MODULE module_sf_bem 1
! -----------------------------------------------------------------------
! Variables and constants used in the BEM module
! -----------------------------------------------------------------------
real emins !emissivity of the internal walls
parameter (emins=0.9)
real albins !albedo of the internal walls
!! parameter (albins=0.5)
parameter (albins=0.3)
real thickwin !thickness of the window [m]
parameter (thickwin=0.006)
real cswin !Specific heat of the windows [J/(m3.K)]
parameter(cswin= 2.268e+06)
real temp_rat !power of the A.C. heating/cooling the indoor air [K/s]
parameter(temp_rat=0.001)
real hum_rat !power of the A.C. drying/moistening the indoor air [(Kg/kg)/s]
parameter(hum_rat=1.e-06)
CONTAINS
!====6================================================================72
!====6================================================================72
subroutine BEM(nzcanm,nlev,nhourday,dt,bw,bl,dzlev, & 1,41
nwal,nflo,nrof,ngrd,hswalout,gswal, &
hswinout,hsrof,gsrof, &
latent,sigma,albwal,albwin,albrof, &
emrof,emwal,emwin,rswal,rlwal,rair,cp, &
rhoout,tout,humout,press, &
rs,rl,dzwal,cswal,kwal,pwin,cop,beta,sw_cond, &
timeon,timeoff,targtemp,gaptemp,targhum,gaphum, &
perflo,hsesf,hsequip,dzflo, &
csflo,kflo,dzgrd,csgrd,kgrd,dzrof,csrof, &
krof,tlev,shumlev,twal,twin,tflo,tgrd,trof, &
hsout,hlout,consump,hsvent,hlvent)
! ---------------------------------------------------------------------
implicit none
! ---------------------------------------------------------------------
! TOP
! ---------------------
! ! ----------------- !--->roof (-) : level number
! ! ! ! ! rem: the windows are given
! ! !---------------! ! with respect to the
! ! !---------------! ! vertical walls-->win(2)
! (n)! !(1) (1)!-!(n)
! ! !---------------! ! 2D vision of the building
! WEST ! !-------4-------! ! EAST
! I ! ! 1 ilev 2! ! II ^
! ! !-------3--------! ! !
! ! !---------------! !--->floor 1 !
! ! ! ! ! !
! ! ! ! ! !
! ! ----------------- ! <--------------(n)
! ------------------------>ground ------------(1)
! BOTTOM
! i(6)
! i
! +---------v-----+
! /| /| 3D vision of a room
! / | 4 / |
! / | / |
! / | / |
! / | / |
! +---------------+ |
! | 1 | | 2 |
! | +---------|-----+
! dzlev | / | /
! | / 3 | /
! | /bw | /
! | / | /
! |/ |/
! +---------------+
! ^ bl
! i
! i
! (5)
!-----------------------------------------------------------------------
! Input:
! -----
real dt !time step [s]
integer nzcanm !Maximum number of vertical levels in the urban grid
integer nlev !number of floors in the building
integer nwal !number of levels inside the wall
integer nrof !number of levels inside the roof
integer nflo !number of levels inside the floor
integer ngrd !number of levels inside the ground
real dzlev !vertical grid resolution [m]
real bl !Building length [m]
real bw !Building width [m]
real albwal !albedo of the walls
real albwin !albedo of the windows
real albrof !albedo of the roof
real emwal !emissivity of the walls
real emrof !emissivity of the roof
real emwin !emissivity of the windows
real pwin !window proportion
real, intent(in) :: cop !Coefficient of performance of the A/C systems
real, intent(in) :: beta !Thermal efficiency of the heat exchanger
integer, intent(in) :: sw_cond ! Air Conditioning switch
real, intent(in) :: timeon ! Initial local time of A/C systems
real, intent(in) :: timeoff ! Ending local time of A/C systems
real, intent(in) :: targtemp ! Target temperature of A/C systems
real, intent(in) :: gaptemp ! Comfort range of indoor temperature
real, intent(in) :: targhum ! Target humidity of A/C systems
real, intent(in) :: gaphum ! Comfort range of specific humidity
real, intent(in) :: perflo ! Peak number of occupants per unit floor area
real, intent(in) :: hsesf !
real, intent(in) :: hsequip(24) !
real cswal(nwal) !Specific heat of the wall [J/(m3.K)]
real csflo(nflo) !Specific heat of the floor [J/(m3.K)]
real csrof(nrof) !Specific heat of the roof [J/(m3.K)]
real csgrd(ngrd) !Specific heat of the ground [J/(m3.K)]
real kwal(nwal+1) !Thermal conductivity in each layers of the walls (face) [W/(m.K)]
real kflo(nflo+1) !Thermal diffusivity in each layers of the floors (face) [W/(m.K)]
real krof(nrof+1) !Thermal diffusivity in each layers of the roof (face) [W/(m.K)]
real kgrd(ngrd+1) !Thermal diffusivity in each layers of the ground (face) [W/(m.K)]
real dzwal(nwal) !Layer sizes of walls [m]
real dzflo(nflo) !Layer sizes of floors [m]
real dzrof(nrof) !Layer sizes of roof [m]
real dzgrd(ngrd) !Layer sizes of ground [m]
real latent !latent heat of evaporation [J/Kg]
real rs !external short wave radiation [W/m2]
real rl !external long wave radiation [W/m2]
real rswal(4,nzcanm) !short wave radiation reaching the exterior walls [W/m2]
real rlwal(4,nzcanm) !long wave radiation reaching the walls [W/m2]
real rhoout(nzcanm) !exterior air density [kg/m3]
real tout(nzcanm) !external temperature [K]
real humout(nzcanm) !absolute humidity [Kgwater/Kgair]
real press(nzcanm) !external air pressure [Pa]
real hswalout(4,nzcanm) !outside walls sensible heat flux [W/m2]
real hswinout(4,nzcanm) !outside window sensible heat flux [W/m2]
real hsrof !Sensible heat flux at the roof [W/m2]
real rair !ideal gas constant [J.kg-1.K-1]
real sigma !parameter (wall is not black body) [W/m2.K4]
real cp !specific heat of air [J/kg.K]
!Input-Output
!------------
real tlev(nzcanm) !temperature of the floors [K]
real shumlev(nzcanm) !specific humidity of the floor [kg/kg]
real twal(4,nwal,nzcanm) !walls temperatures [K]
real twin(4,nzcanm) !windows temperatures [K]
real tflo(nflo,nzcanm-1) !floor temperatures [K]
real tgrd(ngrd) !ground temperature [K]
real trof(nrof) !roof temperature [K]
real hsout(nzcanm) !sensible heat emitted outside the floor [W]
real hlout(nzcanm) !latent heat emitted outside the floor [W]
real consump(nzcanm) !Consumption for the a.c. in each floor [W]
real hsvent(nzcanm) !sensible heat generated by natural ventilation [W]
real hlvent(nzcanm) !latent heat generated by natural ventilation [W]
real gsrof !heat flux flowing inside the roof [W/m²]
real gswal(4,nzcanm) !heat flux flowing inside the floors [W/m²]
! Local:
! -----
integer swwal !swich for the physical coefficients calculation
integer ilev !index for rooms
integer iwal !index for walls
integer iflo !index for floors
integer ivw !index for vertical walls
integer igrd !index for ground
integer irof !index for roof
real hseqocc(nzcanm) !sensible heat generated by equipments and occupants [W]
real hleqocc(nzcanm) !latent heat generated by occupants [W]
real hscond(nzcanm) !sensible heat generated by wall conduction [W]
real hslev(nzcanm) !sensible heat flux generated inside the room [W]
real hllev(nzcanm) !latent heat flux generatd inside the room [W]
real surwal(6,nzcanm) !Surface of the walls [m2]
real surwal1D(6) !wall surfaces of a generic room [m2]
real rsint(6) !short wave radiation reaching the indoor walls[W/m2]
real rswalins(6,nzcanm) !internal short wave radiation for the building [W/m2]
real twin1D(4) !temperature of windows for a particular room [K]
real twal_int(6) !temperature of the first internal layers of a room [K]
real rlint(6) !internal wall long wave radiation [w/m2]
real rlwalins(6,nzcanm) !internal long wave radiation for the building [W/m2]
real hrwalout(4,nzcanm) !external radiative flux to the walls [W/m2]
real hrwalins(6,nzcanm) !inside radiative flux to the walls [W/m2]
real hrwinout(4,nzcanm) !external radiative flux to the window [W/m2]
real hrwinins(4,nzcanm) !inside radiative flux to the window [W/m2]
real hrrof !external radiative flux to the roof [W/m2]
real hs
real hsneed(nzcanm) !sensible heat needed by the room [W]
real hlneed(nzcanm) !latent heat needed by the room [W]
real hswalins(6,nzcanm) !inside walls sensible heat flux [W/m2]
real hswalins1D(6)
real hswinins(4,nzcanm) !inside window sensible heat flux [W/m2]
real hswinins1D(4)
real htot(2) !total heat flux at the wall [W/m2]
real twal1D(nwal)
real tflo1D(nflo)
real tgrd1D(ngrd)
real trof1D(nrof)
real rswal1D(4)
real Qb !Overall heat capacity of the indoor air [J/K]
real vollev !volume of the room [m3]
real rhoint !density of the internal air [Kg/m3]
real cpint !specific heat of the internal air [J/kg.K]
real humdry !specific humidiy of dry air [kg water/kg dry air]
real radflux !Function to compute the total radiation budget
real consumpbuild !Energetic consumption for the entire building [KWh/s]
real hsoutbuild !Total sensible heat ejected into the atmosphere[W]
!by the air conditioning system and per building
real nhourday !number of hours from midnight, local time
!--------------------------------------------
!Initialization
!--------------------------------------------
do ilev=1,nzcanm
hseqocc(ilev)=0.
hleqocc(ilev)=0.
hscond(ilev)=0.
hslev(ilev)=0.
hllev(ilev)=0.
enddo
!Calculation of the surfaces of the building
!--------------------------------------------
do ivw=1,6
do ilev=1,nzcanm
surwal(ivw,ilev)=1. !initialisation
end do
end do
do ilev=1,nlev
do ivw=1,2
surwal(ivw,ilev)=dzlev*bw
end do
do ivw=3,4
surwal(ivw,ilev)=dzlev*bl
end do
do ivw=5,6
surwal(ivw,ilev)=bw*bl
end do
end do
! Calculation of the short wave radiations at the internal walls
! ---------------------------------------------------------------
do ilev=1,nlev
do ivw=1,4
rswal1D(ivw)=rswal(ivw,ilev)
end do
do ivw=1,6
surwal1D(ivw)=surwal(ivw,ilev)
end do
call int_rsrad
(albwin,albins,pwin,rswal1D,&
surwal1D,bw,bl,dzlev,rsint)
do ivw=1,6
rswalins(ivw,ilev)=rsint(ivw)
end do
end do !ilev
! Calculation of the long wave radiation at the internal walls
!-------------------------------------------------------------
!Intermediate rooms
if (nlev.gt.2) then
do ilev=2,nlev-1
do ivw=1,4
twin1D(ivw)=twin(ivw,ilev)
twal_int(ivw)=twal(ivw,1,ilev)
end do
twal_int(5)=tflo(nflo,ilev-1)
twal_int(6)=tflo(1,ilev)
call int_rlrad
(emins,emwin,sigma,twal_int,twin1D,&
pwin,bw,bl,dzlev,rlint)
do ivw=1,6
rlwalins(ivw,ilev)=rlint(ivw)
end do
end do !ilev
end if
if (nlev.ne.1) then
!bottom room
do ivw=1,4
twin1D(ivw)=twin(ivw,1)
twal_int(ivw)=twal(ivw,1,1)
end do
twal_int(5)=tgrd(ngrd)
twal_int(6)=tflo(1,1)
call int_rlrad
(emins,emwin,sigma,twal_int,twin1D,&
pwin,bw,bl,dzlev,rlint)
do ivw=1,6
rlwalins(ivw,1)=rlint(ivw)
end do
!top room
do ivw=1,4
twin1D(ivw)=twin(ivw,nlev)
twal_int(ivw)=twal(ivw,1,nlev)
end do
twal_int(5)=tflo(nflo,nlev-1)
twal_int(6)=trof(1)
call int_rlrad
(emins,emwin,sigma,twal_int,twin1D,&
pwin,bw,bl,dzlev,rlint)
do ivw=1,6
rlwalins(ivw,nlev)=rlint(ivw)
end do
else !Top <---> Bottom
do ivw=1,4
twin1D(ivw)=twin(ivw,1)
twal_int(ivw)=twal(ivw,1,1)
end do
twal_int(5)=tgrd(ngrd)
twal_int(6)=trof(1)
call int_rlrad
(emins,emwin,sigma,twal_int,twin1D, &
pwin,bw,bl,dzlev,rlint)
do ivw=1,6
rlwalins(ivw,1)=rlint(ivw)
end do
end if
! Calculation of the radiative fluxes
! -----------------------------------
!External vertical walls and windows
do ilev=1,nlev
do ivw=1,4
call radfluxs
(radflux,albwal,rswal(ivw,ilev), &
emwal,rlwal(ivw,ilev),sigma, &
twal(ivw,nwal,ilev))
hrwalout(ivw,ilev)=radflux
hrwinout(ivw,ilev)=emwin*rlwal(ivw,ilev)- &
emwin*sigma*(twin(ivw,ilev)**4)
end do ! ivw
end do ! ilev
!Roof
call radfluxs
(radflux,albrof,rs,emrof,rl,sigma,trof(nrof))
hrrof=radflux
!Internal walls for intermediate rooms
if(nlev.gt.2) then
do ilev=2,nlev-1
do ivw=1,4
call radfluxs
(radflux,albins,rswalins(ivw,ilev), &
emins,rlwalins(ivw,ilev),sigma, &
twal(ivw,1,ilev))
hrwalins(ivw,ilev)=radflux
end do !ivw
call radfluxs
(radflux,albins,rswalins(5,ilev), &
emins,rlwalins(5,ilev),sigma,&
tflo(nflo,ilev-1))
hrwalins(5,ilev)=radflux
call radfluxs
(radflux,albins,rswalins(6,ilev), &
emins,rlwalins(6,ilev),sigma,&
tflo(1,ilev))
hrwalins(6,ilev)=radflux
end do !ilev
end if
!Internal walls for the bottom and the top room
!
if (nlev.ne.1) then
!bottom floor
do ivw=1,4
call radfluxs
(radflux,albins,rswalins(ivw,1), &
emins,rlwalins(ivw,1),sigma, &
twal(ivw,1,1))
hrwalins(ivw,1)=radflux
end do
call radfluxs
(radflux,albins,rswalins(5,1),&
emins,rlwalins(5,1),sigma,& !bottom
tgrd(ngrd))
hrwalins(5,1)=radflux
call radfluxs
(radflux,albins,rswalins(6,1),&
emins,rlwalins(6,1),sigma,&
tflo(1,1))
hrwalins(6,1)=radflux
!roof floor
do ivw=1,4
call radfluxs
(radflux,albins,rswalins(ivw,nlev), &
emins,rlwalins(ivw,nlev),sigma,&
twal(ivw,1,nlev))
hrwalins(ivw,nlev)=radflux
end do !top
call radfluxs
(radflux,albins,rswalins(5,nlev), &
emins,rlwalins(5,nlev),sigma,&
tflo(nflo,nlev-1))
hrwalins(5,nlev)=radflux
call radfluxs
(radflux,albins,rswalins(6,nlev), &
emins,rlwalins(6,nlev),sigma,&
trof(1))
hrwalins(6,nlev)=radflux
else ! Top <---> Bottom room
do ivw=1,4
call radfluxs
(radflux,albins,rswalins(ivw,1),&
emins,rlwalins(ivw,1),sigma, &
twal(ivw,1,1))
hrwalins(ivw,1)=radflux
end do
call radfluxs
(radflux,albins,rswalins(5,1),&
emins,rlwalins(5,1),sigma, &
tgrd(ngrd))
hrwalins(5,1)=radflux
call radfluxs
(radflux,albins,rswalins(6,nlev), &
emins,rlwalins(6,nlev),sigma,&
trof(1))
hrwalins(6,1)=radflux
end if
!Windows
do ilev=1,nlev
do ivw=1,4
hrwinins(ivw,ilev)=emwin*rlwalins(ivw,ilev)- &
emwin*sigma*(twin(ivw,ilev)**4)
end do
end do
! Calculation of the sensible heat fluxes
! ---------------------------------------
!Vertical fluxes for walls
do ilev=1,nlev
do ivw=1,4
call hsinsflux
(2,2,tlev(ilev),twal(ivw,1,ilev),hs)
hswalins(ivw,ilev)=hs
end do ! ivw
end do ! ilev
!Vertical fluxes for windows
do ilev=1,nlev
do ivw=1,4
call hsinsflux
(2,1,tlev(ilev),twin(ivw,ilev),hs)
hswinins(ivw,ilev)=hs
end do ! ivw
end do !ilev
!Horizontal fluxes
if (nlev.gt.2) then
do ilev=2,nlev-1
call hsinsflux
(1,2,tlev(ilev),tflo(nflo,ilev-1),hs)
hswalins(5,ilev)=hs
call hsinsflux
(1,2,tlev(ilev),tflo(1,ilev),hs)
hswalins(6,ilev)=hs
end do ! ilev
end if
if (nlev.ne.1) then
call hsinsflux
(1,2,tlev(1),tgrd(ngrd),hs)
hswalins(5,1)=hs !Bottom room
call hsinsflux
(1,2,tlev(1),tflo(1,1),hs)
hswalins(6,1)=hs
call hsinsflux
(1,2,tlev(nlev),tflo(nflo,nlev-1),hs)
hswalins(5,nlev)=hs !Top room
call hsinsflux
(1,2,tlev(nlev),trof(1),hs)
hswalins(6,nlev)=hs
else ! Bottom<--->Top
call hsinsflux
(1,2,tlev(1),tgrd(ngrd),hs)
hswalins(5,1)=hs
call hsinsflux
(1,2,tlev(nlev),trof(1),hs)
hswalins(6,nlev)=hs
end if
!Calculation of the temperature for the different surfaces
! --------------------------------------------------------
! Vertical walls
swwal=1
do ilev=1,nlev
do ivw=1,4
htot(1)=hswalins(ivw,ilev)+hrwalins(ivw,ilev)
htot(2)=hswalout(ivw,ilev)+hrwalout(ivw,ilev)
gswal(ivw,ilev)=htot(2)
do iwal=1,nwal
twal1D(iwal)=twal(ivw,iwal,ilev)
end do
call wall
(swwal,nwal,dt,dzwal,kwal,cswal,htot,twal1D)
do iwal=1,nwal
twal(ivw,iwal,ilev)=twal1D(iwal)
end do
end do ! ivw
end do ! ilev
! Windows
do ilev=1,nlev
do ivw=1,4
htot(1)=hswinins(ivw,ilev)+hrwinins(ivw,ilev)
htot(2)=hswinout(ivw,ilev)+hrwinout(ivw,ilev)
twin(ivw,ilev)=twin(ivw,ilev)+(dt/(cswin*thickwin))* &
(htot(1)+htot(2))
end do ! ivw
end do ! ilev
! Horizontal floors
if (nlev.gt.1) then
swwal=1
do ilev=1,nlev-1
htot(1)=hrwalins(6,ilev)+hswalins(6,ilev)
htot(2)=hrwalins(5,ilev+1)+hswalins(5,ilev+1)
do iflo=1,nflo
tflo1D(iflo)=tflo(iflo,ilev)
end do
call wall
(swwal,nflo,dt,dzflo,kflo,csflo,htot,tflo1D)
do iflo=1,nflo
tflo(iflo,ilev)=tflo1D(iflo)
end do
end do ! ilev
end if
! Ground
swwal=1
htot(1)=0. !Diriclet b.c. at the internal boundary
htot(2)=hswalins(5,1)+hrwalins(5,1)
do igrd=1,ngrd
tgrd1D(igrd)=tgrd(igrd)
end do
call wall
(swwal,ngrd,dt,dzgrd,kgrd,csgrd,htot,tgrd1D)
do igrd=1,ngrd
tgrd(igrd)=tgrd1D(igrd)
end do
! Roof
swwal=1
htot(1)=hswalins(6,nlev)+hrwalins(6,nlev)
htot(2)=hsrof+hrrof
gsrof=htot(2)
do irof=1,nrof
trof1D(irof)=trof(irof)
end do
call wall
(swwal,nrof,dt,dzrof,krof,csrof,htot,trof1D)
do irof=1,nrof
trof(irof)=trof1D(irof)
end do
! Calculation of the heat fluxes and of the temperature of the rooms
! ------------------------------------------------------------------
do ilev=1,nlev
!Calculation of the heat generated by equipments and occupants
call fluxeqocc
(nhourday,bw,bl,perflo,hsesf,hsequip,hseqocc(ilev),hleqocc(ilev))
!Calculation of the heat generated by natural ventilation
vollev=bw*bl*dzlev
humdry=shumlev(ilev)/(1.-shumlev(ilev))
rhoint=(press(ilev))/(rair*(1.+0.61*humdry)*tlev(ilev))
cpint=cp*(1.+0.84*humdry)
call fluxvent
(cpint,rhoint,vollev,tlev(ilev),tout(ilev), &
latent,humout(ilev),rhoout(ilev),shumlev(ilev),&
beta,hsvent(ilev),hlvent(ilev))
!Calculation of the heat generated by conduction
do iwal=1,6
hswalins1D(iwal)=hswalins(iwal,ilev)
surwal1D(iwal)=surwal(iwal,ilev)
end do
do iwal=1,4
hswinins1D(iwal)=hswinins(iwal,ilev)
end do
call fluxcond
(hswalins1D,hswinins1D,surwal1D,pwin,&
hscond(ilev))
!Calculation of the heat generated inside the room
call fluxroo
(hseqocc(ilev),hleqocc(ilev),hsvent(ilev), &
hlvent(ilev),hscond(ilev),hslev(ilev),hllev(ilev))
!Evolution of the temperature and of the specific humidity
Qb=rhoint*cpint*vollev
! temperature regulation
call regtemp
(sw_cond,nhourday,dt,Qb,hslev(ilev), &
tlev(ilev),timeon,timeoff,targtemp,gaptemp,hsneed(ilev))
! humidity regulation
call reghum
(sw_cond,nhourday,dt,vollev,rhoint,latent, &
hllev(ilev),shumlev(ilev),timeon,timeoff,&
targhum,gaphum,hlneed(ilev))
!
!performance of the air conditioning system for the test
!
call air_cond
(hsneed(ilev),hlneed(ilev),dt, &
hsout(ilev),hlout(ilev),consump(ilev), cop)
tlev(ilev)=tlev(ilev)+(dt/Qb)*(hslev(ilev)-hsneed(ilev))
shumlev(ilev)=shumlev(ilev)+(dt/(vollev*rhoint*latent))* &
(hllev(ilev)-hlneed(ilev))
end do !ilev
call consump_total
(nzcanm,nlev,consumpbuild,hsoutbuild, &
hsout,consump)
return
end subroutine BEM
!====6=8===============================================================72
!====6=8===============================================================72
subroutine wall(swwall,nz,dt,dz,k,cs,flux,temp) 4,2
!______________________________________________________________________
!The aim of this subroutine is to solve the 1D heat fiffusion equation
!for roof, walls and streets:
!
! dT/dt=d/dz[K*dT/dz] where:
!
! -T is the surface temperature(wall, street, roof)
! -Kz is the heat diffusivity inside the material.
!
!The resolution is done implicitly with a FV discretisation along the
!different layers of the material:
! ____________________________
! n *
! *
! *
! ____________________________
! i+2
! I+1
! ____________________________
! i+1
! I ==> [T(I,n+1)-T(I,n)]/DT=
! ____________________________ [F(i+1)-F(i)]/DZI
! i
! I-1 ==> A*T(n+1)=B where:
! ____________________________
! i-1 * * A is a TRIDIAGONAL matrix.
! * * B=T(n)+S takes into account the sources.
! *
! 1 ____________________________
!________________________________________________________________
implicit none
!Input:
!-----
integer nz !Number of layers inside the material
real dt !Time step
real dz(nz) !Layer sizes [m]
real cs(nz) !Specific heat of the material [J/(m3.K)]
real k(nz+1) !Thermal conductivity in each layers (face) [W/(m.K)]
real flux(2) !Internal and external flux terms.
!Input-Output:
!-------------
integer swwall !swich for the physical coefficients calculation
real temp(nz) !Temperature at each layer
!Local:
!-----
real a(-1:1,nz) ! a(-1,*) lower diagonal A(i,i-1)
! a(0,*) principal diagonal A(i,i)
! a(1,*) upper diagonal A(i,i+1).
real b(nz) !Coefficients of the second term.
real k1(20)
real k2(20)
real kc(20)
save k1,k2,kc
integer iz
!________________________________________________________________
!
!Calculation of the coefficients
if (swwall.eq.1) then
if (nz.gt.20) then
write(*,*) 'number of layers in the walls/roofs too big ',nz
write(*,*) 'please decrease under of',20
stop
endif
call wall_coeff
(nz,dt,dz,cs,k,k1,k2,kc)
swwall=0
end if
!Computation of the first value (iz=1) of A and B:
a(-1,1)=0.
a(0,1)=1+k2(1)
a(1,1)=-k2(1)
b(1)=temp(1)+flux(1)*kc(1)
!!
!!We can fixed the internal temperature
!!
!! a(-1,1)=0.
!! a(0,1)=1
!! a(1,1)=0.
!!
!! b(1)=temp(1)
!!
!Computation of the internal values (iz=2,...,n-1) of A and B:
do iz=2,nz-1
a(-1,iz)=-k1(iz)
a(0,iz)=1+k1(iz)+k2(iz)
a(1,iz)=-k2(iz)
b(iz)=temp(iz)
end do
!Computation of the external value (iz=n) of A and B:
a(-1,nz)=-k1(nz)
a(0,nz)=1+k1(nz)
a(1,nz)=0.
b(nz)=temp(nz)+flux(2)*kc(nz)
!Resolution of the system A*T(n+1)=B
call tridia
(nz,a,b,temp)
return
end subroutine wall
!====6=8===============================================================72
!====6=8===============================================================72
subroutine wall_coeff(nz,dt,dz,cs,k,k1,k2,kc) 1
implicit none
!---------------------------------------------------------------------
!Input
!-----
integer nz !Number of layers inside the material
real dt !Time step
real dz(nz) !Layer sizes [m]
real cs(nz) !Specific heat of the material [J/(m3.K)]
real k(nz+1) !Thermal diffusivity in each layers (face) [W/(m.K)]
!Input-Output
!------------
real flux(2) !Internal and external flux terms.
!Output
!------
real k1(20)
real k2(20)
real kc(20)
!Local
!-----
integer iz
real kf(nz)
!------------------------------------------------------------------
do iz=2,nz
kc(iz)=dt/(dz(iz)*cs(iz))
kf(iz)=2*k(iz)/(dz(iz)+dz(iz-1))
end do
kc(1)=dt/(dz(1)*cs(1))
kf(1)=2*k(1)/(dz(1))
do iz=1,nz
k1(iz)=kc(iz)*kf(iz)
end do
do iz=1,nz-1
k2(iz)=kc(iz)*kf(iz+1)*cs(iz)/cs(iz+1)
end do
return
end subroutine wall_coeff
!====6=8===============================================================72
!====6=8===============================================================72
subroutine hsinsflux(swsurf,swwin,tin,tw,hsins) 10
implicit none
! --------------------------------------------------------------------
! This routine computes the internal sensible heat flux.
! The swsurf, makes rhe difference between a vertical and a
! horizontal surface.
! The values of the heat conduction coefficients hc are obtained from the book
! "Energy Simulation in Building Design". J.A. Clarke.
! Adam Hilger, Bristol, 362 pp.
! --------------------------------------------------------------------
!Input
!----
integer swsurf !swich for the type of surface (horizontal/vertical)
integer swwin !swich for the type of surface (window/wall)
real tin !Inside temperature [K]
real tw !Internal wall temperature [K]
!Output
!------
real hsins !internal sensible heat flux [W/m2]
!Local
!-----
real hc !heat conduction coefficient [W/°C.m2]
!--------------------------------------------------------------------
if (swsurf.eq.2) then !vertical surface
if (swwin.eq.1) then
hc=5.678*0.99 !window surface (smooth surface)
else
hc=5.678*1.09 !wall surface (rough surface)
endif
hsins=hc*(tin-tw)
endif
if (swsurf.eq.1) then !horizontal surface
if (swwin.eq.1) then
hc=5.678*0.99 !window surface (smooth surface)
else
hc=5.678*1.09 !wall surface (rough surface)
endif
hsins=hc*(tin-tw)
endif
return
end subroutine hsinsflux
!====6=8===============================================================72
!====6=8===============================================================72
subroutine int_rsrad(albwin,albwal,pwin,rswal,& 1,2
surwal,bw,bl,zw,rsint)
! ------------------------------------------------------------------
implicit none
! ------------------------------------------------------------------
!Input
!-----
real albwin !albedo of the windows
real albwal !albedo of the internal wall
real rswal(4) !incoming short wave radiation [W/m2]
real surwal(6) !surface of the indoor walls [m2]
real bw,bl !width of the walls [m]
real zw !height of the wall [m]
real pwin !window proportion
!Output
!------
real rsint(6) !internal walls short wave radiation [W/m2]
!Local
!-----
real transmit !transmittance of the direct/diffused radiation
real rstr !solar radiation transmitted through the windows
real surtotwal !total indoor surface of the walls in the room
integer iw
real b(6) !second member for the system
real a(6,6) !matrix for the system
!-------------------------------------------------------------------
! Calculation of the solar radiation transmitted through windows
rstr = 0.
do iw=1,4
transmit=1.-albwin
rstr = rstr+(surwal(iw)*pwin)*(transmit*rswal(iw))
enddo
!We suppose that the radiation is spread isotropically within the
!room when it passes through the windows, so the flux [W/m²] in every
!wall is:
surtotwal=0.
do iw=1,6
surtotwal=surtotwal+surwal(iw)
enddo
rstr=rstr/surtotwal
!Computation of the short wave radiation reaching the internal walls
call algebra_short
(rstr,albwal,albwin,bw,bl,zw,pwin,a,b)
call gaussjbem
(a,6,b,6)
do iw=1,6
rsint(iw)=b(iw)
enddo
return
end subroutine int_rsrad
!====6=8===============================================================72
!====6=8===============================================================72
subroutine int_rlrad(emwal,emwin,sigma,twal_int,twin,& 4,2
pwin,bw,bl,zw,rlint)
! ------------------------------------------------------------------
implicit none
! ------------------------------------------------------------------
!Input
!-----
real emwal !emissivity of the internal walls
real emwin !emissivity of the window
real sigma !Stefan-Boltzmann constant [W/m2.K4]
real twal_int(6)!temperature of the first internal layers of a room [K]
real twin(4) !temperature of the windows [K]
real bw !width of the wall
real bl !length of the wall
real zw !height of the wall
real pwin !window proportion
!Output
!------
real rlint(6) !internal walls long wave radiation [W/m2]
!Local
!------
real b(6) !second member vector for the system
real a(6,6) !matrix for the system
integer iw
!----------------------------------------------------------------
!Compute the long wave radiation reachs the internal walls
call algebra_long
(emwal,emwin,sigma,twal_int,twin,pwin,&
bw,bl,zw,a,b)
call gaussjbem
(a,6,b,6)
do iw=1,6
rlint(iw)=b(iw)
enddo
return
end subroutine int_rlrad
!====6=8===============================================================72
!====6=8===============================================================72
subroutine algebra_short(rstr,albwal,albwin,aw,bw,zw,pwin,a,b) 1,9
!--------------------------------------------------------------------
!This routine calculates the algebraic system that will be solved for
!the computation of the total shortwave radiation that reachs every
!indoor wall in a floor.
!Write the matrix system ax=b to solve
!
! -Rs(1)+a(1,2)Rs(2)+.................+a(1,6)Rs(6)=-Rs=b(1)
!a(2,1)Rs(1)- Rs(2)+.................+a(2,6)Rs(6)=-Rs=b(2)
!a(3,1)Rs(1)+a(3,2)Rs(3)-Rs(3)+...........+a(3,6)Rs(6)=-Rs=b(3)
!a(4,1)Rs(1)+.................-Rs(4)+.....+a(4,6)Rs(6)=-Rs=b(4)
!a(5,1)Rs(1)+.......................-Rs(5)+a(5,6)Rs(6)=-Rs=b(5)
!a(6,1)Rs(1)+....................................-R(6)=-Rs=b(6)
!
!This version suppose the albedo of the indoor walls is the same.
!--------------------------------------------------------------------
implicit none
!--------------------------------------------------------------------
!Input
!-----
real rstr !solar radiation transmitted through the windows
real albwal !albedo of the internal walls
real albwin !albedo of the windows.
real bw !length of the wall
real aw !width of the wall
real zw !height of the wall
real fprl_int !view factor
real fnrm_int !view factor
real pwin !window proportion
!Output
!------
real a(6,6) !Matrix for the system
real b(6) !Second member for the system
!Local
!-----
integer iw,jw
real albm !averaged albedo
!----------------------------------------------------------------
!Initialise the variables
do iw=1,6
b(iw)= 0.
do jw=1,6
a(iw,jw)= 0.
enddo
enddo
!Calculation of the second member b
do iw=1,6
b(iw)=-rstr
end do
!Calculation of the averaged albedo
albm=pwin*albwin+(1-pwin)*albwal
!Calculation of the matrix a
a(1,1)=-1.
call fprl_ints
(fprl_int,aw/bw,zw/bw)
a(1,2)=albm*fprl_int
call fnrm_ints
(fnrm_int,aw/zw,bw/zw,(aw*aw+bw*bw)/(zw*zw))
a(1,3)=albm*(bw/aw)*fnrm_int
a(1,4)=a(1,3)
call fnrm_ints
(fnrm_int,zw/aw,bw/aw,(bw*bw+zw*zw)/(aw*aw))
a(1,5)=albwal*(bw/zw)*fnrm_int
a(1,6)=a(1,5)
a(2,1)=a(1,2)
a(2,2)=-1.
a(2,3)=a(1,3)
a(2,4)=a(1,4)
a(2,5)=a(1,5)
a(2,6)=a(1,6)
call fnrm_ints
(fnrm_int,bw/zw,aw/zw,(bw*bw+aw*aw)/(zw*zw))
a(3,1)=albm*(aw/bw)*fnrm_int
a(3,2)=a(3,1)
a(3,3)=-1.
call fprl_ints
(fprl_int,zw/aw,bw/aw)
a(3,4)=albm*fprl_int
call fnrm_ints
(fnrm_int,zw/bw,aw/bw,(aw*aw+zw*zw)/(bw*bw))
a(3,5)=albwal*(aw/zw)*fnrm_int
a(3,6)=a(3,5)
a(4,1)=a(3,1)
a(4,2)=a(3,2)
a(4,3)=a(3,4)
a(4,4)=-1.
a(4,5)=a(3,5)
a(4,6)=a(3,6)
call fnrm_ints
(fnrm_int,bw/aw,zw/aw,(bw*bw+zw*zw)/(aw*aw))
a(5,1)=albm*(zw/bw)*fnrm_int
a(5,2)=a(5,1)
call fnrm_ints
(fnrm_int,aw/bw,zw/bw,(aw*aw+zw*zw)/(bw*bw))
a(5,3)=albm*(zw/aw)*fnrm_int
a(5,4)=a(5,3)
a(5,5)=-1.
call fprl_ints
(fprl_int,aw/zw,bw/zw)
a(5,6)=albwal*fprl_int
a(6,1)=a(5,1)
a(6,2)=a(5,2)
a(6,3)=a(5,3)
a(6,4)=a(5,4)
a(6,5)=a(5,6)
a(6,6)=-1.
return
end subroutine algebra_short
!====6=8===============================================================72
!====6=8===============================================================72
subroutine algebra_long(emwal,emwin,sigma,twalint,twinint,& 1,39
pwin,aw,bw,zw,a,b)
!--------------------------------------------------------------------
!This routine computes the algebraic system that will be solved to
!compute the longwave radiation that reachs the indoor
!walls in a floor.
!Write the matrix system ax=b to solve
!
!a(1,1)Rl(1)+.............................+Rl(6)=b(1)
!a(2,1)Rl(1)+.................+Rl(5)+a(2,6)Rl(6)=b(2)
!a(3,1)Rl(1)+.....+Rl(3)+...........+a(3,6)Rl(6)=b(3)
!a(4,1)Rl(1)+...........+Rl(4)+.....+a(4,6)Rl(6)=b(4)
! Rl(1)+.......................+a(5,6)Rl(6)=b(5)
!a(6,1)Rl(1)+Rl(2)+.................+a(6,6)Rl(6)=b(6)
!
!--------------------------------------------------------------------
implicit none
!--------------------------------------------------------------------
!Input
!-----
real pwin !window proportion
real emwal !emissivity of the internal walls
real emwin !emissivity of the window
real sigma !Stefan-Boltzmann constant [W/m2.K4]
real twalint(6) !temperature of the first internal layers of a room [K]
real twinint(4) !temperature of the windows [K]
real aw !width of the wall
real bw !length of the wall
real zw !height of the wall
real fprl_int !view factor
real fnrm_int !view factor
real fnrm_intx !view factor
real fnrm_inty !view factor
!Output
!------
real b(6) !second member vector for the system
real a(6,6) !matrix for the system
!Local
!-----
integer iw,jw
real b_wall(6)
real b_wind(6)
real emwal_av !averadge emissivity of the wall
real emwin_av !averadge emissivity of the window
real em_av !averadge emissivity
real twal_int(6) !twalint
real twin(4) !twinint
!------------------------------------------------------------------
!Initialise the variables
!-------------------------
do iw=1,6
b(iw)= 0.
b_wall(iw)=0.
b_wind(iw)=0.
do jw=1,6
a(iw,jw)= 0.
enddo
enddo
do iw=1,6
twal_int(iw)=twalint(iw)
enddo
do iw=1,4
twin(iw)=twinint(iw)
enddo
!Calculation of the averadge emissivities
!-----------------------------------------
emwal_av=(1-pwin)*emwal
emwin_av=pwin*emwin
em_av=emwal_av+emwin_av
!Calculation of the second term for the walls
!-------------------------------------------
call fprl_ints
(fprl_int,aw/zw,bw/zw)
call fnrm_ints
(fnrm_intx,aw/bw,zw/bw,(aw*aw+zw*zw)/(bw*bw))
call fnrm_ints
(fnrm_inty,bw/aw,zw/aw,(bw*bw+zw*zw)/(aw*aw))
b_wall(1)=(emwal*sigma*(twal_int(5)**4)* &
fprl_int)+ &
(sigma*(emwal_av*(twal_int(3)**4)+ &
emwal_av*(twal_int(4)**4))* &
(zw/aw)*fnrm_intx)+ &
(sigma*(emwal_av*(twal_int(1)**4)+ &
emwal_av*(twal_int(2)**4))* &
(zw/bw)*fnrm_inty)
call fprl_ints
(fprl_int,aw/zw,bw/zw)
call fnrm_ints
(fnrm_intx,aw/bw,zw/bw,(aw*aw+zw*zw)/(bw*bw))
call fnrm_ints
(fnrm_inty,bw/aw,zw/aw,(bw*bw+zw*zw)/(aw*aw))
b_wall(2)=(emwal*sigma*(twal_int(6)**4)* &
fprl_int)+ &
(sigma*(emwal_av*(twal_int(3)**4)+ &
emwal_av*(twal_int(4)**4))* &
(zw/aw)*fnrm_intx)+ &
(sigma*(emwal_av*(twal_int(1)**4)+ &
emwal_av*(twal_int(2)**4))* &
(zw/bw)*fnrm_inty)
call fprl_ints
(fprl_int,zw/aw,bw/aw)
call fnrm_ints
(fnrm_intx,bw/zw,aw/zw,(bw*bw+aw*aw)/(zw*zw))
call fnrm_ints
(fnrm_inty,zw/bw,aw/bw,(aw*aw+zw*zw)/(bw*bw))
b_wall(3)=(emwal_av*sigma*(twal_int(4)**4)* &
fprl_int)+ &
(sigma*(emwal_av*(twal_int(2)**4)+ &
emwal_av*(twal_int(1)**4))* &
(aw/bw)*fnrm_intx)+ &
(sigma*(emwal*(twal_int(5)**4)+ &
emwal*(twal_int(6)**4))* &
(aw/zw)*fnrm_inty)
call fprl_ints
(fprl_int,zw/aw,bw/aw)
call fnrm_ints
(fnrm_intx,bw/zw,aw/zw,(bw*bw+aw*aw)/(zw*zw))
call fnrm_ints
(fnrm_inty,zw/bw,aw/bw,(aw*aw+zw*zw)/(bw*bw))
b_wall(4)=(emwal_av*sigma*(twal_int(3)**4)* &
fprl_int)+ &
(sigma*(emwal_av*(twal_int(2)**4)+ &
emwal_av*(twal_int(1)**4))* &
(aw/bw)*fnrm_intx)+ &
(sigma*(emwal*(twal_int(5)**4)+ &
emwal*(twal_int(6)**4))* &
(aw/zw)*fnrm_inty)
call fprl_ints
(fprl_int,aw/bw,zw/bw)
call fnrm_ints
(fnrm_intx,aw/zw,bw/zw,(aw*aw+bw*bw)/(zw*zw))
call fnrm_ints
(fnrm_inty,zw/aw,bw/aw,(bw*bw+zw*zw)/(aw*aw))
b_wall(5)=(emwal_av*sigma*(twal_int(2)**4)* &
fprl_int)+ &
(sigma*(emwal_av*(twal_int(3)**4)+ &
emwal_av*(twal_int(4)**4))* &
(bw/aw)*fnrm_intx)+ &
(sigma*(emwal*(twal_int(5)**4)+ &
emwal*(twal_int(6)**4))* &
(bw/zw)*fnrm_inty)
call fprl_ints
(fprl_int,aw/bw,zw/bw)
call fnrm_ints
(fnrm_intx,aw/zw,bw/zw,(aw*aw+bw*bw)/(zw*zw))
call fnrm_ints
(fnrm_inty,zw/aw,bw/aw,(bw*bw+zw*zw)/(aw*aw))
b_wall(6)=(emwal_av*sigma*(twal_int(1)**4)* &
fprl_int)+ &
(sigma*(emwal_av*(twal_int(3)**4)+ &
emwal_av*(twal_int(4)**4))* &
(bw/aw)*fnrm_intx)+ &
(sigma*(emwal*(twal_int(5)**4)+ &
emwal*(twal_int(6)**4))* &
(bw/zw)*fnrm_inty)
!Calculation of the second term for the windows
!---------------------------------------------
call fnrm_ints
(fnrm_intx,aw/bw,zw/bw,(aw*aw+zw*zw)/(bw*bw))
call fnrm_ints
(fnrm_inty,bw/aw,zw/aw,(bw*bw+zw*zw)/(aw*aw))
b_wind(1)=(sigma*(emwin_av*(twin(3)**4)+ &
emwin_av*(twin(4)**4))* &
(zw/aw)*fnrm_intx)+ &
(sigma*(emwin_av*(twin(1)**4)+ &
emwin_av*(twin(2)**4))* &
(zw/bw)*fnrm_inty)
call fnrm_ints
(fnrm_intx,aw/bw,zw/bw,(aw*aw+zw*zw)/(bw*bw))
call fnrm_ints
(fnrm_inty,bw/aw,zw/aw,(bw*bw+zw*zw)/(aw*aw))
b_wind(2)=(sigma*(emwin_av*(twin(3)**4)+ &
emwin_av*(twin(4)**4))* &
(zw/aw)*fnrm_intx)+ &
(sigma*(emwin_av*(twin(1)**4)+ &
emwin_av*(twin(2)**4))* &
(zw/bw)*fnrm_inty)
call fprl_ints
(fprl_int,zw/aw,bw/aw)
call fnrm_ints
(fnrm_int,bw/zw,aw/zw,(bw*bw+aw*aw)/(zw*zw))
b_wind(3)=emwin_av*sigma*(twin(4)**4)* &
fprl_int+(sigma*(emwin_av* &
(twin(2)**4)+emwin_av*(twin(1)**4))* &
(aw/bw)*fnrm_int)
call fprl_ints
(fprl_int,zw/aw,bw/aw)
call fnrm_ints
(fnrm_int,bw/zw,aw/zw,(bw*bw+aw*aw)/(zw*zw))
b_wind(4)=emwin_av*sigma*(twin(3)**4)* &
fprl_int+(sigma*(emwin_av* &
(twin(2)**4)+emwin_av*(twin(1)**4))* &
(aw/bw)*fnrm_int)
call fprl_ints
(fprl_int,aw/bw,zw/bw)
call fnrm_ints
(fnrm_int,aw/zw,bw/zw,(aw*aw+bw*bw)/(zw*zw))
b_wind(5)=emwin_av*sigma*(twin(2)**4)* &
fprl_int+(sigma*(emwin_av* &
(twin(3)**4)+emwin_av*(twin(4)**4))* &
(bw/aw)*fnrm_int)
call fprl_ints
(fprl_int,aw/bw,zw/bw)
call fnrm_ints
(fnrm_int,aw/zw,bw/zw,(aw*aw+bw*bw)/(zw*zw))
b_wind(6)=emwin_av*sigma*(twin(1)**4)* &
fprl_int+(sigma*(emwin_av* &
(twin(3)**4)+emwin_av*(twin(4)**4))* &
(bw/aw)*fnrm_int)
!Calculation of the total b term
!-------------------------------
do iw=1,6
b(iw)=b_wall(iw)+b_wind(iw)
end do
!Calculation of the matrix of the system
!----------------------------------------
call fnrm_ints
(fnrm_int,bw/aw,zw/aw,(bw*bw+zw*zw)/(aw*aw))
a(1,1)=(em_av-1.)*(zw/bw)*fnrm_int
a(1,2)=a(1,1)
call fnrm_ints
(fnrm_int,aw/bw,zw/bw,(aw*aw+zw*zw)/(bw*bw))
a(1,3)=(em_av-1.)*(zw/aw)*fnrm_int
a(1,4)=a(1,3)
call fprl_ints
(fprl_int,aw/zw,bw/zw)
a(1,5)=(emwal-1.)*fprl_int
a(1,6)=1.
a(2,1)=a(1,1)
a(2,2)=a(1,2)
a(2,3)=a(1,3)
a(2,4)=a(1,4)
a(2,5)=1.
a(2,6)=a(1,5)
call fnrm_ints
(fnrm_int,bw/zw,aw/zw,(bw*bw+aw*aw)/(zw*zw))
a(3,1)=(em_av-1.)*(aw/bw)*fnrm_int
a(3,2)=a(3,1)
a(3,3)=1.
call fprl_ints
(fprl_int,zw/aw,bw/aw)
a(3,4)=(em_av-1.)*fprl_int
call fnrm_ints
(fnrm_int,zw/bw,aw/bw,(aw*aw+zw*zw)/(bw*bw))
a(3,5)=(emwal-1.)*(aw/zw)*fnrm_int
a(3,6)=a(3,5)
a(4,1)=a(3,1)
a(4,2)=a(3,2)
a(4,3)=a(3,4)
a(4,4)=1.
a(4,5)=a(3,5)
a(4,6)=a(3,6)
a(5,1)=1.
call fprl_ints
(fprl_int,aw/bw,zw/bw)
a(5,2)=(em_av-1.)*fprl_int
call fnrm_ints
(fnrm_int,aw/zw,bw/zw,(aw*aw+bw*bw)/(zw*zw))
a(5,3)=(em_av-1.)*(bw/aw)*fnrm_int
a(5,4)=a(5,3)
call fnrm_ints
(fnrm_int,zw/aw,bw/aw,(bw*bw+zw*zw)/(aw*aw))
a(5,5)=(emwal-1.)*(bw/zw)*fnrm_int
a(5,6)=a(5,5)
a(6,1)=a(5,2)
a(6,2)=1.
a(6,3)=a(5,3)
a(6,4)=a(5,4)
a(6,5)=a(5,5)
a(6,6)=a(6,5)
return
end subroutine algebra_long
!====6=8===============================================================72
!====6=8===============================================================72
subroutine fluxroo(hseqocc,hleqocc,hsvent,hlvent, & 1
hscond,hslev,hllev)
!-----------------------------------------------------------------------
!This routine calculates the heat flux generated inside the room
!and the heat ejected to the atmosphere.
!----------------------------------------------------------------------
implicit none
!-----------------------------------------------------------------------
!Input
!-----
real hseqocc !sensible heat generated by equipments and occupants [W]
real hleqocc !latent heat generated by occupants [W]
real hsvent !sensible heat generated by natural ventilation [W]
real hlvent !latent heat generated by natural ventilation [W]
real hscond !sensible heat generated by wall conduction
!Output
!------
real hslev !sensible heat flux generated inside the room [W]
real hllev !latent heat flux generatd inside the room
!Calculation of the total sensible heat generated inside the room
hslev=hseqocc+hsvent+hscond
!Calculation of the total latent heat generated inside the room
hllev=hleqocc+hlvent
return
end subroutine fluxroo
!====6=8===============================================================72
!====6=8===============================================================72
subroutine phirat(nhourday,rocc) 1
!----------------------------------------------------------------------
!This routine calculates the occupation ratio of a floor
!By now we suppose a constant value
!----------------------------------------------------------------------
implicit none
!Input
!-----
real nhourday ! number of hours from midnight (local time)
!Output
!------
real rocc !value between 0 and 1
!!TEST
rocc=1.
return
end subroutine phirat
!====6=8===============================================================72
!====6=8===============================================================72
subroutine phiequ(nhourday,hsesf,hsequip,hsequ) 1
!----------------------------------------------------------------------
!This routine calculates the sensible heat gain from equipments
!----------------------------------------------------------------------
implicit none
!Input
!-----
real nhourday ! number of hours from midnight, Local time
real, intent(in) :: hsesf
real, intent(in), dimension(24) :: hsequip
!Output
!------
real hsequ !sensible heat gain from equipment [Wm¯2]
!---------------------------------------------------------------------
hsequ = hsequip(int(nhourday)+1) * hsesf
end subroutine phiequ
!====6=8===============================================================72
!====6=8===============================================================72
subroutine fluxeqocc(nhourday,bw,bl,perflo,hsesf,hsequip,hseqocc,hleqocc) 1,2
implicit none
!---------------------------------------------------------------------
!This routine calculates the sensible and the latent heat flux
!generated by equipments and occupants
!---------------------------------------------------------------------
!Input
!-----
real bw !Room width [m]
real bl !Room lengzh [m]
real nhourday !number of hours from the beginning of the day
real, intent(in) :: perflo ! Peak number of occupants per unit floor area
real, intent(in) :: hsesf
real, intent(in), dimension(24) :: hsequip
!Output
!------
real hseqocc !sensible heat generated by equipments and occupants [W]
real hleqocc !latent heat generated by occupants [W]
!Local
!-----
real Af !Air conditioned floor area [m2]
real rocc !Occupation ratio of the floor [0,1]
real hsequ !Heat generated from equipments
real hsocc !Sensible heat generated by a person [W/Person]
!Source Boundary Layer Climates,page 195 (book)
parameter (hsocc=160.)
real hlocc !Latent heat generated by a person [W/Person]
!Source Boundary Layer Climates,page 225 (book)
parameter (hlocc=1.96e6/86400.)
!------------------------------------------------------------------
! Sensible heat flux
! ------------------
Af=bw*bl
call phirat
(nhourday,rocc)
call phiequ
(nhourday,hsesf,hsequip,hsequ)
hseqocc=Af*rocc*perflo*hsocc+Af*hsequ
!
! Latent heat
! -----------
!
hleqocc=Af*rocc*perflo*hlocc
return
end subroutine fluxeqocc
!====6=8===============================================================72
!====6=8===============================================================72
subroutine fluxvent(cpint,rhoint,vollev,tlev,tout,latent,& 1
humout,rhoout,humlev,beta,hsvent,hlvent)
implicit none
!---------------------------------------------------------------------
!This routine calculates the sensible and the latent heat flux
!generated by natural ventilation
!---------------------------------------------------------------------
!Input
!-----
real cpint !specific heat of the indoor air [J/kg.K]
real rhoint !density of the indoor air [Kg/m3]
real vollev !volume of the room [m3]
real tlev !Room temperature [K]
real tout !outside air temperature [K]
real latent !latent heat of evaporation [J/Kg]
real humout !outside absolute humidity [Kgwater/Kgair]
real rhoout !air density [kg/m3]
real humlev !Specific humidity of the indoor air [Kgwater/Kgair]
real, intent(in) :: beta!Thermal efficiency of the heat exchanger
!Output
!------
real hsvent !sensible heat generated by natural ventilation [W]
real hlvent !latent heat generated by natural ventilation [W]
!Local
!-----
!----------------------------------------------------------------------
! Sensible heat flux
! ------------------
hsvent=(1.-beta)*cpint*rhoint*(vollev/3600.)* &
(tout-tlev)
! Latent heat flux
! ----------------
hlvent=(1.-beta)*latent*rhoint*(vollev/3600.)* &
(humout-humlev)
return
end subroutine fluxvent
!====6=8===============================================================72
!====6=8===============================================================72
subroutine fluxcond(hswalins,hswinins,surwal,pwin,hscond) 1
implicit none
!---------------------------------------------------------------------
!This routine calculates the sensible heat flux generated by
!wall conduction.
!---------------------------------------------------------------------
!Input
!-----
real hswalins(6) !sensible heat at the internal layers of the wall [W/m2]
real hswinins(4) !internal window sensible heat flux [W/m2]
real surwal(6) !surfaces of the room walls [m2]
real pwin !window proportion
!Output
!------
real hscond !sensible heat generated by wall conduction [W]
!Local
!-----
integer ivw
!----------------------------------------------------------------------
hscond=0.
do ivw=1,4
hscond=hscond+surwal(ivw)*(1-pwin)*hswalins(ivw)+ &
surwal(ivw)*pwin*hswinins(ivw)
end do
do ivw=5,6
hscond=hscond+surwal(ivw)*hswalins(ivw)
end do
!
!Finally we must change the sign in hscond to be proportional
!to the difference (Twall-Tindoor).
!
hscond=(-1)*hscond
return
end subroutine fluxcond
!====6=8===============================================================72
!====6=8===============================================================72
subroutine regtemp(swcond,nhourday,dt,Qb,hsroo, & 1
tlev,timeon,timeoff,targtemp,gaptemp,hsneed)
implicit none
!---------------------------------------------------------------------
!This routine calculates the sensible heat fluxes,
!after anthropogenic regulation (air conditioning)
!---------------------------------------------------------------------
!Input:
!-----.
integer swcond !swich air conditioning
real nhourday !number of hours from the beginning of the day real
real dt !time step [s]
real Qb !overall heat capacity of the indoor air [J/K]
real hsroo !sensible heat flux generated inside the room [W]
real tlev !room air temperature [K]
real, intent(in) :: timeon ! Initial local time of A/C systems
real, intent(in) :: timeoff ! Ending local time of A/C systems
real, intent(in) :: targtemp! Target temperature of A/C systems
real, intent(in) :: gaptemp ! Comfort range of indoor temperature
!Local:
!-----.
real templev !hipotetical room air temperature [K]
real alpha !variable to control the heating/cooling of
!the air conditining system
!Output:
!-----.
real hsneed !sensible heat extracted to the indoor air [W]
!---------------------------------------------------------------------
!initialize variables
!---------------------
templev = 0.
alpha = 0.
if (swcond.eq.0) then ! there is not air conditioning in the floor
hsneed = 0.
goto 100
else
if ((nhourday.ge.timeon).and.(nhourday.le.timeoff)) then
templev=tlev+(dt/Qb)*hsroo
goto 200
else
hsneed = 0. ! air conditioning is switched off
goto 100
endif
endif
200 continue
if (abs(templev-targtemp).le.gaptemp) then
hsneed = 0.
else
if (templev.gt.(targtemp+gaptemp)) then
hsneed=hsroo-(Qb/dt)*(targtemp+gaptemp-tlev)
alpha=(abs(hsneed-hsroo)/Qb)
if (alpha.gt.temp_rat) then
hsneed=hsroo+temp_rat*Qb
goto 100
else
goto 100
endif
else
hsneed=hsroo-(Qb/dt)*(targtemp-gaptemp-tlev)
alpha=(abs(hsneed-hsroo)/Qb)
if (alpha.gt.temp_rat) then
hsneed=hsroo-temp_rat*Qb
goto 100
else
goto 100
endif
endif
endif
100 continue
return
end subroutine regtemp
!====6=8==============================================================72
!====6=8==============================================================72
subroutine reghum(swcond,nhourday,dt,volroo,rhoint,latent, & 1
hlroo,shumroo,timeon,timeoff,targhum,gaphum,hlneed)
implicit none
!---------------------------------------------------------------------
!This routine calculates the latent heat fluxes,
!after anthropogenic regulation (air conditioning)
!---------------------------------------------------------------------
!Input:
!-----.
integer swcond !swich air conditioning
real nhourday !number of hours from the beginning of the day real[h]
real dt !time step [s]
real volroo !volume of the room [m3]
real rhoint !density of the internal air [Kg/m3]
real latent !latent heat of evaporation [J/Kg]
real hlroo !latent heat flux generated inside the room [W]
real shumroo !specific humidity of the indoor air [kg/kg]
real, intent(in) :: timeon ! Initial local time of A/C systems
real, intent(in) :: timeoff ! Ending local time of A/C systems
real, intent(in) :: targhum ! Target humidity of the A/C systems
real, intent(in) :: gaphum ! comfort range of the specific humidity
!Local:
!-----.
real humlev !hipotetical specific humidity of the indoor [kg/kg]
real betha !variable to control the drying/moistening of
!the air conditioning system
!Output:
!-----.
real hlneed !latent heat extracted to the indoor air [W]
!------------------------------------------------------------------------
!initialize variables
!---------------------
humlev = 0.
betha = 0.
if (swcond.eq.0) then ! there is not air conditioning in the floor
hlneed = 0.
goto 100
else
if ((nhourday.ge.timeon).and.(nhourday.le.timeoff)) then
humlev=shumroo+(dt/(latent*rhoint*volroo))*hlroo
goto 200
else
hlneed = 0. ! air conditioning is switched off
goto 100
endif
endif
200 continue
if (abs(humlev-targhum).le.gaphum) then
hlneed = 0.
else
if (humlev.gt.(targhum+gaphum)) then
hlneed=hlroo-((latent*rhoint*volroo)/dt)* &
(targhum+gaphum-shumroo)
betha=abs(hlneed-hlroo)/(latent*rhoint*volroo)
if (betha.gt.hum_rat) then
hlneed=hlroo+hum_rat*(latent*rhoint*volroo)
goto 100
else
goto 100
endif
else
hlneed=hlroo-((latent*rhoint*volroo)/dt)* &
(targhum-gaphum-shumroo)
betha=abs(hlneed-hlroo)/(latent*rhoint*volroo)
if (betha.gt.hum_rat) then
hlneed=hlroo-hum_rat*(latent*rhoint*volroo)
goto 100
else
goto 100
endif
endif
endif
100 continue
return
end subroutine reghum
!====6=8==============================================================72
!====6=8==============================================================72
subroutine air_cond(hsneed,hlneed,dt,hsout,hlout,consump,cop) 1
implicit none
!
!Performance of the air conditioning system
!
!INPUT/OUTPUT VARIABLES
real, intent(in) :: cop
!
!INPUT/OUTPUT VARIABLES
!
real hsneed !sensible heat that is necessary for cooling/heating
!the indoor air temperature [W]
real hlneed !latent heat that is necessary for controling
!the humidity of the indoor air [W]
real dt !time step [s]
!
!OUTPUT VARIABLES
!
real hsout !sensible heat pumped out into the atmosphere [W]
real hlout !latent heat pumped out into the atmosphere [W]
real consump !Electrical consumption of the air conditioning system [W]
!
!Performance of the air conditioning system
!
if (hsneed.gt.0) then ! air conditioning is cooling
! and the heat is pumped out into the atmosphere
hsout=(1/cop)*(abs(hsneed)+abs(hlneed))+hsneed
hlout=hlneed
consump=(1./cop)*(abs(hsneed)+abs(hlneed))
!! hsout=0.
!! hlout=0.
else if(hsneed.eq.0.) then !air conditioning is not working to regulate the indoor temperature
hlneed=0. !no humidity regulation is considered
hsout=0. !no output into the atmosphere (sensible heat)
hlout=0. !no output into the atmosphere (latent heat)
consump=0. !no electrical consumption
else !! hsneed < 0. !air conditioning is heating
hlneed=0. !no humidity regulation is considered
hlout=0. !no output into the atmosphere (latent heat)
consump=(1./cop)*(abs(hsneed)+abs(hlneed))
!
!!We have two possibilities
!
!! hsout=(1./cop)*(abs(hsneed)+abs(hlneed)) !output into the atmosphere
hsout=0. !no output into the atmosphere
end if
return
end subroutine air_cond
!====6=8==============================================================72
!====6=8==============================================================72
subroutine consump_total(nzcanm,nlev,consumpbuild,hsoutbuild, & 1
hsout,consump)
implicit none
!-----------------------------------------------------------------------
!Compute the total consumption in kWh/s (1kWh=3.6e+6 J) and sensible heat
!ejected into the atmosphere per building
!------------------------------------------------------------------------
!
!INPUT VARIABLES
!
!
integer nzcanm !Maximum number of vertical levels in the urban grid
real hsout(nzcanm) !sensible heat emitted outside the room [W]
real consump(nzcanm) !Electricity consumption for the a.c. in each floor[W]
!
!OUTPUT VARIABLES
!
real consumpbuild !Energetic consumption for the entire building[kWh/s]
real hsoutbuild !Total sensible heat ejected into the atmosphere
!by the air conditioning systems per building [W]
!
!LOCAL VARIABLES
!
integer ilev
!
!INPUT VARIABLES
!
integer nlev
!
!INITIALIZE VARIABLES
!
consumpbuild=0.
hsoutbuild=0.
!
do ilev=1,nlev
consumpbuild=consumpbuild+consump(ilev)
hsoutbuild=hsoutbuild+hsout(ilev)
enddo !ilev
consumpbuild=consumpbuild/(3.6e+06)
return
end subroutine consump_total
!====6=8==============================================================72
!====6=8==============================================================72
subroutine tridia(n,a,b,x) 1
! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
! + by A. Clappier, EPFL, CH 1015 Lausanne +
! + phone: ++41-(0)21-693-61-60 +
! + email:alain.clappier@epfl.ch +
! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
! ----------------------------------------------------------------------
! Resolution of a * x = b where a is a tridiagonal matrix
!
! ----------------------------------------------------------------------
implicit none
! Input
integer n
real a(-1:1,n) ! a(-1,*) lower diagonal A(i,i-1)
! a(0,*) principal diagonal A(i,i)
! a(1,*) upper diagonal A(i,i+1)
real b(n)
! Output
real x(n)
! Local
integer i
! ----------------------------------------------------------------------
do i=n-1,1,-1
b(i)=b(i)-a(1,i)*b(i+1)/a(0,i+1)
a(0,i)=a(0,i)-a(1,i)*a(-1,i+1)/a(0,i+1)
enddo
do i=2,n
b(i)=b(i)-a(-1,i)*b(i-1)/a(0,i-1)
enddo
do i=1,n
x(i)=b(i)/a(0,i)
enddo
return
end subroutine tridia
!====6=8===============================================================72
!====6=8===============================================================72
subroutine gaussjbem(a,n,b,np) 2,2
! ----------------------------------------------------------------------
! This routine solve a linear system of n equations of the form
! A X = B
! where A is a matrix a(i,j)
! B a vector and X the solution
! In output b is replaced by the solution
! ----------------------------------------------------------------------
implicit none
! ----------------------------------------------------------------------
! INPUT:
! ----------------------------------------------------------------------
integer np
real a(np,np)
! ----------------------------------------------------------------------
! OUTPUT:
! ----------------------------------------------------------------------
real b(np)
! ----------------------------------------------------------------------
! LOCAL:
! ----------------------------------------------------------------------
integer nmax
parameter (nmax=150)
real big,dum
integer i,icol,irow
integer j,k,l,ll,n
integer ipiv(nmax)
real pivinv
! ----------------------------------------------------------------------
! END VARIABLES DEFINITIONS
! ----------------------------------------------------------------------
do j=1,n
ipiv(j)=0.
enddo
do i=1,n
big=0.
do j=1,n
if(ipiv(j).ne.1)then
do k=1,n
if(ipiv(k).eq.0)then
if(abs(a(j,k)).ge.big)then
big=abs(a(j,k))
irow=j
icol=k
endif
elseif(ipiv(k).gt.1)then
CALL wrf_error_fatal
('singular matrix in gaussjbem')
endif
enddo
endif
enddo
ipiv(icol)=ipiv(icol)+1
if(irow.ne.icol)then
do l=1,n
dum=a(irow,l)
a(irow,l)=a(icol,l)
a(icol,l)=dum
enddo
dum=b(irow)
b(irow)=b(icol)
b(icol)=dum
endif
if(a(icol,icol).eq.0) CALL wrf_error_fatal
('singular matrix in gaussjbem')
pivinv=1./a(icol,icol)
a(icol,icol)=1
do l=1,n
a(icol,l)=a(icol,l)*pivinv
enddo
b(icol)=b(icol)*pivinv
do ll=1,n
if(ll.ne.icol)then
dum=a(ll,icol)
a(ll,icol)=0.
do l=1,n
a(ll,l)=a(ll,l)-a(icol,l)*dum
enddo
b(ll)=b(ll)-b(icol)*dum
endif
enddo
enddo
return
end subroutine gaussjbem
!====6=8===============================================================72
!====6=8===============================================================72
subroutine radfluxs(radflux,alb,rs,em,rl,sigma,twal) 14
implicit none
!-------------------------------------------------------------------
!This function calculates the radiative fluxe at a surface
!-------------------------------------------------------------------
real alb !albedo of the surface
real rs !shor wave radiation
real em !emissivity of the surface
real rl !lon wave radiation
real sigma !parameter (wall is not black body) [W/m2.K4]
real twal !wall temperature [K]
real radflux
radflux=(1.-alb)*rs+em*rl-em*sigma*twal**4
return
end subroutine radfluxs
!====6=8==============================================================72
!====6=8==============================================================72
!
! we define the view factors fprl and fnrm, which are the angle
! factors between two equal and parallel planes, fprl, and two
! equal and orthogonal planes, fnrm, respectively
!
subroutine fprl_ints(fprl_int,vx,vy) 16
implicit none
real vx,vy
real fprl_int
fprl_int=(2./(3.141592653*vx*vy))* &
(log(sqrt((1.+vx*vx)*(1.+vy*vy)/(1.+vx*vx+vy*vy)))+ &
(vy*sqrt(1.+vx*vx)*atan(vy/sqrt(1.+vx*vx)))+ &
(vx*sqrt(1.+vy*vy)*atan(vx/sqrt(1.+vy*vy)))- &
vy*atan(vy)-vx*atan(vx))
return
end subroutine fprl_ints
!====6=8==============================================================72
!====6=8==============================================================72
!
! we define the view factors fprl and fnrm, which are the angle
! factors between two equal and parallel planes, fprl, and two
! equal and orthogonal planes, fnrm, respectively
!
subroutine fnrm_ints(fnrm_int,wx,wy,wz) 32
implicit none
real wx,wy,wz
real fnrm_int
fnrm_int=(1./(3.141592653*wy))*(wy*atan(1./wy)+wx*atan(1./wx)- &
(sqrt(wz)*atan(1./sqrt(wz)))+ &
(1./4.)*(log((1.+wx*wx)*(1.+wy*wy)/(1.+wz))+ &
wy*wy*log(wy*wy*(1.+wz)/(wz*(1.+wy*wy)))+ &
wx*wx*log(wx*wx*(1.+wz)/(wz*(1.+wx*wx)))))
return
end subroutine fnrm_ints
!====6=8==============================================================72
!====6=8==============================================================72
END MODULE module_sf_bem