a global climate model, m and ndim correspond to the numbers of
! grid boxes in the zonal and meridional directions, respectively.
!
! Ice and liquid cloud particles are allowed to co-exist in a layer.
!
! There is an option of providing either cloud ice/water mixing ratio
! (cwc) or thickness (taucld). If the former is provided, set
! cldwater=.true., and taucld will be computed from cwc and reff as a
! function of spectra band. Otherwise, set cldwater=.false., and
! specify taucld, independent of spectral band.
!
! If no information is available for reff, a default value of
! 10 micron for liquid water and 75 micron for ice can be used.
! For a clear layer, reff can be set to any values except zero.
!
! The maximum-random assumption is applied for treating cloud
! overlapping.
! Clouds are grouped into high, middle, and low clouds separated by
! the level indices ict and icb. For detail, see subroutine cldscale.
!
! In a high spatial-resolution atmospheric model, fractional cloud cover
! might be computed to be either 0 or 1. In such a case, scaling of the
! cloud optical thickness is not necessary, and the computation can be
! made faster by setting overcast=.true. The option overcast=.false.
! can be applied to any values of the fractional cloud cover, but the
! computation is slower.
!
! Aerosol optical thickness, single-scattering albaedo, and asymmtry
! factor can be specified as functions of height and spectral band.
!
!----- Input parameters:
! units size
! number of soundings in zonal direction (m) n/d 1
! number of soundings in meridional direction (n) n/d 1
! maximum number of soundings in n/d 1
! meridional direction (ndim>=n)
! number of atmospheric layers (np) n/d 1
! level pressure (pl) mb m*ndim*(np+1)
! layer temperature (ta) k m*ndim*np
! layer specific humidity (wa) gm/gm m*ndim*np
! layer ozone concentration (oa) gm/gm m*ndim*np
! co2 mixing ratio by volumn (co2) pppv 1
! option for scaling cloud optical thickness n/d 1
! overcast="true" if scaling is NOT required
! overcast="fasle" if scaling is required
! option for cloud optical thickness n/d 1
! cldwater="true" if cwc is provided
! cldwater="false" if taucld is provided
! cloud water mixing ratio (cwc) gm/gm m*ndim*np*2
! index 1 for ice particles
! index 2 for liquid drops
! cloud optical thickness (taucld) n/d m*ndim*np*2
! index 1 for ice particles
! index 2 for liquid drops
! effective cloud-particle size (reff) micrometer m*ndim*np*2
! index 1 for ice particles
! index 2 for liquid drops
! cloud amount (fcld) fraction m*ndim*np
! level index separating high and middle n/d 1
! clouds (ict)
! level index separating middle and low n/d 1
! clouds (icb)
! aerosol optical thickness (taual) n/d m*ndim*np*11
! aerosol single-scattering albedo (ssaal) n/d m*ndim*np*11
! aerosol asymmetry factor (asyal) n/d m*ndim*np*11
! in the uv region :
! index 1 for the 0.175-0.225 micron band
! index 2 for the 0.225-0.245; 0.260-0.280 micron band
! index 3 for the 0.245-0.260 micron band
! index 4 for the 0.280-0.295 micron band
! index 5 for the 0.295-0.310 micron band
! index 6 for the 0.310-0.320 micron band
! index 7 for the 0.325-0.400 micron band
! in the par region :
! index 8 for the 0.400-0.700 micron band
! in the infrared region :
! index 9 for the 0.700-1.220 micron band
! index 10 for the 1.220-2.270 micron band
! index 11 for the 2.270-10.00 micron band
! cosine of solar zenith angle (cosz) n/d m*ndim
! uv+visible sfc albedo for beam radiation
! for wavelengths<0.7 micron (rsuvbm) fraction m*ndim
! uv+visible sfc albedo for diffuse radiation
! for wavelengths<0.7 micron (rsuvdf) fraction m*ndim
! ir sfc albedo for beam radiation
! for wavelengths>0.7 micron (rsirbm) fraction m*ndim
! ir sfc albedo for diffuse radiation (rsirdf) fraction m*ndim
!
!----- Output parameters
!
! all-sky flux (downward minus upward) (flx) fraction m*ndim*(np+1)
! clear-sky flux (downward minus upward) (flc) fraction m*ndim*(np+1)
! all-sky direct downward uv (0.175-0.4 micron)
! flux at the surface (fdiruv) fraction m*ndim
! all-sky diffuse downward uv flux at
! the surface (fdifuv) fraction m*ndim
! all-sky direct downward par (0.4-0.7 micron)
! flux at the surface (fdirpar) fraction m*ndim
! all-sky diffuse downward par flux at
! the surface (fdifpar) fraction m*ndim
! all-sky direct downward ir (0.7-10 micron)
! flux at the surface (fdirir) fraction m*ndim
! all-sky diffuse downward ir flux at
! the surface (fdifir) fraction m*ndim
!
!----- Notes:
!
! (1) The unit of "flux" is fraction of the incoming solar radiation
! at the top of the atmosphere. Therefore, fluxes should
! be equal to "flux" multiplied by the extra-terrestrial solar
! flux and the cosine of solar zenith angle.
! (2) pl(i,j,1) is the pressure at the top of the model, and
! pl(i,j,np+1) is the surface pressure.
! (3) the pressure levels ict and icb correspond approximately
! to 400 and 700 mb.
! (4) if overcast='true', the clear-sky flux, flc, is not computed.
!
!**************************************************************************
implicit none
!**************************************************************************
!-----input parameters
integer m,n,ndim,np
integer ict(m,ndim),icb(m,ndim)
real pl(m,ndim,np+1),ta(m,ndim,np),wa(m,ndim,np),oa(m,ndim,np)
real cwc(m,ndim,np,2),taucld(m,ndim,np,2),reff(m,ndim,np,2), &
fcld(m,ndim,np)
real taual(m,ndim,np,11),ssaal(m,ndim,np,11),asyal(m,ndim,np,11)
real cosz(m,ndim),rsuvbm(m,ndim),rsuvdf(m,ndim), &
rsirbm(m,ndim),rsirdf(m,ndim)
logical overcast,cldwater
!-----output parameters
real flx(m,ndim,np+1),flc(m,ndim,np+1)
real flxu(m,ndim,np+1),flxd(m,ndim,np+1)
real fdiruv (m,ndim),fdifuv (m,ndim)
real fdirpar(m,ndim),fdifpar(m,ndim)
real fdirir (m,ndim),fdifir (m,ndim)
!-----temporary array
integer i,j,k
real cwp(m,n,np,2)
real dp(m,n,np),wh(m,n,np),oh(m,n,np),scal(m,n,np)
real swh(m,n,np+1),so2(m,n,np+1),df(m,n,np+1)
real sdf(m,n),sclr(m,n),csm(m,n),x
do j= 1, n
do i= 1, m
if (pl(i,j,1) .eq. 0.0) then
pl(i,j,1)=1.0e-4
endif
enddo
enddo
do j= 1, n
do i= 1, m
swh(i,j,1)=0.
so2(i,j,1)=0.
!-----csm is the effective secant of the solar zenith angle
! see equation (12) of Lacis and Hansen (1974, JAS)
csm(i,j)=35./sqrt(1224.*cosz(i,j)*cosz(i,j)+1.)
enddo
enddo
do k= 1, np
do j= 1, n
do i= 1, m
!-----compute layer thickness and pressure-scaling function.
! indices for the surface level and surface layer
! are np+1 and np, respectively.
dp(i,j,k)=pl(i,j,k+1)-pl(i,j,k)
scal(i,j,k)=dp(i,j,k)*(.5*(pl(i,j,k)+pl(i,j,k+1))/300.)**.8
!-----compute scaled water vapor amount, unit is g/cm**2
! note: the sign prior to the constant 0.00135 was incorrectly
! set to negative in the previous version
wh(i,j,k)=1.02*wa(i,j,k)*scal(i,j,k)* &
(1.+0.00135*(ta(i,j,k)-240.)) +1.e-11
swh(i,j,k+1)=swh(i,j,k)+wh(i,j,k)
!-----compute ozone amount, unit is (cm-atm)stp
! the number 466.7 is a conversion factor from g/cm**2 to (cm-atm)stp
oh(i,j,k)=1.02*oa(i,j,k)*dp(i,j,k)*466.7 +1.e-11
!-----compute layer cloud water amount (gm/m**2)
! the index is 1 for ice crystals and 2 for liquid drops
cwp(i,j,k,1)=1.02*10000.*cwc(i,j,k,1)*dp(i,j,k)
cwp(i,j,k,2)=1.02*10000.*cwc(i,j,k,2)*dp(i,j,k)
enddo
enddo
enddo
!-----initialize fluxes for all-sky (flx), clear-sky (flc), and
! flux reduction (df)
do k=1, np+1
do j=1, n
do i=1, m
flx(i,j,k)=0.
flc(i,j,k)=0.
flxu(i,j,k)=0.
flxd(i,j,k)=0.
df(i,j,k)=0.
enddo
enddo
enddo
!-----compute solar uv and par fluxes
call soluv
(m,n,ndim,np,oh,dp,overcast,cldwater, &
cwp,taucld,reff,ict,icb,fcld,cosz, &
taual,ssaal,asyal,csm,rsuvbm,rsuvdf, &
flx,flc,flxu,flxd,fdiruv,fdifuv,fdirpar,fdifpar)
!-----compute and update solar ir fluxes
call solir
(m,n,ndim,np,wh,overcast,cldwater, &
cwp,taucld,reff,ict,icb,fcld,cosz, &
taual,ssaal,asyal,csm,rsirbm,rsirdf, &
flx,flc,flxu,flxd,fdirir,fdifir)
!-----compute scaled o2 amount, unit is (cm-atm)stp.
do k= 1, np
do j= 1, n
do i= 1, m
so2(i,j,k+1)=so2(i,j,k)+165.22*scal(i,j,k)
enddo
enddo
enddo
!-----compute flux reduction due to oxygen following
! chou (J. climate, 1990). The fraction 0.0287 is the
! extraterrestrial solar flux in the o2 bands.
do k= 2, np+1
do j= 1, n
do i= 1, m
x=so2(i,j,k)*csm(i,j)
df(i,j,k)=df(i,j,k)+0.0287*(1.-exp(-0.00027*sqrt(x)))
enddo
enddo
enddo
!-----compute scaled co2 amounts. unit is (cm-atm)stp.
do k= 1, np
do j= 1, n
do i= 1, m
so2(i,j,k+1)=so2(i,j,k)+co2*789.*scal(i,j,k)+1.e-11
enddo
enddo
enddo
!-----compute and update flux reduction due to co2 following
! chou (J. Climate, 1990)
call flxco2
(m,n,np,so2,swh,csm,df)
!-----adjust for the effect of o2 cnd co2 on clear-sky fluxes.
do k= 2, np+1
do j= 1, n
do i= 1, m
flc(i,j,k)=flc(i,j,k)-df(i,j,k)
enddo
enddo
enddo
!-----adjust for the all-sky fluxes due to o2 and co2. It is
! assumed that o2 and co2 have no effects on solar radiation
! below clouds.
do j=1,n
do i=1,m
sdf(i,j)=0.0
sclr(i,j)=1.0
enddo
enddo
do k=1,np
do j=1,n
do i=1,m
!-----sclr is the fraction of clear sky.
! sdf is the flux reduction below clouds.
if(fcld(i,j,k).gt.0.01) then
sdf(i,j)=sdf(i,j)+df(i,j,k)*sclr(i,j)*fcld(i,j,k)
sclr(i,j)=sclr(i,j)*(1.-fcld(i,j,k))
endif
flx(i,j,k+1)=flx(i,j,k+1)-sdf(i,j)-df(i,j,k+1)*sclr(i,j)
flxu(i,j,k+1)=flxu(i,j,k+1)-sdf(i,j)-df(i,j,k+1)*sclr(i,j)
flxd(i,j,k+1)=flxd(i,j,k+1)-sdf(i,j)-df(i,j,k+1)*sclr(i,j) ! SG: same as flux????
enddo
enddo
enddo
!-----adjustment for the direct downward ir flux.
do j= 1, n
do i= 1, m
flc(i,j,np+1)=flc(i,j,np+1)+df(i,j,np+1)*rsirbm(i,j)
flx(i,j,np+1)=flx(i,j,np+1)+(sdf(i,j)+ &
df(i,j,np+1)*sclr(i,j))*rsirbm(i,j)
flxu(i,j,np+1)=flxu(i,j,np+1)+(sdf(i,j)+ &
df(i,j,np+1)*sclr(i,j))*rsirbm(i,j)
flxd(i,j,np+1)=flxd(i,j,np+1)+(sdf(i,j)+ &
df(i,j,np+1)*sclr(i,j))*rsirbm(i,j)
fdirir(i,j)=fdirir(i,j)-(sdf(i,j)+df(i,j,np+1)*sclr(i,j))
enddo
enddo
end subroutine sorad
!************************************************************************
subroutine soluv (m,n,ndim,np,oh,dp,overcast,cldwater, & 1,6
cwp,taucld,reff,ict,icb,fcld,cosz, &
taual,ssaal,asyal,csm,rsuvbm,rsuvdf, &
flx,flc,flxu,flxd,fdiruv,fdifuv,fdirpar,fdifpar)
!************************************************************************
! compute solar fluxes in the uv+par region. the spectrum is
! grouped into 8 bands:
!
! Band Micrometer
!
! UV-C 1. .175 - .225
! 2. .225 - .245
! .260 - .280
! 3. .245 - .260
!
! UV-B 4. .280 - .295
! 5. .295 - .310
! 6. .310 - .320
!
! UV-A 7. .320 - .400
!
! PAR 8. .400 - .700
!
!----- Input parameters: units size
!
! number of soundings in zonal direction (m) n/d 1
! number of soundings in meridional direction (n) n/d 1
! maximum number of soundings in n/d 1
! meridional direction (ndim)
! number of atmospheric layers (np) n/d 1
! layer ozone content (oh) (cm-atm)stp m*n*np
! layer pressure thickness (dp) mb m*n*np
! option for scaling cloud optical thickness n/d 1
! overcast="true" if scaling is NOT required
! overcast="fasle" if scaling is required
! input option for cloud optical thickness n/d 1
! cldwater="true" if taucld is provided
! cldwater="false" if cwp is provided
! cloud water amount (cwp) gm/m**2 m*n*np*2
! index 1 for ice particles
! index 2 for liquid drops
! cloud optical thickness (taucld) n/d m*ndim*np*2
! index 1 for ice paticles
! index 2 for liquid particles
! effective cloud-particle size (reff) micrometer m*ndim*np*2
! index 1 for ice paticles
! index 2 for liquid particles
! level indiex separating high and n/d m*n
! middle clouds (ict)
! level indiex separating middle and n/d m*n
! low clouds (icb)
! cloud amount (fcld) fraction m*ndim*np
! cosine of solar zenith angle (cosz) n/d m*ndim
! aerosol optical thickness (taual) n/d m*ndim*np*11
! aerosol single-scattering albedo (ssaal) n/d m*ndim*np*11
! aerosol asymmetry factor (asyal) n/d m*ndim*np*11
! cosecant of the solar zenith angle (csm) n/d m*n
! uv+par surface albedo for beam fraction m*ndim
! radiation (rsuvbm)
! uv+par surface albedo for diffuse fraction m*ndim
! radiation (rsuvdf)
!
!---- temporary array
!
! scaled cloud optical thickness n/d m*n*np
! for beam radiation (tauclb)
! scaled cloud optical thickness n/d m*n*np
! for diffuse radiation (tauclf)
!
!----- output (updated) parameters:
!
! all-sky net downward flux (flx) fraction m*ndim*(np+1)
! clear-sky net downward flux (flc) fraction m*ndim*(np+1)
! all-sky direct downward uv flux at
! the surface (fdiruv) fraction m*ndim
! all-sky diffuse downward uv flux at
! the surface (fdifuv) fraction m*ndim
! all-sky direct downward par flux at
! the surface (fdirpar) fraction m*ndim
! all-sky diffuse downward par flux at
! the surface (fdifpar) fraction m*ndim
!
!***********************************************************************
implicit none
!***********************************************************************
!-----input parameters
integer m,n,ndim,np
integer ict(m,ndim),icb(m,ndim)
real taucld(m,ndim,np,2),reff(m,ndim,np,2),fcld(m,ndim,np)
real cc(m,n,3),cosz(m,ndim)
real cwp(m,n,np,2),oh(m,n,np),dp(m,n,np)
real taual(m,ndim,np,11),ssaal(m,ndim,np,11),asyal(m,ndim,np,11)
real rsuvbm(m,ndim),rsuvdf(m,ndim),csm(m,n)
logical overcast,cldwater
!-----output (updated) parameter
real flx(m,ndim,np+1),flc(m,ndim,np+1)
real flxu(m,ndim,np+1),flxd(m,ndim,np+1)
real fdiruv (m,ndim),fdifuv (m,ndim)
real fdirpar(m,ndim),fdifpar(m,ndim)
!-----static parameters
integer nband
parameter (nband=8)
real hk(nband),xk(nband),ry(nband)
real aig(3),awg(3)
!-----temporary array
integer i,j,k,ib
real tauclb(m,n,np),tauclf(m,n,np),asycl(m,n,np)
real taurs,tauoz,tausto,ssatau,asysto,tauto,ssato,asyto
real taux,reff1,reff2,g1,g2
real td(m,n,np+1,2),rr(m,n,np+1,2),tt(m,n,np+1,2), &
rs(m,n,np+1,2),ts(m,n,np+1,2)
real fall(m,n,np+1),fclr(m,n,np+1),fsdir(m,n),fsdif(m,n)
real fallu(m,n,np+1),falld(m,n,np+1)
real asyclt(m,n)
real rr1t(m,n),tt1t(m,n),td1t(m,n),rs1t(m,n),ts1t(m,n)
real rr2t(m,n),tt2t(m,n),td2t(m,n),rs2t(m,n),ts2t(m,n)
!-----hk is the fractional extra-terrestrial solar flux in each
! of the 8 bands. the sum of hk is 0.47074.
data hk/.00057, .00367, .00083, .00417, &
.00600, .00556, .05913, .39081/
!-----xk is the ozone absorption coefficient. unit: /(cm-atm)stp
data xk /30.47, 187.2, 301.9, 42.83, &
7.09, 1.25, 0.0345, 0.0539/
!-----ry is the extinction coefficient for Rayleigh scattering.
! unit: /mb.
data ry /.00604, .00170, .00222, .00132, &
.00107, .00091, .00055, .00012/
!-----coefficients for computing the asymmetry factor of ice clouds
! from asycl=aig(*,1)+aig(*,2)*reff+aig(*,3)*reff**2, independent
! of spectral band.
data aig/.74625000,.00105410,-.00000264/
!-----coefficients for computing the asymmetry factor of liquid
! clouds from asycl=awg(*,1)+awg(*,2)*reff+awg(*,3)*reff**2,
! independent of spectral band.
data awg/.82562000,.00529000,-.00014866/
!-----initialize fdiruv, fdifuv, surface reflectances and transmittances.
! cc is the maximum cloud cover in each of the three cloud groups.
do j= 1, n
do i= 1, m
fdiruv(i,j)=0.0
fdifuv(i,j)=0.0
rr(i,j,np+1,1)=rsuvbm(i,j)
rr(i,j,np+1,2)=rsuvbm(i,j)
rs(i,j,np+1,1)=rsuvdf(i,j)
rs(i,j,np+1,2)=rsuvdf(i,j)
td(i,j,np+1,1)=0.0
td(i,j,np+1,2)=0.0
tt(i,j,np+1,1)=0.0
tt(i,j,np+1,2)=0.0
ts(i,j,np+1,1)=0.0
ts(i,j,np+1,2)=0.0
cc(i,j,1)=0.0
cc(i,j,2)=0.0
cc(i,j,3)=0.0
enddo
enddo
!-----compute cloud optical thickness
if (cldwater) then
do k= 1, np
do j= 1, n
do i= 1, m
taucld(i,j,k,1)=cwp(i,j,k,1)*( 3.33e-4+2.52/reff(i,j,k,1))
taucld(i,j,k,2)=cwp(i,j,k,2)*(-6.59e-3+1.65/reff(i,j,k,2))
enddo
enddo
enddo
endif
!-----options for scaling cloud optical thickness
if (overcast) then
do k= 1, np
do j= 1, n
do i= 1, m
tauclb(i,j,k)=taucld(i,j,k,1)+taucld(i,j,k,2)
tauclf(i,j,k)=tauclb(i,j,k)
enddo
enddo
enddo
do k= 1, 3
do j= 1, n
do i= 1, m
cc(i,j,k)=1.0
enddo
enddo
enddo
else
!-----scale cloud optical thickness in each layer from taucld (with
! cloud amount fcld) to tauclb and tauclf (with cloud amount cc).
! tauclb is the scaled optical thickness for beam radiation and
! tauclf is for diffuse radiation.
call cldscale
(m,n,ndim,np,cosz,fcld,taucld,ict,icb, &
cc,tauclb,tauclf)
endif
!-----compute cloud asymmetry factor for a mixture of
! liquid and ice particles. unit of reff is micrometers.
do k= 1, np
do j= 1, n
do i= 1, m
asyclt(i,j)=1.0
taux=taucld(i,j,k,1)+taucld(i,j,k,2)
if (taux.gt.0.05 .and. fcld(i,j,k).gt.0.01) then
reff1=min(reff(i,j,k,1),130.)
reff2=min(reff(i,j,k,2),20.0)
g1=(aig(1)+(aig(2)+aig(3)*reff1)*reff1)*taucld(i,j,k,1)
g2=(awg(1)+(awg(2)+awg(3)*reff2)*reff2)*taucld(i,j,k,2)
asyclt(i,j)=(g1+g2)/taux
endif
enddo
enddo
do j=1,n
do i=1,m
asycl(i,j,k)=asyclt(i,j)
enddo
enddo
enddo
!-----integration over spectral bands
do 100 ib=1,nband
do 300 k= 1, np
do j= 1, n
do i= 1, m
!-----compute ozone and rayleigh optical thicknesses
taurs=ry(ib)*dp(i,j,k)
tauoz=xk(ib)*oh(i,j,k)
!-----compute clear-sky optical thickness, single scattering albedo,
! and asymmetry factor
tausto=taurs+tauoz+taual(i,j,k,ib)+1.0e-8
ssatau=ssaal(i,j,k,ib)*taual(i,j,k,ib)+taurs
asysto=asyal(i,j,k,ib)*ssaal(i,j,k,ib)*taual(i,j,k,ib)
tauto=tausto
ssato=ssatau/tauto+1.0e-8
ssato=min(ssato,0.999999)
asyto=asysto/(ssato*tauto)
!-----compute reflectance and transmittance for cloudless layers
!- for direct incident radiation
call deledd
(tauto,ssato,asyto,csm(i,j), &
rr1t(i,j),tt1t(i,j),td1t(i,j))
!- for diffuse incident radiation
call sagpol
(tauto,ssato,asyto,rs1t(i,j),ts1t(i,j))
!-----compute reflectance and transmittance for cloud layers
if (tauclb(i,j,k).lt.0.01 .or. fcld(i,j,k).lt.0.01) then
rr2t(i,j)=rr1t(i,j)
tt2t(i,j)=tt1t(i,j)
td2t(i,j)=td1t(i,j)
rs2t(i,j)=rs1t(i,j)
ts2t(i,j)=ts1t(i,j)
else
!-- for direct incident radiation
tauto=tausto+tauclb(i,j,k)
ssato=(ssatau+tauclb(i,j,k))/tauto+1.0e-8
ssato=min(ssato,0.999999)
asyto=(asysto+asycl(i,j,k)*tauclb(i,j,k))/(ssato*tauto)
call deledd
(tauto,ssato,asyto,csm(i,j), &
rr2t(i,j),tt2t(i,j),td2t(i,j))
!-- for diffuse incident radiation
tauto=tausto+tauclf(i,j,k)
ssato=(ssatau+tauclf(i,j,k))/tauto+1.0e-8
ssato=min(ssato,0.999999)
asyto=(asysto+asycl(i,j,k)*tauclf(i,j,k))/(ssato*tauto)
call sagpol
(tauto,ssato,asyto,rs2t(i,j),ts2t(i,j))
endif
enddo
enddo
do j=1,n
do i=1,m
rr(i,j,k,1)=rr1t(i,j)
enddo
enddo
do j=1,n
do i=1,m
tt(i,j,k,1)=tt1t(i,j)
enddo
enddo
do j=1,n
do i=1,m
td(i,j,k,1)=td1t(i,j)
enddo
enddo
do j=1,n
do i=1,m
rs(i,j,k,1)=rs1t(i,j)
enddo
enddo
do j=1,n
do i=1,m
ts(i,j,k,1)=ts1t(i,j)
enddo
enddo
do j=1,n
do i=1,m
rr(i,j,k,2)=rr2t(i,j)
enddo
enddo
do j=1,n
do i=1,m
tt(i,j,k,2)=tt2t(i,j)
enddo
enddo
do j=1,n
do i=1,m
td(i,j,k,2)=td2t(i,j)
enddo
enddo
do j=1,n
do i=1,m
rs(i,j,k,2)=rs2t(i,j)
enddo
enddo
do j=1,n
do i=1,m
ts(i,j,k,2)=ts2t(i,j)
enddo
enddo
300 continue
!-----flux calculations
call cldflx
(m,n,np,ict,icb,overcast,cc,rr,tt,td,rs,ts, &
fclr,fall,fallu,falld,fsdir,fsdif)
do k= 1, np+1
do j= 1, n
do i= 1, m
flx(i,j,k)=flx(i,j,k)+fall(i,j,k)*hk(ib)
flxu(i,j,k)=flxu(i,j,k)+fallu(i,j,k)*hk(ib)
flxd(i,j,k)=flxd(i,j,k)+falld(i,j,k)*hk(ib)
enddo
enddo
do j= 1, n
do i= 1, m
flc(i,j,k)=flc(i,j,k)+fclr(i,j,k)*hk(ib)
enddo
enddo
enddo
!-----compute downward surface fluxes in the UV and par regions
if(ib.lt.8) then
do j=1,n
do i=1,m
fdiruv(i,j)=fdiruv(i,j)+fsdir(i,j)*hk(ib)
fdifuv(i,j)=fdifuv(i,j)+fsdif(i,j)*hk(ib)
enddo
enddo
else
do j=1,n
do i=1,m
fdirpar(i,j)=fsdir(i,j)*hk(ib)
fdifpar(i,j)=fsdif(i,j)*hk(ib)
enddo
enddo
endif
100 continue
end subroutine soluv
!************************************************************************
subroutine solir (m,n,ndim,np,wh,overcast,cldwater, & 1,6
cwp,taucld,reff,ict,icb,fcld,cosz, &
taual,ssaal,asyal,csm,rsirbm,rsirdf, &
flx,flc,flxu,flxd,fdirir,fdifir)
!************************************************************************
! compute solar flux in the infrared region. The spectrum is divided
! into three bands:
!
! band wavenumber(/cm) wavelength (micron)
! 1( 9) 14300-8200 0.70-1.22
! 2(10) 8200-4400 1.22-2.27
! 3(11) 4400-1000 2.27-10.0
!
!----- Input parameters: units size
!
! number of soundings in zonal direction (m) n/d 1
! number of soundings in meridional direction (n) n/d 1
! maximum number of soundings in n/d 1
! meridional direction (ndim)
! number of atmospheric layers (np) n/d 1
! layer scaled-water vapor content (wh) gm/cm^2 m*n*np
! option for scaling cloud optical thickness n/d 1
! overcast="true" if scaling is NOT required
! overcast="fasle" if scaling is required
! input option for cloud optical thickness n/d 1
! cldwater="true" if taucld is provided
! cldwater="false" if cwp is provided
! cloud water concentration (cwp) gm/m**2 m*n*np*2
! index 1 for ice particles
! index 2 for liquid drops
! cloud optical thickness (taucld) n/d m*ndim*np*2
! index 1 for ice paticles
! effective cloud-particle size (reff) micrometer m*ndim*np*2
! index 1 for ice paticles
! index 2 for liquid particles
! level index separating high and n/d m*n
! middle clouds (ict)
! level index separating middle and n/d m*n
! low clouds (icb)
! cloud amount (fcld) fraction m*ndim*np
! aerosol optical thickness (taual) n/d m*ndim*np*11
! aerosol single-scattering albedo (ssaal) n/d m*ndim*np*11
! aerosol asymmetry factor (asyal) n/d m*ndim*np*11
! cosecant of the solar zenith angle (csm) n/d m*n
! near ir surface albedo for beam fraction m*ndim
! radiation (rsirbm)
! near ir surface albedo for diffuse fraction m*ndim
! radiation (rsirdf)
!
!---- temporary array
!
! scaled cloud optical thickness n/d m*n*np
! for beam radiation (tauclb)
! scaled cloud optical thickness n/d m*n*np
! for diffuse radiation (tauclf)
!
!----- output (updated) parameters:
!
! all-sky flux (downward-upward) (flx) fraction m*ndim*(np+1)
! clear-sky flux (downward-upward) (flc) fraction m*ndim*(np+1)
! all-sky direct downward ir flux at
! the surface (fdirir) fraction m*ndim
! all-sky diffuse downward ir flux at
! the surface (fdifir) fraction m*ndim
!
!**********************************************************************
implicit none
!**********************************************************************
!-----input parameters
integer m,n,ndim,np
integer ict(m,ndim),icb(m,ndim)
real cwp(m,n,np,2),taucld(m,ndim,np,2),reff(m,ndim,np,2)
real fcld(m,ndim,np),cc(m,n,3),cosz(m,ndim)
real rsirbm(m,ndim),rsirdf(m,ndim)
real taual(m,ndim,np,11),ssaal(m,ndim,np,11),asyal(m,ndim,np,11)
real wh(m,n,np),csm(m,n)
logical overcast,cldwater
!-----output (updated) parameters
real flx(m,ndim,np+1),flc(m,ndim,np+1)
real flxu(m,ndim,np+1),flxd(m,ndim,np+1)
real fdirir(m,ndim),fdifir(m,ndim)
!-----static parameters
integer nk,nband
parameter (nk=10,nband=3)
real xk(nk),hk(nband,nk),aib(nband,2),awb(nband,2)
real aia(nband,3),awa(nband,3),aig(nband,3),awg(nband,3)
!-----temporary array
integer ib,iv,ik,i,j,k
real tauclb(m,n,np),tauclf(m,n,np)
real ssacl(m,n,np),asycl(m,n,np)
real rr(m,n,np+1,2),tt(m,n,np+1,2),td(m,n,np+1,2), &
rs(m,n,np+1,2),ts(m,n,np+1,2)
real fall(m,n,np+1),fclr(m,n,np+1)
real fallu(m,n,np+1),falld(m,n,np+1)
real fsdir(m,n),fsdif(m,n)
real tauwv,tausto,ssatau,asysto,tauto,ssato,asyto
real taux,reff1,reff2,w1,w2,g1,g2
real ssaclt(m,n),asyclt(m,n)
real rr1t(m,n),tt1t(m,n),td1t(m,n),rs1t(m,n),ts1t(m,n)
real rr2t(m,n),tt2t(m,n),td2t(m,n),rs2t(m,n),ts2t(m,n)
!-----water vapor absorption coefficient for 10 k-intervals.
! unit: cm^2/gm
data xk/ &
0.0010, 0.0133, 0.0422, 0.1334, 0.4217, &
1.334, 5.623, 31.62, 177.8, 1000.0/
!-----water vapor k-distribution function,
! the sum of hk is 0.52926. unit: fraction
data hk/ &
.20673,.08236,.01074, .03497,.01157,.00360, &
.03011,.01133,.00411, .02260,.01143,.00421, &
.01336,.01240,.00389, .00696,.01258,.00326, &
.00441,.01381,.00499, .00115,.00650,.00465, &
.00026,.00244,.00245, .00000,.00094,.00145/
!-----coefficients for computing the extinction coefficient of
! ice clouds from b=aib(*,1)+aib(*,2)/reff
data aib/ &
.000333, .000333, .000333, &
2.52, 2.52, 2.52/
!-----coefficients for computing the extinction coefficient of
! water clouds from b=awb(*,1)+awb(*,2)/reff
data awb/ &
-0.0101, -0.0166, -0.0339, &
1.72, 1.85, 2.16/
!-----coefficients for computing the single scattering albedo of
! ice clouds from ssa=1-(aia(*,1)+aia(*,2)*reff+aia(*,3)*reff**2)
data aia/ &
-.00000260, .00215346, .08938331, &
.00000746, .00073709, .00299387, &
.00000000,-.00000134,-.00001038/
!-----coefficients for computing the single scattering albedo of
! liquid clouds from ssa=1-(awa(*,1)+awa(*,2)*reff+awa(*,3)*reff**2)
data awa/ &
.00000007,-.00019934, .01209318, &
.00000845, .00088757, .01784739, &
-.00000004,-.00000650,-.00036910/
!-----coefficients for computing the asymmetry factor of ice clouds
! from asycl=aig(*,1)+aig(*,2)*reff+aig(*,3)*reff**2
data aig/ &
.74935228, .76098937, .84090400, &
.00119715, .00141864, .00126222, &
-.00000367,-.00000396,-.00000385/
!-----coefficients for computing the asymmetry factor of liquid clouds
! from asycl=awg(*,1)+awg(*,2)*reff+awg(*,3)*reff**2
data awg/ &
.79375035, .74513197, .83530748, &
.00832441, .01370071, .00257181, &
-.00023263,-.00038203, .00005519/
!-----initialize surface fluxes, reflectances, and transmittances.
! cc is the maximum cloud cover in each of the three cloud groups.
do j= 1, n
do i= 1, m
fdirir(i,j)=0.0
fdifir(i,j)=0.0
rr(i,j,np+1,1)=rsirbm(i,j)
rr(i,j,np+1,2)=rsirbm(i,j)
rs(i,j,np+1,1)=rsirdf(i,j)
rs(i,j,np+1,2)=rsirdf(i,j)
td(i,j,np+1,1)=0.0
td(i,j,np+1,2)=0.0
tt(i,j,np+1,1)=0.0
tt(i,j,np+1,2)=0.0
ts(i,j,np+1,1)=0.0
ts(i,j,np+1,2)=0.0
cc(i,j,1)=0.0
cc(i,j,2)=0.0
cc(i,j,3)=0.0
enddo
enddo
!-----integration over spectral bands
do 100 ib=1,nband
iv=ib+8
!-----compute cloud optical thickness
if (cldwater) then
do k= 1, np
do j= 1, n
do i= 1, m
taucld(i,j,k,1)=cwp(i,j,k,1)*(aib(ib,1) &
+aib(ib,2)/reff(i,j,k,1))
taucld(i,j,k,2)=cwp(i,j,k,2)*(awb(ib,1) &
+awb(ib,2)/reff(i,j,k,2))
enddo
enddo
enddo
endif
!-----options for scaling cloud optical thickness
if (overcast) then
do k= 1, np
do j= 1, n
do i= 1, m
tauclb(i,j,k)=taucld(i,j,k,1)+taucld(i,j,k,2)
tauclf(i,j,k)=tauclb(i,j,k)
enddo
enddo
enddo
do k= 1, 3
do j= 1, n
do i= 1, m
cc(i,j,k)=1.0
enddo
enddo
enddo
else
!-----scale cloud optical thickness in each layer from taucld (with
! cloud amount fcld) to tauclb and tauclf (with cloud amount cc).
! tauclb is the scaled optical thickness for beam radiation and
! tauclf is for diffuse radiation.
call cldscale
(m,n,ndim,np,cosz,fcld,taucld,ict,icb, &
cc,tauclb,tauclf)
endif
!-----compute cloud single scattering albedo and asymmetry factor
! for a mixture of ice and liquid particles.
do k= 1, np
do j= 1, n
do i= 1, m
ssaclt(i,j)=1.0
asyclt(i,j)=1.0
taux=taucld(i,j,k,1)+taucld(i,j,k,2)
if (taux.gt.0.05 .and. fcld(i,j,k).gt.0.01) then
reff1=min(reff(i,j,k,1),130.)
reff2=min(reff(i,j,k,2),20.0)
w1=(1.-(aia(ib,1)+(aia(ib,2)+ &
aia(ib,3)*reff1)*reff1))*taucld(i,j,k,1)
w2=(1.-(awa(ib,1)+(awa(ib,2)+ &
awa(ib,3)*reff2)*reff2))*taucld(i,j,k,2)
ssaclt(i,j)=(w1+w2)/taux
g1=(aig(ib,1)+(aig(ib,2)+aig(ib,3)*reff1)*reff1)*w1
g2=(awg(ib,1)+(awg(ib,2)+awg(ib,3)*reff2)*reff2)*w2
asyclt(i,j)=(g1+g2)/(w1+w2)
endif
enddo
enddo
do j=1,n
do i=1,m
ssacl(i,j,k)=ssaclt(i,j)
enddo
enddo
do j=1,n
do i=1,m
asycl(i,j,k)=asyclt(i,j)
enddo
enddo
enddo
!-----integration over the k-distribution function
do 200 ik=1,nk
do 300 k= 1, np
do j= 1, n
do i= 1, m
tauwv=xk(ik)*wh(i,j,k)
!-----compute clear-sky optical thickness, single scattering albedo,
! and asymmetry factor.
tausto=tauwv+taual(i,j,k,iv)+1.0e-8
ssatau=ssaal(i,j,k,iv)*taual(i,j,k,iv)
asysto=asyal(i,j,k,iv)*ssaal(i,j,k,iv)*taual(i,j,k,iv)
!-----compute reflectance and transmittance for cloudless layers
tauto=tausto
ssato=ssatau/tauto+1.0e-8
if (ssato .gt. 0.001) then
ssato=min(ssato,0.999999)
asyto=asysto/(ssato*tauto)
!- for direct incident radiation
call deledd
(tauto,ssato,asyto,csm(i,j), &
rr1t(i,j),tt1t(i,j),td1t(i,j))
!- for diffuse incident radiation
call sagpol
(tauto,ssato,asyto,rs1t(i,j),ts1t(i,j))
else
td1t(i,j)=exp(-tauto*csm(i,j))
ts1t(i,j)=exp(-1.66*tauto)
tt1t(i,j)=0.0
rr1t(i,j)=0.0
rs1t(i,j)=0.0
endif
!-----compute reflectance and transmittance for cloud layers
if (tauclb(i,j,k).lt.0.01 .or. fcld(i,j,k).lt.0.01) then
rr2t(i,j)=rr1t(i,j)
tt2t(i,j)=tt1t(i,j)
td2t(i,j)=td1t(i,j)
rs2t(i,j)=rs1t(i,j)
ts2t(i,j)=ts1t(i,j)
else
!- for direct incident radiation
tauto=tausto+tauclb(i,j,k)
ssato=(ssatau+ssacl(i,j,k)*tauclb(i,j,k))/tauto+1.0e-8
ssato=min(ssato,0.999999)
asyto=(asysto+asycl(i,j,k)*ssacl(i,j,k)*tauclb(i,j,k))/ &
(ssato*tauto)
call deledd
(tauto,ssato,asyto,csm(i,j), &
rr2t(i,j),tt2t(i,j),td2t(i,j))
!- for diffuse incident radiation
tauto=tausto+tauclf(i,j,k)
ssato=(ssatau+ssacl(i,j,k)*tauclf(i,j,k))/tauto+1.0e-8
ssato=min(ssato,0.999999)
asyto=(asysto+asycl(i,j,k)*ssacl(i,j,k)*tauclf(i,j,k))/ &
(ssato*tauto)
call sagpol
(tauto,ssato,asyto,rs2t(i,j),ts2t(i,j))
endif
enddo
enddo
do j=1,n
do i=1,m
rr(i,j,k,1)=rr1t(i,j)
enddo
enddo
do j=1,n
do i=1,m
tt(i,j,k,1)=tt1t(i,j)
enddo
enddo
do j=1,n
do i=1,m
td(i,j,k,1)=td1t(i,j)
enddo
enddo
do j=1,n
do i=1,m
rs(i,j,k,1)=rs1t(i,j)
enddo
enddo
do j=1,n
do i=1,m
ts(i,j,k,1)=ts1t(i,j)
enddo
enddo
do j=1,n
do i=1,m
rr(i,j,k,2)=rr2t(i,j)
enddo
enddo
do j=1,n
do i=1,m
tt(i,j,k,2)=tt2t(i,j)
enddo
enddo
do j=1,n
do i=1,m
td(i,j,k,2)=td2t(i,j)
enddo
enddo
do j=1,n
do i=1,m
rs(i,j,k,2)=rs2t(i,j)
enddo
enddo
do j=1,n
do i=1,m
ts(i,j,k,2)=ts2t(i,j)
enddo
enddo
300 continue
!-----flux calculations
call cldflx
(m,n,np,ict,icb,overcast,cc,rr,tt,td,rs,ts, &
fclr,fall,fallu,falld,fsdir,fsdif)
do k= 1, np+1
do j= 1, n
do i= 1, m
flx(i,j,k) = flx(i,j,k)+fall(i,j,k)*hk(ib,ik)
flxu(i,j,k) = flxu(i,j,k)+fallu(i,j,k)*hk(ib,ik)
flxd(i,j,k) = flxd(i,j,k)+falld(i,j,k)*hk(ib,ik)
enddo
enddo
do j= 1, n
do i= 1, m
flc(i,j,k) = flc(i,j,k)+fclr(i,j,k)*hk(ib,ik)
enddo
enddo
enddo
!-----compute downward surface fluxes in the ir region
do j= 1, n
do i= 1, m
fdirir(i,j) = fdirir(i,j)+fsdir(i,j)*hk(ib,ik)
fdifir(i,j) = fdifir(i,j)+fsdif(i,j)*hk(ib,ik)
enddo
enddo
200 continue
100 continue
end subroutine solir
!********************************************************************
subroutine cldscale (m,n,ndim,np,cosz,fcld,taucld,ict,icb, & 2
cc,tauclb,tauclf)
!********************************************************************
!
! This subroutine computes the high, middle, and
! low cloud amounts and scales the cloud optical thickness.
!
! To simplify calculations in a cloudy atmosphere, clouds are
! grouped into high, middle and low clouds separated by the levels
! ict and icb (level 1 is the top of the model atmosphere).
!
! Within each of the three groups, clouds are assumed maximally
! overlapped, and the cloud cover (cc) of a group is the maximum
! cloud cover of all the layers in the group. The optical thickness
! (taucld) of a given layer is then scaled to new values (tauclb and
! tauclf) so that the layer reflectance corresponding to the cloud
! cover cc is the same as the original reflectance with optical
! thickness taucld and cloud cover fcld.
!
!---input parameters
!
! number of grid intervals in zonal direction (m)
! number of grid intervals in meridional direction (n)
! maximum number of grid intervals in meridional direction (ndim)
! number of atmospheric layers (np)
! cosine of the solar zenith angle (cosz)
! fractional cloud cover (fcld)
! cloud optical thickness (taucld)
! index separating high and middle clouds (ict)
! index separating middle and low clouds (icb)
!
!---output parameters
!
! fractional cover of high, middle, and low clouds (cc)
! scaled cloud optical thickness for beam radiation (tauclb)
! scaled cloud optical thickness for diffuse radiation (tauclf)
!
!********************************************************************
implicit none
!********************************************************************
!-----input parameters
integer m,n,ndim,np
integer ict(m,ndim),icb(m,ndim)
real cosz(m,ndim),fcld(m,ndim,np),taucld(m,ndim,np,2)
!-----output parameters
real cc(m,n,3),tauclb(m,n,np),tauclf(m,n,np)
!-----temporary variables
integer i,j,k,im,it,ia,kk
real fm,ft,fa,xai,taux
!-----pre-computed table
integer nm,nt,na
parameter (nm=11,nt=9,na=11)
real dm,dt,da,t1,caib(nm,nt,na),caif(nt,na)
parameter (dm=0.1,dt=0.30103,da=0.1,t1=-0.9031)
!-----include the pre-computed table of mcai for scaling the cloud optical
! thickness under the assumption that clouds are maximally overlapped
!
! caib is for scaling the cloud optical thickness for direct radiation
! caif is for scaling the cloud optical thickness for diffuse radiation
data ((caib(1,i,j),j=1,11),i=1,9)/ &
.000,0.068,0.140,0.216,0.298,0.385,0.481,0.586,0.705,0.840,1.000, &
.000,0.052,0.106,0.166,0.230,0.302,0.383,0.478,0.595,0.752,1.000, &
.000,0.038,0.078,0.120,0.166,0.218,0.276,0.346,0.438,0.582,1.000, &
.000,0.030,0.060,0.092,0.126,0.164,0.206,0.255,0.322,0.442,1.000, &
.000,0.025,0.051,0.078,0.106,0.136,0.170,0.209,0.266,0.462,1.000, &
.000,0.023,0.046,0.070,0.095,0.122,0.150,0.187,0.278,0.577,1.000, &
.000,0.022,0.043,0.066,0.089,0.114,0.141,0.187,0.354,0.603,1.000, &
.000,0.021,0.042,0.063,0.086,0.108,0.135,0.214,0.349,0.565,1.000, &
.000,0.021,0.041,0.062,0.083,0.105,0.134,0.202,0.302,0.479,1.000/
data ((caib(2,i,j),j=1,11),i=1,9)/ &
.000,0.088,0.179,0.272,0.367,0.465,0.566,0.669,0.776,0.886,1.000, &
.000,0.079,0.161,0.247,0.337,0.431,0.531,0.637,0.749,0.870,1.000, &
.000,0.065,0.134,0.207,0.286,0.372,0.466,0.572,0.692,0.831,1.000, &
.000,0.049,0.102,0.158,0.221,0.290,0.370,0.465,0.583,0.745,1.000, &
.000,0.037,0.076,0.118,0.165,0.217,0.278,0.354,0.459,0.638,1.000, &
.000,0.030,0.061,0.094,0.130,0.171,0.221,0.286,0.398,0.631,1.000, &
.000,0.026,0.052,0.081,0.111,0.146,0.189,0.259,0.407,0.643,1.000, &
.000,0.023,0.047,0.072,0.098,0.129,0.170,0.250,0.387,0.598,1.000, &
.000,0.022,0.044,0.066,0.090,0.118,0.156,0.224,0.328,0.508,1.000/
data ((caib(3,i,j),j=1,11),i=1,9)/ &
.000,0.094,0.189,0.285,0.383,0.482,0.582,0.685,0.788,0.894,1.000, &
.000,0.088,0.178,0.271,0.366,0.465,0.565,0.669,0.776,0.886,1.000, &
.000,0.079,0.161,0.247,0.337,0.431,0.531,0.637,0.750,0.870,1.000, &
.000,0.066,0.134,0.209,0.289,0.375,0.470,0.577,0.697,0.835,1.000, &
.000,0.050,0.104,0.163,0.227,0.300,0.383,0.483,0.606,0.770,1.000, &
.000,0.038,0.080,0.125,0.175,0.233,0.302,0.391,0.518,0.710,1.000, &
.000,0.031,0.064,0.100,0.141,0.188,0.249,0.336,0.476,0.689,1.000, &
.000,0.026,0.054,0.084,0.118,0.158,0.213,0.298,0.433,0.638,1.000, &
.000,0.023,0.048,0.074,0.102,0.136,0.182,0.254,0.360,0.542,1.000/
data ((caib(4,i,j),j=1,11),i=1,9)/ &
.000,0.096,0.193,0.290,0.389,0.488,0.589,0.690,0.792,0.896,1.000, &
.000,0.092,0.186,0.281,0.378,0.477,0.578,0.680,0.785,0.891,1.000, &
.000,0.086,0.174,0.264,0.358,0.455,0.556,0.660,0.769,0.882,1.000, &
.000,0.074,0.153,0.235,0.323,0.416,0.514,0.622,0.737,0.862,1.000, &
.000,0.061,0.126,0.195,0.271,0.355,0.449,0.555,0.678,0.823,1.000, &
.000,0.047,0.098,0.153,0.215,0.286,0.370,0.471,0.600,0.770,1.000, &
.000,0.037,0.077,0.120,0.170,0.230,0.303,0.401,0.537,0.729,1.000, &
.000,0.030,0.062,0.098,0.138,0.187,0.252,0.343,0.476,0.673,1.000, &
.000,0.026,0.053,0.082,0.114,0.154,0.207,0.282,0.391,0.574,1.000/
data ((caib(5,i,j),j=1,11),i=1,9)/ &
.000,0.097,0.194,0.293,0.392,0.492,0.592,0.693,0.794,0.897,1.000, &
.000,0.094,0.190,0.286,0.384,0.483,0.584,0.686,0.789,0.894,1.000, &
.000,0.090,0.181,0.274,0.370,0.468,0.569,0.672,0.778,0.887,1.000, &
.000,0.081,0.165,0.252,0.343,0.439,0.539,0.645,0.757,0.874,1.000, &
.000,0.069,0.142,0.218,0.302,0.392,0.490,0.598,0.717,0.850,1.000, &
.000,0.054,0.114,0.178,0.250,0.330,0.422,0.529,0.656,0.810,1.000, &
.000,0.042,0.090,0.141,0.200,0.269,0.351,0.455,0.589,0.764,1.000, &
.000,0.034,0.070,0.112,0.159,0.217,0.289,0.384,0.515,0.703,1.000, &
.000,0.028,0.058,0.090,0.128,0.174,0.231,0.309,0.420,0.602,1.000/
data ((caib(6,i,j),j=1,11),i=1,9)/ &
.000,0.098,0.196,0.295,0.394,0.494,0.594,0.695,0.796,0.898,1.000, &
.000,0.096,0.193,0.290,0.389,0.488,0.588,0.690,0.792,0.895,1.000, &
.000,0.092,0.186,0.281,0.378,0.477,0.577,0.680,0.784,0.891,1.000, &
.000,0.086,0.174,0.264,0.358,0.455,0.556,0.661,0.769,0.882,1.000, &
.000,0.075,0.154,0.237,0.325,0.419,0.518,0.626,0.741,0.865,1.000, &
.000,0.062,0.129,0.201,0.279,0.366,0.462,0.571,0.694,0.836,1.000, &
.000,0.049,0.102,0.162,0.229,0.305,0.394,0.501,0.631,0.793,1.000, &
.000,0.038,0.080,0.127,0.182,0.245,0.323,0.422,0.550,0.730,1.000, &
.000,0.030,0.064,0.100,0.142,0.192,0.254,0.334,0.448,0.627,1.000/
data ((caib(7,i,j),j=1,11),i=1,9)/ &
.000,0.098,0.198,0.296,0.396,0.496,0.596,0.696,0.797,0.898,1.000, &
.000,0.097,0.194,0.293,0.392,0.491,0.591,0.693,0.794,0.897,1.000, &
.000,0.094,0.190,0.286,0.384,0.483,0.583,0.686,0.789,0.894,1.000, &
.000,0.089,0.180,0.274,0.369,0.467,0.568,0.672,0.778,0.887,1.000, &
.000,0.081,0.165,0.252,0.344,0.440,0.541,0.646,0.758,0.875,1.000, &
.000,0.069,0.142,0.221,0.306,0.397,0.496,0.604,0.722,0.854,1.000, &
.000,0.056,0.116,0.182,0.256,0.338,0.432,0.540,0.666,0.816,1.000, &
.000,0.043,0.090,0.143,0.203,0.273,0.355,0.455,0.583,0.754,1.000, &
.000,0.034,0.070,0.111,0.157,0.210,0.276,0.359,0.474,0.650,1.000/
data ((caib(8,i,j),j=1,11),i=1,9)/ &
.000,0.099,0.198,0.298,0.398,0.497,0.598,0.698,0.798,0.899,1.000, &
.000,0.098,0.196,0.295,0.394,0.494,0.594,0.695,0.796,0.898,1.000, &
.000,0.096,0.193,0.290,0.390,0.489,0.589,0.690,0.793,0.896,1.000, &
.000,0.093,0.186,0.282,0.379,0.478,0.578,0.681,0.786,0.892,1.000, &
.000,0.086,0.175,0.266,0.361,0.458,0.558,0.663,0.771,0.883,1.000, &
.000,0.076,0.156,0.240,0.330,0.423,0.523,0.630,0.744,0.867,1.000, &
.000,0.063,0.130,0.203,0.282,0.369,0.465,0.572,0.694,0.834,1.000, &
.000,0.049,0.102,0.161,0.226,0.299,0.385,0.486,0.611,0.774,1.000, &
.000,0.038,0.078,0.122,0.172,0.229,0.297,0.382,0.498,0.672,1.000/
data ((caib(9,i,j),j=1,11),i=1,9)/ &
.000,0.099,0.199,0.298,0.398,0.498,0.598,0.699,0.799,0.899,1.000, &
.000,0.099,0.198,0.298,0.398,0.497,0.598,0.698,0.798,0.899,1.000, &
.000,0.098,0.196,0.295,0.394,0.494,0.594,0.695,0.796,0.898,1.000, &
.000,0.096,0.193,0.290,0.389,0.488,0.588,0.690,0.792,0.895,1.000, &
.000,0.092,0.185,0.280,0.376,0.474,0.575,0.678,0.782,0.890,1.000, &
.000,0.084,0.170,0.259,0.351,0.447,0.547,0.652,0.762,0.878,1.000, &
.000,0.071,0.146,0.224,0.308,0.398,0.494,0.601,0.718,0.850,1.000, &
.000,0.056,0.114,0.178,0.248,0.325,0.412,0.514,0.638,0.793,1.000, &
.000,0.042,0.086,0.134,0.186,0.246,0.318,0.405,0.521,0.691,1.000/
data ((caib(10,i,j),j=1,11),i=1,9)/ &
.000,0.100,0.200,0.300,0.400,0.500,0.600,0.700,0.800,0.900,1.000, &
.000,0.100,0.200,0.300,0.400,0.500,0.600,0.700,0.800,0.900,1.000, &
.000,0.100,0.200,0.300,0.400,0.500,0.600,0.700,0.800,0.900,1.000, &
.000,0.100,0.199,0.298,0.398,0.498,0.598,0.698,0.798,0.899,1.000, &
.000,0.098,0.196,0.294,0.392,0.491,0.590,0.691,0.793,0.896,1.000, &
.000,0.092,0.185,0.278,0.374,0.470,0.570,0.671,0.777,0.886,1.000, &
.000,0.081,0.162,0.246,0.333,0.424,0.521,0.625,0.738,0.862,1.000, &
.000,0.063,0.128,0.196,0.270,0.349,0.438,0.540,0.661,0.809,1.000, &
.000,0.046,0.094,0.146,0.202,0.264,0.337,0.426,0.542,0.710,1.000/
data ((caib(11,i,j),j=1,11),i=1,9)/ &
.000,0.101,0.202,0.302,0.402,0.502,0.602,0.702,0.802,0.901,1.000, &
.000,0.102,0.202,0.303,0.404,0.504,0.604,0.703,0.802,0.902,1.000, &
.000,0.102,0.205,0.306,0.406,0.506,0.606,0.706,0.804,0.902,1.000, &
.000,0.104,0.207,0.309,0.410,0.510,0.609,0.707,0.805,0.902,1.000, &
.000,0.106,0.208,0.309,0.409,0.508,0.606,0.705,0.803,0.902,1.000, &
.000,0.102,0.202,0.298,0.395,0.493,0.590,0.690,0.790,0.894,1.000, &
.000,0.091,0.179,0.267,0.357,0.449,0.545,0.647,0.755,0.872,1.000, &
.000,0.073,0.142,0.214,0.290,0.372,0.462,0.563,0.681,0.822,1.000, &
.000,0.053,0.104,0.158,0.217,0.281,0.356,0.446,0.562,0.726,1.000/
data ((caif(i,j),j=1,11),i=1,9)/ &
.000,0.099,0.198,0.297,0.397,0.496,0.597,0.697,0.798,0.899,1.000, &
.000,0.098,0.196,0.294,0.394,0.494,0.594,0.694,0.796,0.898,1.000, &
.000,0.096,0.192,0.290,0.388,0.487,0.587,0.689,0.792,0.895,1.000, &
.000,0.092,0.185,0.280,0.376,0.476,0.576,0.678,0.783,0.890,1.000, &
.000,0.085,0.173,0.263,0.357,0.454,0.555,0.659,0.768,0.881,1.000, &
.000,0.076,0.154,0.237,0.324,0.418,0.517,0.624,0.738,0.864,1.000, &
.000,0.063,0.131,0.203,0.281,0.366,0.461,0.567,0.688,0.830,1.000, &
.000,0.052,0.107,0.166,0.232,0.305,0.389,0.488,0.610,0.770,1.000, &
.000,0.043,0.088,0.136,0.189,0.248,0.317,0.400,0.510,0.675,1.000/
!-----clouds within each of the high, middle, and low clouds are assumed
! to be maximally overlapped, and the cloud cover (cc) for a group
! (high, middle, or low) is the maximum cloud cover of all the layers
! within a group
do j=1,n
do i=1,m
cc(i,j,1)=0.0
cc(i,j,2)=0.0
cc(i,j,3)=0.0
enddo
enddo
do j=1,n
do i=1,m
do k=1,ict(i,j)-1
cc(i,j,1)=max(cc(i,j,1),fcld(i,j,k))
enddo
enddo
enddo
do j=1,n
do i=1,m
do k=ict(i,j),icb(i,j)-1
cc(i,j,2)=max(cc(i,j,2),fcld(i,j,k))
enddo
enddo
enddo
do j=1,n
do i=1,m
do k=icb(i,j),np
cc(i,j,3)=max(cc(i,j,3),fcld(i,j,k))
enddo
enddo
enddo
!-----scale the cloud optical thickness.
! taucld(i,j,k,1) is the optical thickness for ice particles, and
! taucld(i,j,k,2) is the optical thickness for liquid particles.
do j=1,n
do i=1,m
do k=1,np
if(k.lt.ict(i,j)) then
kk=1
elseif(k.ge.ict(i,j) .and. k.lt.icb(i,j)) then
kk=2
else
kk=3
endif
tauclb(i,j,k) = 0.0
tauclf(i,j,k) = 0.0
taux=taucld(i,j,k,1)+taucld(i,j,k,2)
if (taux.gt.0.05 .and. fcld(i,j,k).gt.0.01) then
!-----normalize cloud cover
fa=fcld(i,j,k)/cc(i,j,kk)
!-----table look-up
taux=min(taux,32.)
fm=cosz(i,j)/dm
ft=(log10(taux)-t1)/dt
fa=fa/da
im=int(fm+1.5)
it=int(ft+1.5)
ia=int(fa+1.5)
im=max(im,2)
it=max(it,2)
ia=max(ia,2)
im=min(im,nm-1)
it=min(it,nt-1)
ia=min(ia,na-1)
fm=fm-float(im-1)
ft=ft-float(it-1)
fa=fa-float(ia-1)
!-----scale cloud optical thickness for beam radiation.
! the scaling factor, xai, is a function of the solar zenith
! angle, optical thickness, and cloud cover.
xai= (-caib(im-1,it,ia)*(1.-fm)+ &
caib(im+1,it,ia)*(1.+fm))*fm*.5+caib(im,it,ia)*(1.-fm*fm)
xai=xai+(-caib(im,it-1,ia)*(1.-ft)+ &
caib(im,it+1,ia)*(1.+ft))*ft*.5+caib(im,it,ia)*(1.-ft*ft)
xai=xai+(-caib(im,it,ia-1)*(1.-fa)+ &
caib(im,it,ia+1)*(1.+fa))*fa*.5+caib(im,it,ia)*(1.-fa*fa)
xai= xai-2.*caib(im,it,ia)
xai=max(xai,0.0)
tauclb(i,j,k) = taux*xai
!-----scale cloud optical thickness for diffuse radiation.
! the scaling factor, xai, is a function of the cloud optical
! thickness and cover but not the solar zenith angle.
xai= (-caif(it-1,ia)*(1.-ft)+ &
caif(it+1,ia)*(1.+ft))*ft*.5+caif(it,ia)*(1.-ft*ft)
xai=xai+(-caif(it,ia-1)*(1.-fa)+ &
caif(it,ia+1)*(1.+fa))*fa*.5+caif(it,ia)*(1.-fa*fa)
xai= xai-caif(it,ia)
xai=max(xai,0.0)
tauclf(i,j,k) = taux*xai
endif
enddo
enddo
enddo
end subroutine cldscale
!*********************************************************************
subroutine deledd(tau,ssc,g0,csm,rr,tt,td) 4
!*********************************************************************
!
!-----uses the delta-eddington approximation to compute the
! bulk scattering properties of a single layer
! coded following King and Harshvardhan (JAS, 1986)
!
! inputs:
!
! tau: the effective optical thickness
! ssc: the effective single scattering albedo
! g0: the effective asymmetry factor
! csm: the effective secant of the zenith angle
!
! outputs:
!
! rr: the layer reflection of the direct beam
! tt: the layer diffuse transmission of the direct beam
! td: the layer direct transmission of the direct beam
!
!*********************************************************************
implicit none
!*********************************************************************
real zero,one,two,three,four,fourth,seven,thresh
parameter (one =1., three=3.)
parameter (two =2., seven=7.)
parameter (four=4., fourth=.25)
parameter (zero=0., thresh=1.e-8)
!-----input parameters
real tau,ssc,g0,csm
!-----output parameters
real rr,tt,td
!-----temporary parameters
real zth,ff,xx,taup,sscp,gp,gm1,gm2,gm3,akk,alf1,alf2, &
all,bll,st7,st8,cll,dll,fll,ell,st1,st2,st3,st4
!---------------------------------------------------------------------
zth = one / csm
! delta-eddington scaling of single scattering albedo,
! optical thickness, and asymmetry factor,
! K & H eqs(27-29)
ff = g0*g0
xx = one-ff*ssc
taup= tau*xx
sscp= ssc*(one-ff)/xx
gp = g0/(one+g0)
! gamma1, gamma2, and gamma3. see table 2 and eq(26) K & H
! ssc and gp are the d-s single scattering
! albedo and asymmetry factor.
xx = three*gp
gm1 = (seven - sscp*(four+xx))*fourth
gm2 = -(one - sscp*(four-xx))*fourth
! akk is k as defined in eq(25) of K & H
akk = sqrt((gm1+gm2)*(gm1-gm2))
xx = akk * zth
st7 = one - xx
st8 = one + xx
st3 = st7 * st8
if (abs(st3) .lt. thresh) then
zth = zth + 0.001
xx = akk * zth
st7 = one - xx
st8 = one + xx
st3 = st7 * st8
endif
! extinction of the direct beam transmission
td = exp(-taup/zth)
! alf1 and alf2 are alpha1 and alpha2 from eqs (23) & (24) of K & H
gm3 = (two - zth*three*gp)*fourth
xx = gm1 - gm2
alf1 = gm1 - gm3 * xx
alf2 = gm2 + gm3 * xx
! all is last term in eq(21) of K & H
! bll is last term in eq(22) of K & H
xx = akk * two
all = (gm3 - alf2 * zth )*xx*td
bll = (one - gm3 + alf1*zth)*xx
xx = akk * gm3
cll = (alf2 + xx) * st7
dll = (alf2 - xx) * st8
xx = akk * (one-gm3)
fll = (alf1 + xx) * st8
ell = (alf1 - xx) * st7
st2 = exp(-akk*taup)
st4 = st2 * st2
st1 = sscp / ((akk+gm1 + (akk-gm1)*st4) * st3)
! rr is r-hat of eq(21) of K & H
! tt is diffuse part of t-hat of eq(22) of K & H
rr = ( cll-dll*st4 -all*st2)*st1
tt = - ((fll-ell*st4)*td-bll*st2)*st1
rr = max(rr,zero)
tt = max(tt,zero)
end subroutine deledd
!*********************************************************************
subroutine sagpol(tau,ssc,g0,rll,tll) 4
!*********************************************************************
!-----transmittance (tll) and reflectance (rll) of diffuse radiation
! follows Sagan and Pollock (JGR, 1967).
! also, eq.(31) of Lacis and Hansen (JAS, 1974).
!
!-----input parameters:
!
! tau: the effective optical thickness
! ssc: the effective single scattering albedo
! g0: the effective asymmetry factor
!
!-----output parameters:
!
! rll: the layer reflection of diffuse radiation
! tll: the layer transmission of diffuse radiation
!
!*********************************************************************
implicit none
!*********************************************************************
real one,three,four
parameter (one=1., three=3., four=4.)
!-----output parameters:
real tau,ssc,g0
!-----output parameters:
real rll,tll
!-----temporary arrays
real xx,uuu,ttt,emt,up1,um1,st1
xx = one-ssc*g0
uuu = sqrt( xx/(one-ssc))
ttt = sqrt( xx*(one-ssc)*three )*tau
emt = exp(-ttt)
up1 = uuu + one
um1 = uuu - one
xx = um1*emt
st1 = one / ((up1+xx) * (up1-xx))
rll = up1*um1*(one-emt*emt)*st1
tll = uuu*four*emt *st1
end subroutine sagpol
!*******************************************************************
subroutine cldflx (m,n,np,ict,icb,overcast,cc,rr,tt,td,rs,ts,& 2
fclr,fall,fallu,falld,fsdir,fsdif)
!*******************************************************************
! compute upward and downward fluxes using a two-stream adding method
! following equations (3)-(5) of Chou (1992, JAS).
!
! clouds are grouped into high, middle, and low clouds which are
! assumed randomly overlapped. It involves eight sets of calculations.
! In each set of calculations, each atmospheric layer is homogeneous,
! either totally filled with clouds or without clouds.
! input parameters:
!
! m: number of soundings in zonal direction
! n: number of soundings in meridional direction
! np: number of atmospheric layers
! ict: the level separating high and middle clouds
! icb: the level separating middle and low clouds
! cc: effective cloud covers for high, middle and low clouds
! tt: diffuse transmission of a layer illuminated by beam radiation
! td: direct beam tranmssion
! ts: transmission of a layer illuminated by diffuse radiation
! rr: reflection of a layer illuminated by beam radiation
! rs: reflection of a layer illuminated by diffuse radiation
!
! output parameters:
!
! fclr: clear-sky flux (downward minus upward)
! fall: all-sky flux (downward minus upward)
! fsdir: surface direct downward flux
! fsdif: surface diffuse downward flux
!
!*********************************************************************c
implicit none
!*********************************************************************c
!-----input parameters
integer m,n,np
integer ict(m,n),icb(m,n)
real rr(m,n,np+1,2),tt(m,n,np+1,2),td(m,n,np+1,2)
real rs(m,n,np+1,2),ts(m,n,np+1,2)
real cc(m,n,3)
logical overcast
!-----temporary array
integer i,j,k,ih,im,is,itm
real rra(m,n,np+1,2,2),tta(m,n,np+1,2,2),tda(m,n,np+1,2,2)
real rsa(m,n,np+1,2,2),rxa(m,n,np+1,2,2)
real ch(m,n),cm(m,n),ct(m,n),flxdn(m,n,np+1)
real flxdnu(m,n,np+1),flxdnd(m,n,np+1)
real fdndir(m,n),fdndif(m,n),fupdif
real denm,xx
!-----output parameters
real fclr(m,n,np+1),fall(m,n,np+1)
real fallu(m,n,np+1),falld(m,n,np+1)
real fsdir(m,n),fsdif(m,n)
!-----initialize all-sky flux (fall) and surface downward fluxes
do k=1,np+1
do j=1,n
do i=1,m
fclr(i,j,k)=0.0
fall(i,j,k)=0.0
fallu(i,j,k)=0.0
falld(i,j,k)=0.0
enddo
enddo
enddo
do j=1,n
do i=1,m
fsdir(i,j)=0.0
fsdif(i,j)=0.0
enddo
enddo
!-----compute transmittances and reflectances for a composite of
! layers. layers are added one at a time, going down from the top.
! tda is the composite transmittance illuminated by beam radiation
! tta is the composite diffuse transmittance illuminated by
! beam radiation
! rsa is the composite reflectance illuminated from below
! by diffuse radiation
! tta and rsa are computed from eqs. (4b) and (3b) of Chou
itm=1
!-----if overcas.=.true., set itm=2, and only one set of fluxes is computed
if (overcast) itm=2
!-----for high clouds. indices 1 and 2 denote clear and cloudy
! situations, respectively.
do 10 ih=itm,2
do j= 1, n
do i= 1, m
tda(i,j,1,ih,1)=td(i,j,1,ih)
tta(i,j,1,ih,1)=tt(i,j,1,ih)
rsa(i,j,1,ih,1)=rs(i,j,1,ih)
tda(i,j,1,ih,2)=td(i,j,1,ih)
tta(i,j,1,ih,2)=tt(i,j,1,ih)
rsa(i,j,1,ih,2)=rs(i,j,1,ih)
enddo
enddo
do j= 1, n
do i= 1, m
do k= 2, ict(i,j)-1
denm = ts(i,j,k,ih)/( 1.-rsa(i,j,k-1,ih,1)*rs(i,j,k,ih))
tda(i,j,k,ih,1)= tda(i,j,k-1,ih,1)*td(i,j,k,ih)
tta(i,j,k,ih,1)= tda(i,j,k-1,ih,1)*tt(i,j,k,ih) &
+(tda(i,j,k-1,ih,1)*rr(i,j,k,ih) &
*rsa(i,j,k-1,ih,1)+tta(i,j,k-1,ih,1))*denm
rsa(i,j,k,ih,1)= rs(i,j,k,ih)+ts(i,j,k,ih) &
*rsa(i,j,k-1,ih,1)*denm
tda(i,j,k,ih,2)= tda(i,j,k,ih,1)
tta(i,j,k,ih,2)= tta(i,j,k,ih,1)
rsa(i,j,k,ih,2)= rsa(i,j,k,ih,1)
enddo
enddo
enddo
!-----for middle clouds
do 10 im=itm,2
do j= 1, n
do i= 1, m
do k= ict(i,j), icb(i,j)-1
denm = ts(i,j,k,im)/( 1.-rsa(i,j,k-1,ih,im)*rs(i,j,k,im))
tda(i,j,k,ih,im)= tda(i,j,k-1,ih,im)*td(i,j,k,im)
tta(i,j,k,ih,im)= tda(i,j,k-1,ih,im)*tt(i,j,k,im) &
+(tda(i,j,k-1,ih,im)*rr(i,j,k,im) &
*rsa(i,j,k-1,ih,im)+tta(i,j,k-1,ih,im))*denm
rsa(i,j,k,ih,im)= rs(i,j,k,im)+ts(i,j,k,im) &
*rsa(i,j,k-1,ih,im)*denm
enddo
enddo
enddo
10 continue
!-----layers are added one at a time, going up from the surface.
! rra is the composite reflectance illuminated by beam radiation
! rxa is the composite reflectance illuminated from above
! by diffuse radiation
! rra and rxa are computed from eqs. (4a) and (3a) of Chou
!-----for the low clouds
do 20 is=itm,2
do j= 1, n
do i= 1, m
rra(i,j,np+1,1,is)=rr(i,j,np+1,is)
rxa(i,j,np+1,1,is)=rs(i,j,np+1,is)
rra(i,j,np+1,2,is)=rr(i,j,np+1,is)
rxa(i,j,np+1,2,is)=rs(i,j,np+1,is)
enddo
enddo
do j= 1, n
do i= 1, m
do k=np,icb(i,j),-1
denm=ts(i,j,k,is)/( 1.-rs(i,j,k,is)*rxa(i,j,k+1,1,is) )
rra(i,j,k,1,is)=rr(i,j,k,is)+(td(i,j,k,is) &
*rra(i,j,k+1,1,is)+tt(i,j,k,is)*rxa(i,j,k+1,1,is))*denm
rxa(i,j,k,1,is)= rs(i,j,k,is)+ts(i,j,k,is) &
*rxa(i,j,k+1,1,is)*denm
rra(i,j,k,2,is)=rra(i,j,k,1,is)
rxa(i,j,k,2,is)=rxa(i,j,k,1,is)
enddo
enddo
enddo
!-----for middle clouds
do 20 im=itm,2
do j= 1, n
do i= 1, m
do k= icb(i,j)-1,ict(i,j),-1
denm=ts(i,j,k,im)/( 1.-rs(i,j,k,im)*rxa(i,j,k+1,im,is) )
rra(i,j,k,im,is)= rr(i,j,k,im)+(td(i,j,k,im) &
*rra(i,j,k+1,im,is)+tt(i,j,k,im)*rxa(i,j,k+1,im,is))*denm
rxa(i,j,k,im,is)= rs(i,j,k,im)+ts(i,j,k,im) &
*rxa(i,j,k+1,im,is)*denm
enddo
enddo
enddo
20 continue
!-----integration over eight sky situations.
! ih, im, is denotes high, middle and low cloud groups.
do 100 ih=itm,2
!-----clear portion
if(ih.eq.1) then
do j=1,n
do i=1,m
ch(i,j)=1.0-cc(i,j,1)
enddo
enddo
else
!-----cloudy portion
do j=1,n
do i=1,m
ch(i,j)=cc(i,j,1)
enddo
enddo
endif
do 100 im=itm,2
!-----clear portion
if(im.eq.1) then
do j=1,n
do i=1,m
cm(i,j)=ch(i,j)*(1.0-cc(i,j,2))
enddo
enddo
else
!-----cloudy portion
do j=1,n
do i=1,m
cm(i,j)=ch(i,j)*cc(i,j,2)
enddo
enddo
endif
do 100 is=itm,2
!-----clear portion
if(is.eq.1) then
do j=1,n
do i=1,m
ct(i,j)=cm(i,j)*(1.0-cc(i,j,3))
enddo
enddo
else
!-----cloudy portion
do j=1,n
do i=1,m
ct(i,j)=cm(i,j)*cc(i,j,3)
enddo
enddo
endif
!-----add one layer at a time, going down.
do j= 1, n
do i= 1, m
do k= icb(i,j), np
denm = ts(i,j,k,is)/( 1.-rsa(i,j,k-1,ih,im)*rs(i,j,k,is) )
tda(i,j,k,ih,im)= tda(i,j,k-1,ih,im)*td(i,j,k,is)
tta(i,j,k,ih,im)= tda(i,j,k-1,ih,im)*tt(i,j,k,is) &
+(tda(i,j,k-1,ih,im)*rr(i,j,k,is) &
*rsa(i,j,k-1,ih,im)+tta(i,j,k-1,ih,im))*denm
rsa(i,j,k,ih,im)= rs(i,j,k,is)+ts(i,j,k,is) &
*rsa(i,j,k-1,ih,im)*denm
enddo
enddo
enddo
!-----add one layer at a time, going up.
do j= 1, n
do i= 1, m
do k= ict(i,j)-1,1,-1
denm =ts(i,j,k,ih)/(1.-rs(i,j,k,ih)*rxa(i,j,k+1,im,is))
rra(i,j,k,im,is)= rr(i,j,k,ih)+(td(i,j,k,ih) &
*rra(i,j,k+1,im,is)+tt(i,j,k,ih)*rxa(i,j,k+1,im,is))*denm
rxa(i,j,k,im,is)= rs(i,j,k,ih)+ts(i,j,k,ih) &
*rxa(i,j,k+1,im,is)*denm
enddo
enddo
enddo
!-----compute fluxes following eq (5) of Chou (1992)
! fdndir is the direct downward flux
! fdndif is the diffuse downward flux
! fupdif is the diffuse upward flux
do k=2,np+1
do j=1, n
do i=1, m
denm= 1./(1.- rxa(i,j,k,im,is)*rsa(i,j,k-1,ih,im))
fdndir(i,j)= tda(i,j,k-1,ih,im)
xx = tda(i,j,k-1,ih,im)*rra(i,j,k,im,is)
fdndif(i,j)= (xx*rsa(i,j,k-1,ih,im)+tta(i,j,k-1,ih,im))*denm
fupdif= (xx+tta(i,j,k-1,ih,im)*rxa(i,j,k,im,is))*denm
flxdn(i,j,k)=fdndir(i,j)+fdndif(i,j)-fupdif
flxdnu(i,j,k)=-fupdif
flxdnd(i,j,k)=fdndir(i,j)+fdndif(i,j)
enddo
enddo
enddo
do j=1, n
do i=1, m
flxdn(i,j,1)=1.0-rra(i,j,1,im,is)
flxdnu(i,j,1)=-rra(i,j,1,im,is)
flxdnd(i,j,1)=1.0
enddo
enddo
!-----summation of fluxes over all (eight) sky situations.
do k=1,np+1
do j=1,n
do i=1,m
if(ih.eq.1 .and. im.eq.1 .and. is.eq.1) then
fclr(i,j,k)=flxdn(i,j,k)
endif
fall(i,j,k)=fall(i,j,k)+flxdn(i,j,k)*ct(i,j)
fallu(i,j,k)=fallu(i,j,k)+flxdnu(i,j,k)*ct(i,j)
falld(i,j,k)=falld(i,j,k)+flxdnd(i,j,k)*ct(i,j)
enddo
enddo
enddo
do j=1,n
do i=1,m
fsdir(i,j)=fsdir(i,j)+fdndir(i,j)*ct(i,j)
fsdif(i,j)=fsdif(i,j)+fdndif(i,j)*ct(i,j)
enddo
enddo
100 continue
end subroutine cldflx
!*****************************************************************
subroutine flxco2(m,n,np,swc,swh,csm,df) 1
!*****************************************************************
!-----compute the reduction of clear-sky downward solar flux
! due to co2 absorption.
implicit none
!-----input parameters
integer m,n,np
real csm(m,n),swc(m,n,np+1),swh(m,n,np+1),cah(22,19)
!-----output (undated) parameter
real df(m,n,np+1)
!-----temporary array
integer i,j,k,ic,iw
real xx,clog,wlog,dc,dw,x1,x2,y2
!********************************************************************
!-----include co2 look-up table
data ((cah(i,j),i=1,22),j= 1, 5)/ &
0.9923, 0.9922, 0.9921, 0.9920, 0.9916, 0.9910, 0.9899, 0.9882, &
0.9856, 0.9818, 0.9761, 0.9678, 0.9558, 0.9395, 0.9188, 0.8945, &
0.8675, 0.8376, 0.8029, 0.7621, 0.7154, 0.6647, 0.9876, 0.9876, &
0.9875, 0.9873, 0.9870, 0.9864, 0.9854, 0.9837, 0.9811, 0.9773, &
0.9718, 0.9636, 0.9518, 0.9358, 0.9153, 0.8913, 0.8647, 0.8350, &
0.8005, 0.7599, 0.7133, 0.6627, 0.9808, 0.9807, 0.9806, 0.9805, &
0.9802, 0.9796, 0.9786, 0.9769, 0.9744, 0.9707, 0.9653, 0.9573, &
0.9459, 0.9302, 0.9102, 0.8866, 0.8604, 0.8311, 0.7969, 0.7565, &
0.7101, 0.6596, 0.9708, 0.9708, 0.9707, 0.9705, 0.9702, 0.9697, &
0.9687, 0.9671, 0.9647, 0.9612, 0.9560, 0.9483, 0.9372, 0.9221, &
0.9027, 0.8798, 0.8542, 0.8253, 0.7916, 0.7515, 0.7054, 0.6551, &
0.9568, 0.9568, 0.9567, 0.9565, 0.9562, 0.9557, 0.9548, 0.9533, &
0.9510, 0.9477, 0.9428, 0.9355, 0.9250, 0.9106, 0.8921, 0.8700, &
0.8452, 0.8171, 0.7839, 0.7443, 0.6986, 0.6486/
data ((cah(i,j),i=1,22),j= 6,10)/ &
0.9377, 0.9377, 0.9376, 0.9375, 0.9372, 0.9367, 0.9359, 0.9345, &
0.9324, 0.9294, 0.9248, 0.9181, 0.9083, 0.8948, 0.8774, 0.8565, &
0.8328, 0.8055, 0.7731, 0.7342, 0.6890, 0.6395, 0.9126, 0.9126, &
0.9125, 0.9124, 0.9121, 0.9117, 0.9110, 0.9098, 0.9079, 0.9052, &
0.9012, 0.8951, 0.8862, 0.8739, 0.8579, 0.8385, 0.8161, 0.7900, &
0.7585, 0.7205, 0.6760, 0.6270, 0.8809, 0.8809, 0.8808, 0.8807, &
0.8805, 0.8802, 0.8796, 0.8786, 0.8770, 0.8747, 0.8712, 0.8659, &
0.8582, 0.8473, 0.8329, 0.8153, 0.7945, 0.7697, 0.7394, 0.7024, &
0.6588, 0.6105, 0.8427, 0.8427, 0.8427, 0.8426, 0.8424, 0.8422, &
0.8417, 0.8409, 0.8397, 0.8378, 0.8350, 0.8306, 0.8241, 0.8148, &
0.8023, 0.7866, 0.7676, 0.7444, 0.7154, 0.6796, 0.6370, 0.5897, &
0.7990, 0.7990, 0.7990, 0.7989, 0.7988, 0.7987, 0.7983, 0.7978, &
0.7969, 0.7955, 0.7933, 0.7899, 0.7846, 0.7769, 0.7664, 0.7528, &
0.7357, 0.7141, 0.6866, 0.6520, 0.6108, 0.5646/
data ((cah(i,j),i=1,22),j=11,15)/ &
0.7515, 0.7515, 0.7515, 0.7515, 0.7514, 0.7513, 0.7511, 0.7507, &
0.7501, 0.7491, 0.7476, 0.7450, 0.7409, 0.7347, 0.7261, 0.7144, &
0.6992, 0.6793, 0.6533, 0.6203, 0.5805, 0.5357, 0.7020, 0.7020, &
0.7020, 0.7019, 0.7019, 0.7018, 0.7017, 0.7015, 0.7011, 0.7005, &
0.6993, 0.6974, 0.6943, 0.6894, 0.6823, 0.6723, 0.6588, 0.6406, &
0.6161, 0.5847, 0.5466, 0.5034, 0.6518, 0.6518, 0.6518, 0.6518, &
0.6518, 0.6517, 0.6517, 0.6515, 0.6513, 0.6508, 0.6500, 0.6485, &
0.6459, 0.6419, 0.6359, 0.6273, 0.6151, 0.5983, 0.5755, 0.5458, &
0.5095, 0.4681, 0.6017, 0.6017, 0.6017, 0.6017, 0.6016, 0.6016, &
0.6016, 0.6015, 0.6013, 0.6009, 0.6002, 0.5989, 0.5967, 0.5932, &
0.5879, 0.5801, 0.5691, 0.5535, 0.5322, 0.5043, 0.4700, 0.4308, &
0.5518, 0.5518, 0.5518, 0.5518, 0.5518, 0.5518, 0.5517, 0.5516, &
0.5514, 0.5511, 0.5505, 0.5493, 0.5473, 0.5441, 0.5393, 0.5322, &
0.5220, 0.5076, 0.4878, 0.4617, 0.4297, 0.3929/
data ((cah(i,j),i=1,22),j=16,19)/ &
0.5031, 0.5031, 0.5031, 0.5031, 0.5031, 0.5030, 0.5030, 0.5029, &
0.5028, 0.5025, 0.5019, 0.5008, 0.4990, 0.4960, 0.4916, 0.4850, &
0.4757, 0.4624, 0.4441, 0.4201, 0.3904, 0.3564, 0.4565, 0.4565, &
0.4565, 0.4564, 0.4564, 0.4564, 0.4564, 0.4563, 0.4562, 0.4559, &
0.4553, 0.4544, 0.4527, 0.4500, 0.4460, 0.4400, 0.4315, 0.4194, &
0.4028, 0.3809, 0.3538, 0.3227, 0.4122, 0.4122, 0.4122, 0.4122, &
0.4122, 0.4122, 0.4122, 0.4121, 0.4120, 0.4117, 0.4112, 0.4104, &
0.4089, 0.4065, 0.4029, 0.3976, 0.3900, 0.3792, 0.3643, 0.3447, &
0.3203, 0.2923, 0.3696, 0.3696, 0.3696, 0.3696, 0.3696, 0.3696, &
0.3695, 0.3695, 0.3694, 0.3691, 0.3687, 0.3680, 0.3667, 0.3647, &
0.3615, 0.3570, 0.3504, 0.3409, 0.3279, 0.3106, 0.2892, 0.2642/
!********************************************************************
!-----table look-up for the reduction of clear-sky solar
! radiation due to co2. The fraction 0.0343 is the
! extraterrestrial solar flux in the co2 bands.
do k= 2, np+1
do j= 1, n
do i= 1, m
xx=1./.3
clog=log10(swc(i,j,k)*csm(i,j))
wlog=log10(swh(i,j,k)*csm(i,j))
ic=int( (clog+3.15)*xx+1.)
iw=int( (wlog+4.15)*xx+1.)
if(ic.lt.2)ic=2
if(iw.lt.2)iw=2
if(ic.gt.22)ic=22
if(iw.gt.19)iw=19
dc=clog-float(ic-2)*.3+3.
dw=wlog-float(iw-2)*.3+4.
x1=cah(1,iw-1)+(cah(1,iw)-cah(1,iw-1))*xx*dw
x2=cah(ic-1,iw-1)+(cah(ic-1,iw)-cah(ic-1,iw-1))*xx*dw
y2=x2+(cah(ic,iw-1)-cah(ic-1,iw-1))*xx*dc
if (x1.lt.y2) x1=y2
df(i,j,k)=df(i,j,k)+0.0343*(x1-y2)
enddo
enddo
enddo
end subroutine flxco2
!*****************************************************************
subroutine o3prof (np, pres, ozone, its, ite, kts, kte, p, o3) 2,1
!*****************************************************************
implicit none
!*****************************************************************
!
integer iprof,m,np,its,ite,kts,kte
integer i,k,ko,kk
real pres(np),ozone(np)
real p(its:ite,kts:kte),o3(its:ite,kts:kte)
! Statement function
real Linear, x1, y1, x2, y2, x
Linear(x1, y1, x2, y2, x) = &
(y1 * (x2 - x) + y2 * (x - x1)) / (x2 - x1)
!
do k = 1,np
pres(k) = alog(pres(k))
enddo
do k = kts,kte
do i = its, ite
p(i,k) = alog(p(i,k))
end do
end do
! assume the pressure at model top is greater than pres(1)
! if it is not, this part needs to change
do i = its, ite
ko = 1
do k = kts+1, kte
do while (ko .lt. np .and. p(i,k) .gt. pres(ko))
ko = ko + 1
end do
o3(i,k) = Linear (pres(ko), ozone(ko), &
pres(ko-1), ozone(ko-1), &
p(i,k))
ko = ko - 1
end do
end do
! calculate top lay O3
do i = its, ite
ko = 1
k = kts
do while (ko .le. np .and. p(i,k) .gt. pres(ko))
ko = ko + 1
end do
IF (ko-1 .le. 1) then
O3(i,k)=ozone(k)
ELSE
O3(i,k)=0.
do kk=ko-2,1,-1
O3(i,k)=O3(i,k)+ozone(kk)*(pres(kk+1)-pres(kk))
enddo
O3(i,k)=O3(i,k)/(pres(ko-1)-pres(1))
ENDIF
! print*,'O3=',i,k,ko,O3(i,k),p(i,k),ko,pres(ko),pres(ko-1)
end do
end subroutine o3prof
!-----------------------------------------
SUBROUTINE gsfc_swinit(cen_lat, allowed_to_read) 1
REAL, INTENT(IN ) :: cen_lat
LOGICAL, INTENT(IN ) :: allowed_to_read
center_lat=cen_lat
END SUBROUTINE gsfc_swinit
END MODULE module_ra_gsfcsw