MODULE module_sf_mynn 3 !------------------------------------------------------------------- !Modifications implemented by Joseph Olson NOAA/GSD/AMB - CU/CIRES !for WRFv3.4 and WRFv3.4.1: ! ! BOTH LAND AND WATER: !1) Calculation of stability parameter (z/L) taken from Li et al. (2010 BLM) ! for first iteration of first time step; afterwards, exact calculation. !2) Fixed isflux=0 option to turn off scalar fluxes, but keep momentum ! fluxes for idealized studies (credit: Anna Fitch). !3) Kinematic viscosity now varies with temperature !4) Uses Monin-Obukhov flux-profile relationships more consistent with ! those used in the MYNN PBL code. !5) Allows negative QFX, similar to MYJ scheme ! ! LAND only: !1) iz0tlnd option is now available with the following options: ! (default) =0: Zilitinkevich (1995) with Czil=0.1, ! =1: Czil_new (modified according to Chen & Zhang 2008) ! =2: Modified Yang et al (2002, 2008) - generalized for all landuse ! =3: constant zt = z0/7.4 (original form; Garratt 1992) !2) Relaxed u* minimum from 0.1 to 0.01 ! ! WATER only: !1) isftcflx option is now available with the following options: ! (default) =0: z0, zt, and zq from COARE3.0 (Fairall et al 2003) ! =1: z0 from Davis et al (2008), zt & zq from COARE3.0 ! =2: z0 from Davis et al (2008), zt & zq from Garratt (1992) ! =3: z0 from Taylor and Yelland (2004), zt and zq from COARE3.0 ! =4: z0 from Zilitinkevich (2001), zt & zq from COARE3.0 ! ! SNOW/ICE only: !1) Added Andreas (2002) snow/ice parameterization for thermal and ! moisture roughness to help reduce the cool/moist bias in the arctic ! region. ! !NOTE: This code was primarily tested in combination with the RUC LSM. ! Performance with the Noah (or other) LSM is relatively unknown. !------------------------------------------------------------------- USE module_model_constants, only: & &p1000mb, cp, xlv, ep_2 USE module_sf_sfclay, ONLY: sfclayinit USE module_bl_mynn, only: tv0, mym_condensation !------------------------------------------------------------------- IMPLICIT NONE !------------------------------------------------------------------- REAL, PARAMETER :: xlvcp=xlv/cp, ep_3=1.-ep_2 REAL, PARAMETER :: wmin=0.1 ! Minimum wind speed REAL, PARAMETER :: zm2h=7.4 ! = z_0m/z_0h REAL, PARAMETER :: charnock=0.016, bvisc=1.5e-5, z0hsea=5.e-5 REAL, PARAMETER :: VCONVC=1.0 REAL, PARAMETER :: SNOWZ0=0.012 REAL, DIMENSION(0:1000 ),SAVE :: PSIMTB,PSIHTB CONTAINS !------------------------------------------------------------------- SUBROUTINE mynn_sf_init_driver(allowed_to_read) 1,1 LOGICAL, INTENT(in) :: allowed_to_read !Fill the PSIM and PSIH tables. The subroutine "sfclayinit" !can be found in module_sf_sfclay.F. This subroutine returns !the forms from Dyer and Hicks (1974). CALL sfclayinit(allowed_to_read) END SUBROUTINE mynn_sf_init_driver !------------------------------------------------------------------- SUBROUTINE SFCLAY_mynn(U3D,V3D,T3D,QV3D,P3D,dz8w, & 3,2 CP,G,ROVCP,R,XLV,PSFC,CHS,CHS2,CQS2,CPM, & ZNT,UST,PBLH,MAVAIL,ZOL,MOL,REGIME,PSIM,PSIH, & XLAND,HFX,QFX,LH,TSK,FLHC,FLQC,QGH,QSFC,RMOL, & U10,V10,TH2,T2,Q2, & GZ1OZ0,WSPD,BR,ISFFLX,DX, & SVP1,SVP2,SVP3,SVPT0,EP1,EP2, & KARMAN,EOMEG,STBOLT, & itimestep,ch,th3d,pi3d,qc3d, & tsq,qsq,cov,qcg, & !JOE-add output ! z0zt_ratio,BulkRi,wstar,qstar,resist,logres, & ! Rreynolds,niters,psixrat,psitrat, & !JOE-end ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte, & ustm,ck,cka,cd,cda,isftcflx,iz0tlnd ) !------------------------------------------------------------------- IMPLICIT NONE !------------------------------------------------------------------- !-- U3D 3D u-velocity interpolated to theta points (m/s) !-- V3D 3D v-velocity interpolated to theta points (m/s) !-- T3D temperature (K) !-- QV3D 3D water vapor mixing ratio (Kg/Kg) !-- P3D 3D pressure (Pa) !-- dz8w dz between full levels (m) !-- CP heat capacity at constant pressure for dry air (J/kg/K) !-- G acceleration due to gravity (m/s^2) !-- ROVCP R/CP !-- R gas constant for dry air (J/kg/K) !-- XLV latent heat of vaporization for water (J/kg) !-- PSFC surface pressure (Pa) !-- ZNT roughness length (m) !-- UST u* in similarity theory (m/s) !-- USTM u* in similarity theory (m/s) w* added to WSPD. This is ! used to couple with TKE scheme but not in MYNN. ! (as of now, USTM = UST in this version) !-- PBLH PBL height from previous time (m) !-- MAVAIL surface moisture availability (between 0 and 1) !-- ZOL z/L height over Monin-Obukhov length !-- MOL T* (similarity theory) (K) !-- REGIME flag indicating PBL regime (stable, unstable, etc.) !-- PSIM similarity stability function for momentum !-- PSIH similarity stability function for heat !-- XLAND land mask (1 for land, 2 for water) !-- HFX upward heat flux at the surface (W/m^2) !-- QFX upward moisture flux at the surface (kg/m^2/s) !-- LH net upward latent heat flux at surface (W/m^2) !-- TSK surface temperature (K) !-- FLHC exchange coefficient for heat (W/m^2/K) !-- FLQC exchange coefficient for moisture (kg/m^2/s) !-- CHS heat/moisture exchange coefficient for LSM (m/s) !-- QGH lowest-level saturated mixing ratio !-- U10 diagnostic 10m u wind !-- V10 diagnostic 10m v wind !-- TH2 diagnostic 2m theta (K) !-- T2 diagnostic 2m temperature (K) !-- Q2 diagnostic 2m mixing ratio (kg/kg) !-- GZ1OZ0 log(z/z0) where z0 is roughness length !-- WSPD wind speed at lowest model level (m/s) !-- BR bulk Richardson number in surface layer !-- ISFFLX isfflx=1 for surface heat and moisture fluxes !-- DX horizontal grid size (m) !-- SVP1 constant for saturation vapor pressure (=0.6112 kPa) !-- SVP2 constant for saturation vapor pressure (=17.67 dimensionless) !-- SVP3 constant for saturation vapor pressure (=29.65 K) !-- SVPT0 constant for saturation vapor pressure (=273.15 K) !-- EP1 constant for virtual temperature (Rv/Rd - 1) (dimensionless) !-- EP2 constant for spec. hum. calc (Rd/Rv = 0.622) (dimensionless) !-- EP3 constant for spec. hum. calc (1 - Rd/Rv = 0.378 ) (dimensionless) !-- KARMAN Von Karman constant !-- EOMEG angular velocity of earth's rotation (rad/s) !-- STBOLT Stefan-Boltzmann constant (W/m^2/K^4) !-- ck enthalpy exchange coeff at 10 meters !-- cd momentum exchange coeff at 10 meters !-- cka enthalpy exchange coeff at the lowest model level !-- cda momentum exchange coeff at the lowest model level !-- isftcflx =0: z0, zt, and zq from COARE3.0 (Fairall et al 2003) ! (water =1: z0 from Davis et al (2008), zt & zq from COARE3.0 ! only) =2: z0 from Davis et al (2008), zt & zq from Garratt (1992) ! =3: z0 from Taylor and Yelland (2004), zt and zq from COARE3.0 ! =4: z0 from Zilitinkevich (2001), zt & zq from COARE3.0 !-- iz0tlnd =0: Zilitinkevich (1995) with Czil=0.1, ! (land =1: Czil_new (modified according to Chen & Zhang 2008) ! only) =2: Modified Yang et al (2002, 2008) - generalized for all landuse ! =3: constant zt = z0/7.4 (Garratt 1992) !-- ids start index for i in domain !-- ide end index for i in domain !-- jds start index for j in domain !-- jde end index for j in domain !-- kds start index for k in domain !-- kde end index for k in domain !-- ims start index for i in memory !-- ime end index for i in memory !-- jms start index for j in memory !-- jme end index for j in memory !-- kms start index for k in memory !-- kme end index for k in memory !-- its start index for i in tile !-- ite end index for i in tile !-- jts start index for j in tile !-- jte end index for j in tile !-- kts start index for k in tile !-- kte end index for k in tile !------------------------------------------------------------------- INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ! INTEGER, INTENT(IN ) :: ISFFLX REAL, INTENT(IN ) :: SVP1,SVP2,SVP3,SVPT0 REAL, INTENT(IN ) :: EP1,EP2,KARMAN,EOMEG,STBOLT ! REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) , & INTENT(IN ) :: dz8w REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) , & INTENT(IN ) :: QV3D, & P3D, & T3D, & QC3D,& th3d,pi3d,tsq,qsq,cov INTEGER, INTENT(in) :: itimestep REAL, DIMENSION( ims:ime, jms:jme ), INTENT(IN) ::& & qcg REAL, DIMENSION( ims:ime, jms:jme ), INTENT(INOUT) ::& & ch REAL, DIMENSION( ims:ime, jms:jme ) , & INTENT(IN ) :: MAVAIL, & PBLH, & XLAND, & TSK REAL, DIMENSION( ims:ime, jms:jme ) , & INTENT(OUT ) :: U10, & V10, & TH2, & T2, & !JOE-use value from LSM Q2, & Q2 !JOE-moved down below QSFC ! REAL, DIMENSION( ims:ime, jms:jme ) , & INTENT(INOUT) :: REGIME, & HFX, & QFX, & LH, & MOL,RMOL,QSFC !m the following 5 are change to memory size ! REAL, DIMENSION( ims:ime, jms:jme ) , & INTENT(INOUT) :: GZ1OZ0,WSPD,BR, & PSIM,PSIH REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) , & INTENT(IN ) :: U3D, & V3D REAL, DIMENSION( ims:ime, jms:jme ) , & INTENT(IN ) :: PSFC REAL, DIMENSION( ims:ime, jms:jme ) , & INTENT(INOUT) :: ZNT, & ZOL, & UST, & CPM, & CHS2, & CQS2, & CHS REAL, DIMENSION( ims:ime, jms:jme ) , & INTENT(INOUT) :: FLHC,FLQC REAL, DIMENSION( ims:ime, jms:jme ) , & INTENT(INOUT) :: QGH !JOE-begin ! REAL, DIMENSION( ims:ime, jms:jme ) , & ! INTENT(OUT) :: z0zt_ratio, & ! BulkRi,wstar,qstar,resist,logres, & ! Rreynolds,niters,psixrat,psitrat !JOE-end REAL, INTENT(IN ) :: CP,G,ROVCP,R,XLV,DX REAL, OPTIONAL, DIMENSION( ims:ime, jms:jme ) , & INTENT(OUT) :: ck,cka,cd,cda,ustm INTEGER, OPTIONAL, INTENT(IN ) :: ISFTCFLX, IZ0TLND !----------- LOCAL VARS ----------------------------------- REAL, DIMENSION( its:ite ) :: U1D, & V1D, & QV1D, & P1D, & T1D,qc1d REAL, DIMENSION( its:ite ) :: dz8w1d REAL, DIMENSION( its:ite ) :: vt1,vq1 REAL, DIMENSION(kts:kts+1) :: thl, qw, vt, vq REAL :: ql INTEGER :: I,J,K !----------------------------------------------------------- DO J=jts,jte DO i=its,ite dz8w1d(I) = dz8w(i,kts,j) ENDDO DO i=its,ite U1D(i) =U3D(i,kts,j) V1D(i) =V3D(i,kts,j) QV1D(i)=QV3D(i,kts,j) QC1D(i)=QC3D(i,kts,j) P1D(i) =P3D(i,kts,j) T1D(i) =T3D(i,kts,j) ENDDO IF (itimestep==1) THEN DO i=its,ite vt1(i)=0. vq1(i)=0. UST(i,j)=MAX(0.025*SQRT(U1D(i)*U1D(i) + V1D(i)*V1D(i)),0.001) MOL(i,j)=0. ! Tstar !qstar(i,j)=0.0 ENDDO ELSE DO i=its,ite do k = kts,kts+1 ql = qc3d(i,k,j)/(1.+qc3d(i,k,j)) qw(k) = qv3d(i,k,j)/(1.+qv3d(i,k,j)) + ql thl(k) = th3d(i,k,j)-xlvcp*ql/pi3d(i,k,j) end do ! NOTE: The last grid number is kts+1 instead of kte. CALL mym_condensation (kts,kts+1, & & dz8w(i,kts:kts+1,j), & & thl(kts:kts+1), qw(kts:kts+1), & & p3d(i,kts:kts+1,j),& & pi3d(i,kts:kts+1,j), & & tsq(i,kts:kts+1,j), & & qsq(i,kts:kts+1,j), & & cov(i,kts:kts+1,j), & & vt(kts:kts+1), vq(kts:kts+1)) vt1(i) = vt(kts) vq1(i) = vq(kts) ENDDO ENDIF CALL SFCLAY1D_mynn(J,U1D,V1D,T1D,QV1D,P1D,dz8w1d, & CP,G,ROVCP,R,XLV,PSFC(ims,j),CHS(ims,j),CHS2(ims,j),& CQS2(ims,j),CPM(ims,j),PBLH(ims,j), RMOL(ims,j), & ZNT(ims,j),UST(ims,j),MAVAIL(ims,j),ZOL(ims,j), & MOL(ims,j),REGIME(ims,j),PSIM(ims,j),PSIH(ims,j), & XLAND(ims,j),HFX(ims,j),QFX(ims,j),TSK(ims,j), & U10(ims,j),V10(ims,j),TH2(ims,j),T2(ims,j), & Q2(ims,j),FLHC(ims,j),FLQC(ims,j),QGH(ims,j), & QSFC(ims,j),LH(ims,j), & GZ1OZ0(ims,j),WSPD(ims,j),BR(ims,j),ISFFLX,DX, & SVP1,SVP2,SVP3,SVPT0,EP1,EP2,KARMAN,EOMEG,STBOLT, & ch(ims,j),vt1,vq1,qc1d,qcg(ims,j),& itimestep,& !JOE-begin ! z0zt_ratio(ims,j),BulkRi(ims,j),wstar(ims,j),qstar(ims,j), & ! resist(ims,j),logres(ims,j),Rreynolds(ims,j),niters(ims,j), & ! psixrat(ims,j),psitrat(ims,j), & !JOE-end ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte & ,isftcflx,iz0tlnd, & USTM(ims,j),CK(ims,j),CKA(ims,j), & CD(ims,j),CDA(ims,j) & ) ENDDO END SUBROUTINE SFCLAY_MYNN !------------------------------------------------------------------- SUBROUTINE SFCLAY1D_mynn(J,UX,VX,T1D,QV1D,P1D,dz8w1d, & 1,25 CP,G,ROVCP,R,XLV,PSFCPA,CHS,CHS2,CQS2,CPM,PBLH,RMOL, & ZNT,UST,MAVAIL,ZOL,MOL,REGIME,PSIM,PSIH, & XLAND,HFX,QFX,TSK, & U10,V10,TH2,T2,Q2,FLHC,FLQC,QGH, & QSFC,LH,GZ1OZ0,WSPD,BR,ISFFLX,DX, & SVP1,SVP2,SVP3,SVPT0,EP1,EP2, & KARMAN,EOMEG,STBOLT, & ch,vt1,vq1,qc1d,qcg, & itimestep, & !JOE-add ! zratio,BRi,wstar,qstar,resist,logres, & ! Rreynolds,niters,psixrat,psitrat, & !JOE-end ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte, & isftcflx, iz0tlnd, & ustm,ck,cka,cd,cda ) !------------------------------------------------------------------- IMPLICIT NONE !------------------------------------------------------------------- REAL, PARAMETER :: XKA=2.4E-5 !molecular diffusivity REAL, PARAMETER :: PRT=1. !prandlt number INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte, & J ! INTEGER, INTENT(in) :: itimestep INTEGER, INTENT(IN ) :: ISFFLX REAL, INTENT(IN ) :: SVP1,SVP2,SVP3,SVPT0 REAL, INTENT(IN ) :: EP1,EP2,KARMAN,EOMEG,STBOLT ! REAL, DIMENSION( ims:ime ) , & INTENT(IN ) :: MAVAIL, & PBLH, & XLAND, & TSK ! REAL, DIMENSION( ims:ime ) , & INTENT(IN ) :: PSFCPA REAL, DIMENSION( ims:ime ) , & INTENT(INOUT) :: REGIME, & HFX, & QFX, & MOL,RMOL !m the following 5 are changed to memory size--- ! REAL, DIMENSION( ims:ime ) , & INTENT(INOUT) :: GZ1OZ0,WSPD,BR, & PSIM,PSIH REAL, DIMENSION( ims:ime ) , & INTENT(INOUT) :: ZNT, & ZOL, & UST, & CPM, & CHS2, & CQS2, & CHS !JOE-add REAL, DIMENSION( its:ite ) :: zratio,BRi,wstar,qstar,& resist,logres,Rreynolds, & niters,psixrat,psitrat ! REAL, DIMENSION( ims:ime ) , & ! INTENT(OUT) :: zratio,BRi,wstar,qstar, & ! resist,logres,Rreynolds, & ! niters,psixrat,psitrat !JOE-end REAL, DIMENSION( ims:ime ) , & INTENT(INOUT) :: FLHC,FLQC REAL, DIMENSION( ims:ime ) , & INTENT(INOUT) :: QGH,QSFC REAL, DIMENSION( ims:ime ) , & INTENT(OUT) :: U10,V10, & !JOE-make qsfc inout (moved up) TH2,T2,Q2,QSFC,LH TH2,T2,Q2,LH REAL, INTENT(IN) :: CP,G,ROVCP,R,XLV,DX ! MODULE-LOCAL VARIABLES, DEFINED IN SUBROUTINE SFCLAY REAL, DIMENSION( its:ite ), INTENT(IN ) :: dz8w1d REAL, DIMENSION( its:ite ), INTENT(IN ) :: UX, & VX, & QV1D, & P1D, & T1D,qc1d REAL, DIMENSION( ims:ime ), INTENT(IN) :: qcg REAL, DIMENSION( ims:ime ), INTENT(INOUT) :: ch REAL, DIMENSION( its:ite ), INTENT(IN) :: vt1,vq1 REAL, OPTIONAL, DIMENSION( ims:ime ) , & INTENT(OUT) :: ck,cka,cd,cda,ustm INTEGER, OPTIONAL, INTENT(IN ) :: ISFTCFLX, IZ0TLND ! LOCAL VARS REAL, DIMENSION( its:ite ) :: z_t,z_q REAL :: thl1,sqv1,sqc1,exner1,sqvg,sqcg,vv,ww REAL, DIMENSION( its:ite ) :: ZA, & THVX,ZQKL, & THX,QX, & PSIH2, & PSIM2, & PSIH10, & PSIM10, & GZ2OZ0, & GZ10OZ0, & WSPDI ! REAL, DIMENSION( its:ite ) :: RHOX,GOVRTH ! REAL, DIMENSION( its:ite) :: SCR4 REAL, DIMENSION( its:ite ) :: THGB, PSFC, QSFCMR REAL, DIMENSION( its:ite ) :: GZ2OZt,GZ10OZt,GZ1OZt ! INTEGER :: N,I,K,KK,L,NZOL,NK,NZOL2,NZOL10, ITER INTEGER, PARAMETER :: ITMAX=5 REAL :: PL,THCON,TVCON,E1 REAL :: ZL,TSKV,DTHVDZ,DTHVM,VCONV,RZOL,RZOL2,RZOL10,ZOL2,ZOL10 REAL :: DTG,PSIX,DTTHX,DTHDZ,PSIX10,PSIT,PSIT2,PSIT10, & PSIQ,PSIQ2,PSIQ10 REAL :: FLUXC,VSGD real :: restar,VISC,psilim,DQG,OLDUST,OLDTST !------------------------------------------------------------------- !----CONVERT GROUND TEMPERATURE TO POTENTIAL TEMPERATURE: DO I=its,ite ! PSFC cmb (or kPa) PSFC(I)=PSFCPA(I)/1000. THGB(I)=TSK(I)*(100./PSFC(I))**ROVCP ENDDO ! ! SCR4(I,K) STORES EITHER TEMPERATURE OR VIRTUAL TEMPERATURE, ! DEPENDING ON IFDRY (CURRENTLY NOT USED, SO SCR4 == TVX). DO 30 I=its,ite ! PL cmb PL=P1D(I)/1000. THCON=(100./PL)**ROVCP THX(I)=T1D(I)*THCON SCR4(I)=T1D(I) THVX(I)=THX(I) QX(I)=0. 30 CONTINUE ! INITIALIZE SOME VARIABLES HERE: DO I=its,ite niters(I)=0. QGH(I)=0. CPM(I)=CP IF (itimestep .LE. 1) THEN qstar(I)=0.0 ENDIF ENDDO ! IF(IDRY.EQ.1)GOTO 80 DO 50 I=its,ite QX(I)=QV1D(I)/(1.+QV1D(I)) !CONVERT TO SPEC HUM TVCON=(1.+EP1*QX(I)) THVX(I)=THX(I)*TVCON SCR4(I)=T1D(I)*TVCON 50 CONTINUE ! DO 60 I=its,ite IF (TSK(I) .LT. 273.15) THEN !SATURATION VAPOR PRESSURE WRT ICE (SVP1=.6112; 10*mb) E1=SVP1*EXP(4648*(1./273.15 - 1./TSK(I)) - & 11.64*LOG(273.15/TSK(I)) + 0.02265*(273.15 - TSK(I))) ELSE !SATURATION VAPOR PRESSURE WRT WATER (Bolton 1980) E1=SVP1*EXP(SVP2*(TSK(I)-SVPT0)/(TSK(I)-SVP3)) ENDIF QSFC(I)=EP2*E1/(PSFC(I)-ep_3*E1) !specific humidity QSFCMR(I)=EP2*E1/(PSFC(I)-E1) !mixing ratio !FOR LAND POINTS, QSFC can come from previous time step (in LSM) !if(xland(i).gt.1.5 .or. QSFC(i).le.0.0) QSFC(I)=EP2*E1/(PSFC(I)-ep_3*E1) ! QGH CHANGED TO USE LOWEST-LEVEL AIR TEMP CONSISTENT WITH MYJSFC CHANGE ! Q2SAT = QGH IN LSM IF (TSK(I) .LT. 273.15) THEN !SATURATION VAPOR PRESSURE WRT ICE E1=SVP1*EXP(4648*(1./273.15 - 1./T1D(I)) - & 11.64*LOG(273.15/T1D(I)) + 0.02265*(273.15 - T1D(I))) ELSE !SATURATION VAPOR PRESSURE WRT WATER (Bolton 1980) E1=SVP1*EXP(SVP2*(T1D(I)-SVPT0)/(T1D(I)-SVP3)) ENDIF PL=P1D(I)/1000. QGH(I)=EP2*E1/(PL-ep_3*E1) !specific humidity !QGH(I)=EP2*E1/(PL-E1) !mixing ratio CPM(I)=CP*(1.+0.84*QX(I)/(1.-qx(i))) 60 CONTINUE 80 CONTINUE !-----COMPUTE THE HEIGHT OF FULL- AND HALF-SIGMA LEVELS ABOVE GROUND ! LEVEL, AND THE LAYER THICKNESSES. DO I=its,ite RHOX(I)=PSFC(I)*1000./(R*SCR4(I)) ZQKL(I)=dz8w1d(I) !first full-sigma level ZA(I)=0.5*ZQKL(I) !first half-sigma level GOVRTH(I)=G/THX(I) ENDDO DO I=its,ite WSPD(I)=SQRT(UX(I)*UX(I)+VX(I)*VX(I)) !account for partial condensation exner1=(p1d(i)/p1000mb)**ROVCP sqc1=qc1d(i)/(1.+qc1d(i)) !convert to spec hum. sqv1=qx(i) thl1=THX(I)-xlvcp/exner1*sqc1 sqvg=qsfc(i) sqcg=qcg(i)/(1.+qcg(i)) !convert to spec hum. vv = thl1-THGB(I) ww = mavail(i)*(sqv1-sqvg) + (sqc1-sqcg) TSKV=THGB(I)*(1.+EP1*QSFC(I)*MAVAIL(I)) DTHDZ=(THX(I)-THGB(I)) !DTHVDZ=(THVX(I)-TSKV) DTHVDZ= (vt1(i) + 1.0)*vv + (vq1(i) + tv0)*ww !-------------------------------------------------------- ! Calculate the convective velocity scale (WSTAR) and ! subgrid-scale velocity (VSGD) following Beljaars (1995, QJRMS) ! and Mahrt and Sun (1995, MWR), respectively !------------------------------------------------------- ! VCONV = 0.25*sqrt(g/tskv*pblh(i)*dthvm) ! Use Beljaars over land, old MM5 (Wyngaard) formula over water IF (xland(i).lt.1.5) then !LAND (xland == 1) fluxc = max(hfx(i)/rhox(i)/cp & + ep1*tskv*qfx(i)/rhox(i),0.) WSTAR(I) = vconvc*(g/TSK(i)*pblh(i)*fluxc)**.33 ELSE !WATER (xland == 2) IF(-DTHVDZ.GE.0)THEN DTHVM=-DTHVDZ ELSE DTHVM=0. ENDIF !JOE-the Wyngaard formula is ~3 times larger than the Beljaars !formula, so switch to Beljaars for water, but use VCONVC = 1.25, !as in the COARE3.0 bulk parameterizations. !WSTAR(I) = 2.*SQRT(DTHVM) fluxc = max(hfx(i)/rhox(i)/cp & + ep1*tskv*qfx(i)/rhox(i),0.) WSTAR(I) = 1.25*(g/TSK(i)*pblh(i)*fluxc)**.33 ENDIF !-------------------------------------------------------- ! Mahrt and Sun low-res correction ! (for 13 km ~ 0.37 m/s; for 3 km == 0 m/s) !-------------------------------------------------------- VSGD = 0.32 * (max(dx/5000.-1.,0.))**.33 WSPD(I)=SQRT(WSPD(I)*WSPD(I)+WSTAR(I)*WSTAR(I)+vsgd*vsgd) WSPD(I)=MAX(WSPD(I),wmin) !-------------------------------------------------------- ! CALCULATE THE BULK RICHARDSON NUMBER OF SURFACE LAYER, ! ACCORDING TO AKB(1976), EQ(12). !-------------------------------------------------------- BR(I)=GOVRTH(I)*ZA(I)*DTHVDZ/(WSPD(I)*WSPD(I)) !SET LIMITS ACCORDING TO Li et al. (2010) Boundary-Layer Meteorol (p.158) BR(I)=MAX(BR(I),-2.0) BR(I)=MIN(BR(I),1.0) BRi(I)=BR(I) !new variable for output - BR is not a "state" variable. ! IF PREVIOUSLY UNSTABLE, DO NOT LET INTO REGIMES 1 AND 2 (STABLE) !if (itimestep .GT. 1) THEN ! IF(MOL(I).LT.0.)BR(I)=MIN(BR(I),0.0) !ENDIF !IF(I .eq. 2)THEN ! write(*,1006)"BR:",BR(I)," fluxc:",fluxc," vt1:",vt1(i)," vq1:",vq1(i) ! write(*,1007)"XLAND:",XLAND(I)," WSPD:",WSPD(I)," DTHVDZ:",DTHVDZ," WSTAR:",WSTAR(I) !ENDIF ENDDO 1006 format(A,F7.3,A,f9.4,A,f9.5,A,f9.4) 1007 format(A,F2.0,A,f6.2,A,f7.3,A,f7.2) !-------------------------------------------------------------------- !-------------------------------------------------------------------- !--- BEGIN ITERATION LOOP (ITMAX=5); USUALLY CONVERGES IN TWO PASSES !-------------------------------------------------------------------- !-------------------------------------------------------------------- DO I=its,ite ITER = 1 DO WHILE (ITER .LE. ITMAX) niters(I)=ITER !COMPUTE KINEMATIC VISCOSITY VISC=(1.32+0.009*(T1D(I)-273.15))*1.E-5 IF((XLAND(I)-1.5).GE.0)THEN !-------------------------------------- ! WATER !-------------------------------------- !COMPUTE KINEMATIC VISCOSITY VISC=(1.32+0.009*(T1D(I)-273.15))*1.E-5 !-------------------------------------- !CALCULATE z0 (znt) !-------------------------------------- IF ( PRESENT(ISFTCFLX) ) THEN IF ( ISFTCFLX .EQ. 0 ) THEN !NAME OF SUBROUTINE IS MISLEADING - ACTUALLY VARIABLE CHARNOCK !PARAMETER FROM COARE3.0: CALL charnock_1955(ZNT(i),UST(i),WSPD(i),visc) ELSEIF ( ISFTCFLX .EQ. 1 .OR. ISFTCFLX .EQ. 2 ) THEN CALL davis_etal_2008(ZNT(i),UST(i)) ELSEIF ( ISFTCFLX .EQ. 3 ) THEN CALL Taylor_Yelland_2001(ZNT(i),UST(i),WSPD(i)) ELSEIF ( ISFTCFLX .EQ. 4 ) THEN CALL charnock_1955(ZNT(i),UST(i),WSPD(i),visc) ENDIF ELSE !DEFAULT TO COARE 3.0 CALL charnock_1955(ZNT(i),UST(i),WSPD(i),visc) ENDIF !COMPUTE ROUGHNESS REYNOLDS NUMBER (restar) USING NEW ZNT ! AHW: Garrattt formula: Calculate roughness Reynolds number ! Kinematic viscosity of air (linear approx to ! temp dependence at sea level) restar=MAX(ust(i)*ZNT(i)/visc, 0.1) !-------------------------------------- !CALCULATE z_t and z_q !-------------------------------------- IF ( PRESENT(ISFTCFLX) ) THEN IF ( ISFTCFLX .EQ. 0 ) THEN CALL fairall_2001(z_t(i),z_q(i),restar,UST(i),visc) ELSEIF ( ISFTCFLX .EQ. 1 ) THEN CALL fairall_2001(z_t(i),z_q(i),restar,UST(i),visc) ELSEIF ( ISFTCFLX .EQ. 2 ) THEN CALL garratt_1992(z_t(i),z_q(i),ZNT(i),restar,XLAND(I)) ELSEIF ( ISFTCFLX .EQ. 3 ) THEN CALL fairall_2001(z_t(i),z_q(i),restar,UST(i),visc) ELSEIF ( ISFTCFLX .EQ. 4 ) THEN CALL zilitinkevich_1995(ZNT(i),z_t(i),z_q(i),restar,& UST(I),KARMAN,XLAND(I),IZ0TLND) ENDIF ELSE !DEFAULT TO COARE 3.0 CALL fairall_2001(z_t(i),z_q(i),restar,UST(i),visc) ENDIF ELSE !-------------------------------------- ! LAND !-------------------------------------- !COMPUTE ROUGHNESS REYNOLDS NUMBER (restar) USING DEFAULT ZNT VISC=(1.32+0.009*(T1D(I)-273.15))*1.E-5 restar=MAX(ust(i)*ZNT(i)/visc, 0.1) !-------------------------------------- !GET z_t and z_q !-------------------------------------- !CHECK FOR SNOW/ICE POINTS OVER LAND IF ( ZNT(i) .LE. SNOWZ0 .AND. TSK(I) .LE. 273.15 ) THEN CALL Andreas_2002(ZNT(i),restar,z_t(i),z_q(i)) ELSE IF ( PRESENT(IZ0TLND) ) THEN IF ( IZ0TLND .LE. 1 ) THEN CALL zilitinkevich_1995(ZNT(i),z_t(i),z_q(i),restar,& UST(I),KARMAN,XLAND(I),IZ0TLND) ELSEIF ( IZ0TLND .EQ. 2 ) THEN CALL Yang_2008(ZNT(i),z_t(i),z_q(i),UST(i),MOL(I),& qstar(I),restar,visc,XLAND(I)) ELSEIF ( IZ0TLND .EQ. 3 ) THEN !Original MYNN in WRF-ARW used this form: CALL garratt_1992(z_t(i),z_q(i),ZNT(i),restar,XLAND(I)) ENDIF ELSE !DEFAULT TO ZILITINKEVICH WITH CZIL = 0.1 CALL zilitinkevich_1995(ZNT(i),z_t(i),z_q(i),restar,& UST(I),KARMAN,XLAND(I),0) ENDIF ENDIF ENDIF zratio(i)=znt(i)/z_t(i) Rreynolds(I)=restar !ADD RESISTANCE (SOMEWHAT FOLLOWING JIMENEZ ET AL. (2012)) TO PROTECT AGAINST !EXCESSIVE FLUXES WHEN USING A LOW FIRST MODEL LEVEL (ZA < 10 m). !Formerly: GZ1OZ0(I)= LOG(ZA(I)/ZNT(I)) GZ1OZ0(I)= LOG((ZA(I)+ZNT(I))/ZNT(I)) GZ1OZt(I)= LOG((ZA(I)+z_t(i))/z_t(i)) GZ2OZ0(I)= LOG((2.0+ZNT(I))/ZNT(I)) GZ2OZt(I)= LOG((2.0+z_t(i))/z_t(i)) GZ10OZ0(I)=LOG((10.+ZNT(I))/ZNT(I)) GZ10OZt(I)=LOG((10.+z_t(i))/z_t(i)) !-------------------------------------------------------------------- !--- DIAGNOSE BASIC PARAMETERS FOR THE APPROPRIATE STABILITY CLASS: ! ! THE STABILITY CLASSES ARE DETERMINED BY BR (BULK RICHARDSON NO.). ! ! CRITERIA FOR THE CLASSES ARE AS FOLLOWS: ! ! 1. BR .GE. 0.2; ! REPRESENTS NIGHTTIME STABLE CONDITIONS (REGIME=1), ! ! 2. BR .LT. 0.2 .AND. BR .GT. 0.0; ! REPRESENTS DAMPED MECHANICAL TURBULENT CONDITIONS ! (REGIME=2), ! ! 3. BR .EQ. 0.0 ! REPRESENTS FORCED CONVECTION CONDITIONS (REGIME=3), ! ! 4. BR .LT. 0.0 ! REPRESENTS FREE CONVECTION CONDITIONS (REGIME=4). ! !-------------------------------------------------------------------- IF (BR(I) .GT. 0.2) THEN !=================================================== !---CLASS 1; STABLE (NIGHTTIME) CONDITIONS: !=================================================== REGIME(I)=1. !COMPUTE z/L !CALL Li_etal_2010(ZOL(I),BR(I),ZA(I)/ZNT(I),zratio(I)) IF (ITER .EQ. 1 .AND. itimestep .LE. 1) THEN CALL Li_etal_2010(ZOL(I),BR(I),ZA(I)/ZNT(I),zratio(I)) ELSE ZOL(I)=ZA(I)*KARMAN*9.81*MOL(I)/(THX(I)*MAX(UST(I),0.001)**2) ZOL(I)=MAX(ZOL(I),0.0) ZOL(I)=MIN(ZOL(I),20.0) ENDIF !COMPUTE PSIM and PSIH IF((XLAND(I)-1.5).GE.0)THEN ! WATER !CALL PSI_Suselj_Sood_2010(PSIM(I),PSIH(I),ZOL(I)) !produces neg TKE !CALL PSI_Beljaars_Holtslag_1991(PSIM(I),PSIH(I),ZOL(I)) !CALL PSI_Businger_1971(PSIM(I),PSIH(I),ZOL(I)) CALL PSI_DyerHicks(PSIM(I),PSIH(I),ZOL(I), z_t(I), ZNT(I), ZA(I)) ELSE ! LAND !CALL PSI_Beljaars_Holtslag_1991(PSIM(I),PSIH(I),ZOL(I)) !CALL PSI_Businger_1971(PSIM(I),PSIH(I),ZOL(I)) !CALL PSI_Zilitinkevich_Esau_2007(PSIM(I),PSIH(I),ZOL(I)) CALL PSI_DyerHicks(PSIM(I),PSIH(I),ZOL(I), z_t(I), ZNT(I), ZA(I)) ENDIF !LOWER LIMIT ON PSI IN STABLE CONDITIONS psilim = -10. !JOE: this limit will be hit for z/L > 2, but ! appears to be necessary to control "runaway cooling" ! in the polar regions.. PSIM(I)=MAX(PSIM(I),psilim) PSIH(I)=MAX(PSIH(I),psilim) PSIM10(I)=10./ZA(I)*PSIM(I) PSIM10(I)=MAX(PSIM10(I),psilim) PSIH10(I)=PSIM10(I) PSIM2(I)=2./ZA(I)*PSIM(I) PSIM2(I)=MAX(PSIM2(I),psilim) PSIH2(I)=PSIM2(I) RMOL(I) = ZOL(I)/ZA(I) !1.0/L ELSEIF(BR(I) .GT. 0. .AND. BR(I) .LE. 0.2) THEN !======================================================== !---CLASS 2; DAMPED MECHANICAL TURBULENCE: !======================================================== REGIME(I)=2. !COMPUTE z/L !CALL Li_etal_2010(ZOL(I),BR(I),ZA(I)/ZNT(I),zratio(I)) IF (ITER .EQ. 1 .AND. itimestep .LE. 1) THEN CALL Li_etal_2010(ZOL(I),BR(I),ZA(I)/ZNT(I),zratio(I)) ELSE ZOL(I)=ZA(I)*KARMAN*9.81*MOL(I)/(THX(I)*MAX(UST(I),0.001)**2) ZOL(I)=MAX(ZOL(I),0.0) ZOL(I)=MIN(ZOL(I),5.0) ENDIF !COMPUTE PSIM and PSIH IF((XLAND(I)-1.5).GE.0)THEN ! WATER !CALL PSI_Suselj_Sood_2010(PSIM(I),PSIH(I),ZOL(I)) !CALL PSI_Beljaars_Holtslag_1991(PSIM(I),PSIH(I),ZOL(I)) !CALL PSI_Businger_1971(PSIM(I),PSIH(I),ZOL(I)) CALL PSI_DyerHicks(PSIM(I),PSIH(I),ZOL(I), z_t(I), ZNT(I), ZA(I)) ELSE ! LAND !CALL PSI_Beljaars_Holtslag_1991(PSIM(I),PSIH(I),ZOL(I)) !CALL PSI_Businger_1971(PSIM(I),PSIH(I),ZOL(I)) !CALL PSI_Zilitinkevich_Esau_2007(PSIM(I),PSIH(I),ZOL(I)) CALL PSI_DyerHicks(PSIM(I),PSIH(I),ZOL(I), z_t(I), ZNT(I), ZA(I)) ENDIF !LOWER LIMIT ON PSI IN WEAKLY STABLE CONDITIONS psilim = -10. !JOE: this limit is never hit in this regime. ! LOWER LIMIT ON PSI IN STABLE CONDITIONS PSIM(I)=MAX(PSIM(I),psilim) PSIH(I)=MAX(PSIH(I),psilim) PSIM10(I)=10./ZA(I)*PSIM(I) PSIM10(I)=MAX(PSIM10(I),psilim) PSIH10(I)=PSIM10(I) PSIM2(I)=2./ZA(I)*PSIM(I) PSIM2(I)=MAX(PSIM2(I),psilim) PSIH2(I)=PSIM2(I) ! 1.0 over Monin-Obukhov length RMOL(I)= ZOL(I)/ZA(I) ELSEIF(BR(I) .EQ. 0.) THEN !========================================================= !-----CLASS 3; FORCED CONVECTION/NEUTRAL: !========================================================= REGIME(I)=3. PSIM(I)=0.0 PSIH(I)=PSIM(I) PSIM10(I)=0. PSIH10(I)=PSIM10(I) PSIM2(I)=0. PSIH2(I)=PSIM2(I) !ZOL(I)=0. IF(UST(I) .LT. 0.01)THEN ZOL(I)=BR(I)*GZ1OZ0(I) ELSE ZOL(I)=KARMAN*GOVRTH(I)*ZA(I)*MOL(I)/(UST(I)*UST(I)) ENDIF RMOL(I) = ZOL(I)/ZA(I) ELSEIF(BR(I) .LT. 0.)THEN !========================================================== !-----CLASS 4; FREE CONVECTION: !========================================================== REGIME(I)=4. !COMPUTE z/L !CALL Li_etal_2010(ZOL(I),BR(I),ZA(I)/ZNT(I),zratio(I)) IF (ITER .EQ. 1 .AND. itimestep .LE. 1) THEN CALL Li_etal_2010(ZOL(I),BR(I),ZA(I)/ZNT(I),zratio(I)) ELSE ZOL(I)=ZA(I)*KARMAN*9.81*MOL(I)/(THX(I)*MAX(UST(I),0.001)**2) ZOL(I)=MAX(ZOL(I),-10.0) ZOL(I)=MIN(ZOL(I),0.0) ENDIF ZOL10=10./ZA(I)*ZOL(I) ZOL2=2./ZA(I)*ZOL(I) ZOL(I)=MIN(ZOL(I),0.) ZOL(I)=MAX(ZOL(I),-9.9999) ZOL10=MIN(ZOL10,0.) ZOL10=MAX(ZOL10,-9.9999) ZOL2=MIN(ZOL2,0.) ZOL2=MAX(ZOL2,-9.9999) NZOL=INT(-ZOL(I)*100.) RZOL=-ZOL(I)*100.-NZOL NZOL10=INT(-ZOL10*100.) RZOL10=-ZOL10*100.-NZOL10 NZOL2=INT(-ZOL2*100.) RZOL2=-ZOL2*100.-NZOL2 !COMPUTE PSIM and PSIH IF((XLAND(I)-1.5).GE.0)THEN ! WATER !CALL PSI_Suselj_Sood_2010(PSIM(I),PSIH(I),ZOL(I)) !CALL PSI_Hogstrom_1996(PSIM(I),PSIH(I),ZOL(I), z_t(I), ZNT(I), ZA(I)) !CALL PSI_Businger_1971(PSIM(I),PSIH(I),ZOL(I)) CALL PSI_DyerHicks(PSIM(I),PSIH(I),ZOL(I), z_t(I), ZNT(I), ZA(I)) ELSE ! LAND !CALL PSI_Hogstrom_1996(PSIM(I),PSIH(I),ZOL(I), z_t(I), ZNT(I), ZA(I)) !CALL PSI_Businger_1971(PSIM(I),PSIH(I),ZOL(I)) CALL PSI_DyerHicks(PSIM(I),PSIH(I),ZOL(I), z_t(I), ZNT(I), ZA(I)) ENDIF PSIM10(I)=PSIMTB(NZOL10)+RZOL10*(PSIMTB(NZOL10+1)-PSIMTB(NZOL10)) PSIH10(I)=PSIHTB(NZOL10)+RZOL10*(PSIHTB(NZOL10+1)-PSIHTB(NZOL10)) PSIM2(I)=PSIMTB(NZOL2)+RZOL2*(PSIMTB(NZOL2+1)-PSIMTB(NZOL2)) PSIH2(I)=PSIHTB(NZOL2)+RZOL2*(PSIHTB(NZOL2+1)-PSIHTB(NZOL2)) !---LIMIT PSIH AND PSIM IN THE CASE OF THIN LAYERS AND !---HIGH ROUGHNESS. THIS PREVENTS DENOMINATOR IN FLUXES !---FROM GETTING TOO SMALL PSIH(I)=MIN(PSIH(I),0.9*GZ1OZ0(I)) PSIM(I)=MIN(PSIM(I),0.9*GZ1OZ0(I)) PSIH2(I)=MIN(PSIH2(I),0.9*GZ2OZ0(I)) PSIM10(I)=MIN(PSIM10(I),0.9*GZ10OZ0(I)) RMOL(I) = ZOL(I)/ZA(I) ENDIF !------------------------------------------------------------ !-----COMPUTE THE FRICTIONAL VELOCITY: !------------------------------------------------------------ ! ZA(1982) EQS(2.60),(2.61). GZ1OZ0(I) =LOG((ZA(I)+ZNT(I))/ZNT(I)) GZ10OZ0(I)=LOG((10.+ZNT(I))/ZNT(I)) PSIX=GZ1OZ0(I)-PSIM(I) PSIX10=GZ10OZ0(I)-PSIM10(I) ! TO PREVENT OSCILLATIONS AVERAGE WITH OLD VALUE OLDUST = UST(I) UST(I)=0.5*UST(I)+0.5*KARMAN*WSPD(I)/PSIX !NON-AVERAGED: UST(I)=KARMAN*WSPD(I)/PSIX ! Compute u* without vconv for use in HFX calc when isftcflx > 0 WSPDI(I)=SQRT(UX(I)*UX(I)+VX(I)*VX(I)) IF ( PRESENT(USTM) ) THEN USTM(I)=0.5*USTM(I)+0.5*KARMAN*WSPDI(I)/PSIX ENDIF IF ((XLAND(I)-1.5).LT.0.) THEN !LAND !JOE: UST(I)=MAX(UST(I),0.1) UST(I)=MAX(UST(I),0.01) !Relaxing this limit !Keep ustm = ust over land. USTM(I)=UST(I) ENDIF !------------------------------------------------------------ !-----COMPUTE THE THERMAL AND MOISTURE RESISTANCE (PSIQ AND PSIT): !------------------------------------------------------------ ! LOWER LIMIT ADDED TO PREVENT LARGE FLHC IN SOIL MODEL ! ACTIVATES IN UNSTABLE CONDITIONS WITH THIN LAYERS OR HIGH Z0 GZ1OZt(I)= LOG((ZA(I)+z_t(i))/z_t(i)) GZ2OZt(I)= LOG((2.0+z_t(i))/z_t(i)) !PSIT=MAX(GZ1OZ0(I)-PSIH(I),2.) PSIT=MAX(LOG((ZA(I)+z_t(i))/z_t(i))-PSIH(I) ,2.0) PSIT2=MAX(LOG((2.0+z_t(i))/z_t(i))-PSIH2(I) ,2.0) resist(I)=PSIT logres(I)=GZ1OZt(I) PSIQ=MAX(LOG((za(i)+z_q(i))/z_q(I))-PSIH(I) ,2.0) PSIQ2=MAX(LOG((2.0+z_q(i))/z_q(I))-PSIH2(I) ,2.0) !CARLSON AND BOLAND (1978): IF((XLAND(I)-1.5).GE.0)THEN ZL=ZNT(I) ELSE ZL=0.01 !PSIQ =MAX(LOG(KARMAN*UST(I)*ZA(I)/XKA + ZA(I)/ZL)-PSIH(I),2.0) !PSIQ2=MAX(LOG(KARMAN*UST(I)*2./XKA + 2./ZL)-PSIH2(I) ,2.0) ENDIF !---------------------------------------------------- !COMPUTE THE TEMPERATURE SCALE (or FRICTION TEMPERATURE, T*) !---------------------------------------------------- DTG=THX(I)-THGB(I) OLDTST=MOL(I) MOL(I)=KARMAN*DTG/PSIT/PRT !t_star(I) = -HFX(I)/(UST(I)*CPM(I)*RHOX(I)) !t_star(I) = MOL(I) !---------------------------------------------------- !COMPUTE THE MOISTURE SCALE (or q*) DQG=(QX(i)-qsfc(i))*1000. !(kg/kg -> g/kg) qstar(I)=KARMAN*DQG/PSIQ/PRT !----------------------------------------------------- !COMPUTE DIAGNOSTICS !----------------------------------------------------- !COMPUTE 10 M WNDS !----------------------------------------------------- ! If the lowest model level is close to 10-m, use it ! instead of the flux-based diagnostic formula. if (ZA(i) .gt. 7.0 .and. ZA(i) .lt. 13.0) then U10(I)=UX(I) V10(I)=VX(I) else U10(I)=UX(I)*PSIX10/PSIX V10(I)=VX(I)*PSIX10/PSIX endif psixrat(I)=PSIX10/PSIX psitrat(I)=PSIT2/PSIT !----------------------------------------------------- !COMPUTE 2m T, TH, AND Q !THESE WILL BE OVERWRITTEN FOR LAND POINTS IN THE LSM !----------------------------------------------------- TH2(I)=THGB(I)+DTG*PSIT2/PSIT !*** BE CERTAIN THAT THE 2-M THETA IS BRACKETED BY !*** THE VALUES AT THE SURFACE AND LOWEST MODEL LEVEL. ! !IF (THX(I)>THGB(I) .AND. (TH2(I)<THGB(I) .OR. TH2(I)>THX(I)) .OR. & ! THX(I)<THGB(I) .AND. (TH2(I)>THGB(I) .OR. TH2(I)<THX(I))) THEN ! TH2(I)=THGB(I)+2.*(THX(I)-THGB(I))/ZA(I) !ENDIF Q2(I)=QSFCMR(I)+(QV1D(I)-QSFCMR(I))*PSIQ2/PSIQ T2(I) = TH2(I)*(PSFC(I)/100.)**ROVCP !CHECK FOR CONVERGENCE IF (ITER .GE. 2) THEN !IF (ABS(OLDUST-UST(I)) .lt. 0.01) THEN IF (ABS(OLDTST-MOL(I)) .lt. 0.01) THEN ITER = ITMAX+1 END IF !IF (I .eq. 2) THEN ! print*,"ITER:",ITER ! write(*,1001)"REGIME:",REGIME(I)," z/L:",ZOL(I)," U*:",UST(I)," Tstar:",MOL(I) ! write(*,1002)"PSIM:",PSIM(I)," PSIH:",PSIH(I)," W*:",WSTAR(I)," DTHV:",THVX(I)-THVGB(I) ! write(*,1003)"CPM:",CPM(I)," RHOX:",RHOX(I)," L:",ZOL(I)/ZA(I)," DTH:",THX(I)-THGB(I) ! write(*,1004)"Z0/Zt:",zratio(I)," Z0:",ZNT(I)," Zt:",z_t(I)," za:",za(I) ! write(*,1005)"Re:",restar," MAVAIL:",MAVAIL(I)," QSFC(I):",QSFC(I)," QX(I):",QX(I) ! print*,"VISC=",VISC," Z0:",ZNT(I)," T1D(i):",T1D(i) ! write(*,*)"=============================================" !ENDIF ENDIF ITER = ITER + 1 ENDDO ! end ITERATION-loop ENDDO ! end i-loop 1001 format(A,F2.0, A,f10.4,A,f5.3, A,f11.5) 1002 format(A,f7.2, A,f7.2, A,f7.2, A,f10.3) 1003 format(A,f7.2, A,f7.2, A,f10.3,A,f10.3) 1004 format(A,f11.3,A,f9.7, A,f9.7, A,f6.2, A,f10.3) 1005 format(A,f9.2,A,f6.4,A,f7.4,A,f7.4) !---------------------------------------------------------- ! COMPUTE SURFACE HEAT AND MOISTURE FLUXES !---------------------------------------------------------- DO I=its,ite IF (ISFFLX .LT. 1) THEN QFX(i) = 0. HFX(i) = 0. FLHC(I) = 0. FLQC(I) = 0. LH(I) = 0. CHS(I) = 0. CH(I) = 0. CHS2(i) = 0. CQS2(i) = 0. IF(PRESENT(ck) .and. PRESENT(cd) .and. PRESENT(cka) .and. PRESENT(cda)) THEN Ck(I) = 0. Cd(I) = 0. Cka(I)= 0. Cda(I)= 0. ENDIF ELSE PSIX=GZ1OZ0(I)-PSIM(I) PSIX10=GZ10OZ0(I)-PSIM10(I) PSIT=MAX(LOG((ZA(I)+z_t(i))/z_t(i))-PSIH(I) ,2.0) PSIT2=MAX(LOG((2.0+z_t(i))/z_t(i))-PSIH2(I) ,2.0) PSIT10=MAX(LOG((10.0+z_t(i))/z_t(i))-PSIH10(I) ,2.0) PSIQ=MAX(LOG((za(i)+z_q(i))/z_q(I))-PSIH(I) ,2.0) PSIQ2=MAX(LOG((2.0+z_q(i))/z_q(I))-PSIH2(I) ,2.0) PSIQ10=MAX(LOG((10.0+z_q(i))/z_q(I))-PSIH10(I) ,2.0) !OR USE CARLSON AND BOLLAND (NO LONGER USED): IF((XLAND(I)-1.5).GE.0)THEN ZL=ZNT(I) ELSE ZL=0.01 !APPROX THERMAL/MOISTURE ROUGHNESS LENGTH !PSIQ=MAX(LOG(KARMAN*UST(I)*ZA(I)/XKA + ZA(I)/ZL)-PSIH(I),2.0) !PSIQ2=MAX(LOG(KARMAN*UST(I)*2./XKA + 2./ZL)-PSIH2(I) ,2.0) !PSIQ10=MAX(LOG(KARMAN*UST(I)*10./XKA + 2./ZL)-PSIH10(I) ,2.0) ENDIF !------------------------------------------ ! CALCULATE THE EXCHANGE COEFFICIENTS FOR HEAT (FLHC) ! AND MOISTURE (FLQC) !------------------------------------------ FLQC(I)=RHOX(I)*MAVAIL(I)*UST(I)*KARMAN/PSIQ DTTHX=ABS(THX(I)-THGB(I)) IF(DTTHX.GT.1.E-5)THEN FLHC(I)=CPM(I)*RHOX(I)*UST(I)*MOL(I)/(THX(I)-THGB(I)) ELSE FLHC(I)=0. ENDIF !---------------------------------- ! COMPUTE SURFACE MOISTURE FLUX: !---------------------------------- QFX(I)=FLQC(I)*(QSFCMR(I)-QV1D(I)) !JOE: QFX(I)=MAX(QFX(I),0.) !originally did not allow neg QFX QFX(I)=MAX(QFX(I),-0.02) !allows small neg QFX, like MYJ LH(I)=XLV*QFX(I) !---------------------------------- ! COMPUTE SURFACE HEAT FLUX: !---------------------------------- IF(XLAND(I)-1.5.GT.0.)THEN !WATER HFX(I)=FLHC(I)*(THGB(I)-THX(I)) IF ( PRESENT(ISFTCFLX) ) THEN IF ( ISFTCFLX.NE.0 ) THEN ! AHW: add dissipative heating term HFX(I)=HFX(I)+RHOX(I)*USTM(I)*USTM(I)*WSPDI(I) ENDIF ENDIF ELSEIF(XLAND(I)-1.5.LT.0.)THEN !LAND HFX(I)=FLHC(I)*(THGB(I)-THX(I)) HFX(I)=MAX(HFX(I),-250.) ENDIF !CHS(I)=UST(I)*KARMAN/(ALOG(KARMAN*UST(I)*ZA(I) & ! /XKA+ZA(I)/ZL)-PSIH(I)) CHS(I)=UST(I)*KARMAN/PSIT ! The exchange coefficient for cloud water is assumed to be the ! same as that for heat. CH is multiplied by WSPD. !ch(i)=chs(i) ch(i)=flhc(i)/( cpm(i)*rhox(i) ) !THESE ARE USED FOR 2-M DIAGNOSTICS ONLY !CQS2(I)=UST(I)*KARMAN/(ALOG(KARMAN*UST(I)*2.0 & ! /XKA+2.0/ZL)-PSIH2(I)) !CHS2(I)=UST(I)*KARMAN/(GZ2OZ0(I)-PSIH2(I)) CQS2(I)=UST(I)*KARMAN/PSIQ2 CHS2(I)=UST(I)*KARMAN/PSIT2 IF(PRESENT(ck) .and. PRESENT(cd) .and. PRESENT(cka) .and. PRESENT(cda)) THEN Ck(I)=(karman/psix10)*(karman/psiq10) Cd(I)=(karman/psix10)*(karman/psix10) Cka(I)=(karman/psix)*(karman/psiq) Cda(I)=(karman/psix)*(karman/psix) ENDIF ENDIF ENDDO !end i-loop END SUBROUTINE SFCLAY1D_mynn !------------------------------------------------------------------- SUBROUTINE zilitinkevich_1995(Z_0,Zt,Zq,restar,ustar,KARMAN,landsea,IZ0TLND) 3 ! This subroutine returns the thermal and moisture roughness lengths ! from Zilitinkevich (1995) and Zilitinkevich et al. (2001) over ! land and water, respectively. ! ! MODS: ! 20120705 : added IZ0TLND option. Note: This option was designed ! to work with the Noah LSM and may be specific for that ! LSM only. Tests with RUC LSM showed no improvements. IMPLICIT NONE REAL, INTENT(IN) :: Z_0,restar,ustar,KARMAN,landsea INTEGER, OPTIONAL, INTENT(IN):: IZ0TLND REAL, INTENT(OUT) :: Zt,Zq REAL :: CZIL !=0.100 in Chen et al. (1997) !=0.075 in Zilitinkevich (1995) !=0.500 in Lemone et al. (2008) IF (landsea-1.5 .GT. 0) THEN !WATER !THIS IS BASED ON Zilitinkevich, Grachev, and Fairall (2001; !Their equations 15 and 16). IF (restar .LT. 0.1) THEN Zt = Z_0*EXP(KARMAN*2.0) Zt = MIN( Zt, 6.0e-5) Zt = MAX( Zt, 2.0e-9) Zq = Z_0*EXP(KARMAN*3.0) Zq = MIN( Zq, 6.0e-5) Zq = MAX( Zq, 2.0e-9) ELSE Zt = Z_0*EXP(-KARMAN*(4.0*SQRT(restar)-3.2)) Zt = MIN( Zt, 6.0e-5) Zt = MAX( Zt, 2.0e-9) Zq = Z_0*EXP(-KARMAN*(4.0*SQRT(restar)-4.2)) Zq = MIN( Zt, 6.0e-5) Zq = MAX( Zt, 2.0e-9) ENDIF ELSE !LAND !Option to modify CZIL according to Chen & Zhang, 2009 IF ( IZ0TLND .EQ. 1 ) THEN CZIL = 10.0 ** ( -0.40 * ( Z_0 / 0.07 ) ) ELSE CZIL = 0.10 END IF Zt = Z_0*EXP(-KARMAN*CZIL*SQRT(restar)) Zt = MIN( Zt, Z_0) Zq = Z_0*EXP(-KARMAN*CZIL*SQRT(restar)) Zq = MIN( Zq, Z_0) !Zq = Zt ENDIF return END SUBROUTINE zilitinkevich_1995 !-------------------------------------------------------------------- SUBROUTINE davis_etal_2008(Z_0,ustar) 1 !This formulation for roughness length was designed to match !the labratory experiments of Donelan et al. (2004). !This is an update version from Davis et al. 2008, which !corrects a small-bias in Z_0 (AHW real-time 2012). IMPLICIT NONE REAL, INTENT(IN) :: ustar REAL, INTENT(OUT) :: Z_0 REAL :: ZW, ZN1, ZN2 REAL, PARAMETER :: G=9.81, OZO=1.59E-5 !OLD FORM: Z_0 = 10.*EXP(-10./(ustar**(1./3.))) !NEW FORM: ZW = MIN((ustar/1.06)**(0.3),1.0) ZN1 = 0.011*ustar*ustar/G + OZO ZN2 = 10.*exp(-9.5*ustar**(-.3333)) + & 0.11*1.5E-5/AMAX1(ustar,0.01) Z_0 = (1.0-ZW) * ZN1 + ZW * ZN2 Z_0 = MAX( Z_0, 1.27e-7) !These max/mins were suggested by Z_0 = MIN( Z_0, 2.85e-3) !Davis et al. (2008) return END SUBROUTINE davis_etal_2008 !-------------------------------------------------------------------- SUBROUTINE Taylor_Yelland_2001(Z_0,ustar,wsp10) 1 !This formulation for roughness length was designed account for !wave steepness. IMPLICIT NONE REAL, INTENT(IN) :: ustar,wsp10 REAL, INTENT(OUT) :: Z_0 REAL, parameter :: g=9.81, pi=3.14159265 REAL :: hs, Tp, Lp !hs is the significant wave height hs = 0.0248*(wsp10**2.) !Tp dominant wave period Tp = 0.729*MAX(wsp10,0.1) !Lp is the wavelength of the dominant wave Lp = g*Tp**2/(2*pi) Z_0 = 1200.*hs*(hs/Lp)**4.5 Z_0 = MAX( Z_0, 1.27e-7) !These max/mins were suggested by Z_0 = MIN( Z_0, 2.85e-3) !Davis et al. (2008) return END SUBROUTINE Taylor_Yelland_2001 !-------------------------------------------------------------------- SUBROUTINE charnock_1955(Z_0,ustar,wsp10,visc) 3 !This version of Charnock's relation employs a varying !Charnock parameter, similar to COARE3.0 [Fairall et al. (2003)]. !The Charnock parameter CZC is varied from .011 to .018 !between 10-m wsp = 10 and 18. IMPLICIT NONE REAL, INTENT(IN) :: ustar, visc, wsp10 REAL, INTENT(OUT) :: Z_0 REAL, PARAMETER :: G=9.81, CZO2=0.011 REAL :: CZC !variable charnock "constant" CZC = CZO2 + 0.007*MIN(MAX((wsp10-10.)/8., 0.), 1.0) Z_0 = CZC*ustar*ustar/G + (0.11*visc/MAX(ustar,0.1)) Z_0 = MAX( Z_0, 1.27e-7) !These max/mins were suggested by Z_0 = MIN( Z_0, 2.85e-3) !Davis et al. (2008) return END SUBROUTINE charnock_1955 !-------------------------------------------------------------------- SUBROUTINE garratt_1992(Zt,Zq,Z_0,Ren,landsea) 2 !This formulation for the thermal and moisture roughness lengths !(Zt and Zq) relates them to Z0 via the roughness Reynolds number (Ren). !This formula comes from Fairall et al. (2003). It is modified from !the original Garratt-Brutsaert model to better fit the COARE/HEXMAX !data. The formula for land uses a constant ratio (Z_0/7.4) taken !from Garratt (1992). IMPLICIT NONE REAL, INTENT(IN) :: Ren, Z_0,landsea REAL, INTENT(OUT) :: Zt,Zq REAL :: Rq REAL, PARAMETER :: e=2.71828183 IF (landsea-1.5 .GT. 0) THEN !WATER Zt = Z_0*EXP(2.0 - (2.48*(Ren**0.25))) Zq = Z_0*EXP(2.0 - (2.28*(Ren**0.25))) Zq = MIN( Zq, 5.5e-5) Zq = MAX( Zq, 2.0e-9) Zt = MIN( Zt, 5.5e-5) Zt = MAX( Zt, 2.0e-9) !same lower limit as ECMWF ELSE !LAND Zq = Z_0/(e**2.) !taken from Garratt (1980,1992) Zt = Zq ENDIF return END SUBROUTINE garratt_1992 !-------------------------------------------------------------------- SUBROUTINE fairall_2001(Zt,Zq,Ren,ustar,visc) 4 !This formulation for thermal and moisture roughness length (Zt and Zq) !as a function of the roughness Reynolds number (Ren) comes from the !COARE3.0 formulation, empirically derived from COARE and HEXMAX data ![Fairall et al. (2003)]. Edson et al. (2004; JGR) suspected that this !relationship overestimated roughness lengths for low Reynolds number !flows, so a smooth flow relationship, taken from Garrattt (1992, p. 102), !is used for flows with Ren < 2. ! !Note that this formulation should not be used with the Davis et al. !(2008) formulation for Zo, because that formulation produces much !smaller u* (Ren), resulting in a large Zt and Zq. It works best with !the Charnock or the Taylor and Yelland relationships. ! !This is for use over water only. IMPLICIT NONE REAL, INTENT(IN) :: Ren,ustar,visc REAL, INTENT(OUT) :: Zt,Zq IF (Ren .le. 2.) then Zt = (5.5e-5)*(Ren**(-0.60)) !FOR SMOOTH SEAS, USE GARRATT Zq = 0.2*visc/MAX(ustar,0.1) !Zq = 0.3*visc/MAX(ustar,0.1) ELSE !FOR ROUGH SEAS, USE FAIRALL Zt = (5.5e-5)*(Ren**(-0.60)) Zq = Zt ENDIF Zt = MIN(Zt,1.0e-4) Zt = MAX(Zt,2.0e-9) Zq = MIN(Zt,1.0e-4) Zq = MAX(Zt,2.0e-9) return END SUBROUTINE fairall_2001 !-------------------------------------------------------------------- SUBROUTINE Yang_2008(Z_0,Zt,Zq,ustar,tstar,qst,Ren,visc,landsea) 1 !This is a modified version of Yang et al (2002 QJRMS, 2008 JAMC) !and Chen et al (2010, J of Hydromet). Although it was originally !designed for arid regions with bare soil, it is modified !here to perform over a broader spectrum of vegetation. ! !The original formulation relates the thermal roughness length (Zt) !to u* and T*: ! ! Zt = ht * EXP(-beta*(ustar**0.5)*(ABS(tstar)**0.25)) ! !where ht = Renc*visc/ustar and the critical Reynolds number !(Renc) = 70. Beta was originally = 10 (2002 paper) but was revised !to 7.2 (in 2008 paper). Their form typically varies the !ratio Z0/Zt by a few orders of magnitude (1-1E4). ! !This modified form uses beta = 0.5 and Renc = 350, so zt generally !varies similarly to the Zilitinkevich form for small/moderate heat !fluxes but can become ~O(1/2 Zilitinkevich) for very large negative T*. !Also, the exponent (0.25) on tstar was changed to 1.0, since we found !Zt was reduced too much for low-moderate positive heat fluxes. ! !This should only be used over land! IMPLICIT NONE REAL, INTENT(IN) :: Z_0, Ren, ustar, tstar, qst, visc, landsea REAL :: ht, tstar2 REAL, INTENT(OUT) :: Zt,Zq REAL, PARAMETER :: Renc=350., beta=0.5, e=2.71828183 ht = Renc*visc/MAX(ustar,0.01) tstar2 = MIN(tstar, 0.0) Zt = ht * EXP(-beta*(ustar**0.5)*(ABS(tstar2)**1.0)) !Zq = ht * EXP(-beta*(ustar**0.5)*(ABS(qst)**1.0)) Zq = Zt Zt = MIN(Zt, Z_0/2.0) !(e**2.)) !limit from Garratt (1980,1992) Zq = MIN(Zq, Z_0/2.0) !(e**2.)) !limit from Garratt (1980,1992) return END SUBROUTINE Yang_2008 !-------------------------------------------------------------------- SUBROUTINE Andreas_2002(Z_0,Ren,Zt,Zq) 1 !This is taken from Andreas (2002; J. of Hydromet). ! !This should only be used over snow/ice! IMPLICIT NONE REAL, INTENT(IN) :: Z_0, Ren REAL, INTENT(OUT) :: Zt, Zq REAL :: Ren2 REAL, PARAMETER :: bt0_s=1.25, bt0_t=0.149, bt0_r=0.317, & bt1_s=0.0, bt1_t=-0.55, bt1_r=-0.565, & bt2_s=0.0, bt2_t=0.0, bt2_r=-0.183 REAL, PARAMETER :: bq0_s=1.61, bq0_t=0.351, bq0_r=0.396, & bq1_s=0.0, bq1_t=-0.628, bq1_r=-0.512, & bq2_s=0.0, bq2_t=0.0, bq2_r=-0.180 Ren2 = Ren ! Make sure that Re is not outside of the range of validity ! for using their equations IF (Ren2 .gt. 1000.) Ren2 = 1000. IF (Ren2 .le. 0.135) then Zt = Z_0*EXP(bt0_s + bt1_s*LOG(Ren2) + bt2_s*LOG(Ren2)**2) Zq = Z_0*EXP(bq0_s + bq1_s*LOG(Ren2) + bq2_s*LOG(Ren2)**2) ELSE IF (Ren2 .gt. 0.135 .AND. Ren2 .lt. 2.5) then Zt = Z_0*EXP(bt0_t + bt1_t*LOG(Ren2) + bt2_t*LOG(Ren2)**2) Zq = Z_0*EXP(bq0_t + bq1_t*LOG(Ren2) + bq2_t*LOG(Ren2)**2) ELSE Zt = Z_0*EXP(bt0_r + bt1_r*LOG(Ren2) + bt2_r*LOG(Ren2)**2) Zq = Z_0*EXP(bq0_r + bq1_r*LOG(Ren2) + bq2_r*LOG(Ren2)**2) ENDIF return END SUBROUTINE Andreas_2002 !-------------------------------------------------------------------- SUBROUTINE PSI_Hogstrom_1996(psi_m, psi_h, zL, Zt, Z_0, Za) ! This subroutine returns the stability functions based off ! of Hogstrom (1996). IMPLICIT NONE REAL, INTENT(IN) :: zL, Zt, Z_0, Za REAL, INTENT(OUT) :: psi_m, psi_h REAL :: x, x0, y, y0, zmL, zhL zmL = Z_0*zL/Za zhL = Zt*zL/Za IF (zL .gt. 0.) THEN !STABLE (not well tested - seem large) psi_m = -5.3*(zL - zmL) psi_h = -8.0*(zL - zhL) ELSE !UNSTABLE x = (1.-19.0*zL)**0.25 x0= (1.-19.0*zmL)**0.25 y = (1.-11.6*zL)**0.5 y0= (1.-11.6*zhL)**0.5 psi_m = 2.*LOG((1.+x)/(1.+x0)) + LOG((1.+x**2.)/(1.+x0**2.)) - & 2.*ATAN(x) + 2*ATAN(x0) psi_h = 2.*LOG((1.+y)/(1.+y0)) ENDIF return END SUBROUTINE PSI_Hogstrom_1996 !-------------------------------------------------------------------- SUBROUTINE PSI_DyerHicks(psi_m, psi_h, zL, Zt, Z_0, Za) 6 ! This subroutine returns the stability functions based off ! of Hogstrom (1996), but with different constants compatible ! with Dyer and Hicks (1970/74?). This formulation is used for ! testing/development by Nakanishi (personal communication). IMPLICIT NONE REAL, INTENT(IN) :: zL, Zt, Z_0, Za REAL, INTENT(OUT) :: psi_m, psi_h REAL :: x, x0, y, y0, zmL, zhL zmL = Z_0*zL/Za !Zo/L zhL = Zt*zL/Za !Zt/L IF (zL .gt. 0.) THEN !STABLE psi_m = -5.0*(zL - zmL) psi_h = -5.0*(zL - zhL) ELSE !UNSTABLE x = (1.-16.*zL)**0.25 x0= (1.-16.*zmL)**0.25 y = (1.-16.*zL)**0.5 y0= (1.-16.*zhL)**0.5 psi_m = 2.*LOG((1.+x)/(1.+x0)) + LOG((1.+x**2.)/(1.+x0**2.)) - & 2.*ATAN(x) + 2*ATAN(x0) psi_h = 2.*LOG((1.+y)/(1.+y0)) ENDIF return END SUBROUTINE PSI_DyerHicks !-------------------------------------------------------------------- SUBROUTINE PSI_Beljaars_Holtslag_1991(psi_m, psi_h, zL) ! This subroutine returns the stability functions based off ! of Beljaar and Holtslag 1991, which is an extension of Holtslag ! and Debruin 1989. IMPLICIT NONE REAL, INTENT(IN) :: zL REAL, INTENT(OUT) :: psi_m, psi_h REAL, PARAMETER :: a=1., b=0.666, c=5., d=0.35 IF (zL .lt. 0.) THEN !UNSTABLE WRITE(*,*)"WARNING: Universal stability functions from" WRITE(*,*)" Beljaars and Holtslag (1991) should only" WRITE(*,*)" be used in the stable regime!" psi_m = 0. psi_h = 0. ELSE !STABLE psi_m = -(a*zL + b*(zL -(c/d))*exp(-d*zL) + (b*c/d)) psi_h = -((1.+.666*a*zL)**1.5 + & b*(zL - (c/d))*exp(-d*zL) + (b*c/d) -1.) ENDIF return END SUBROUTINE PSI_Beljaars_Holtslag_1991 !-------------------------------------------------------------------- SUBROUTINE PSI_Zilitinkevich_Esau_2007(psi_m, psi_h, zL) ! This subroutine returns the stability functions come from ! Zilitinkevich and Esau (2007, BM), which are formulatioed from the ! "generalized similarity theory" and tuned to the LES DATABASE64 ! to determine their dependence on z/L. IMPLICIT NONE REAL, INTENT(IN) :: zL REAL, INTENT(OUT) :: psi_m, psi_h REAL, PARAMETER :: Cm=3.0, Ct=2.5 IF (zL .lt. 0.) THEN !UNSTABLE WRITE(*,*)"WARNING: Universal stability function from" WRITE(*,*)" Zilitinkevich and Esau (2007) should only" WRITE(*,*)" be used in the stable regime!" psi_m = 0. psi_h = 0. ELSE !STABLE psi_m = -Cm*(zL**(5./6.)) psi_h = -Ct*(zL**(4./5.)) ENDIF return END SUBROUTINE PSI_Zilitinkevich_Esau_2007 !-------------------------------------------------------------------- SUBROUTINE PSI_Businger_1971(psi_m, psi_h, zL) ! This subroutine returns the flux-profile relationships ! of Businger el al. 1971. IMPLICIT NONE REAL, INTENT(IN) :: zL REAL, INTENT(OUT) :: psi_m, psi_h REAL :: x, y REAL, PARAMETER :: Pi180 = 3.14159265/180. IF (zL .lt. 0.) THEN !UNSTABLE x = (1. - 15.0*zL)**0.25 y = (1. - 9.0*zL)**0.5 psi_m = LOG(((1.+x)/2.)**2.) + LOG((1.+x**2.)/2.) - & 2.*ATAN(x) + Pi180*90. psi_h = 2.*LOG((1.+y)/2.) ELSE !STABLE psi_m = -4.7*zL psi_h = -(4.7/0.74)*zL ENDIF return END SUBROUTINE PSI_Businger_1971 !-------------------------------------------------------------------- SUBROUTINE PSI_Suselj_Sood_2010(psi_m, psi_h, zL) !This subroutine returns flux-profile relatioships based off !of Lobocki (1993), which is derived from the MY-level 2 model. !Suselj and Sood (2010) applied the surface layer length scales !from Nakanishi (2001) to get this new relationship. These functions !are more agressive (larger magnitude) than most formulations. They !showed improvement over water, but untested over land. IMPLICIT NONE REAL, INTENT(IN) :: zL REAL, INTENT(OUT) :: psi_m, psi_h REAL, PARAMETER :: Rfc=0.19, Ric=0.183, PHIT=0.8 IF (zL .gt. 0.) THEN !STABLE psi_m = -(zL/Rfc + 1.1223*EXP(1.-1.6666/zL)) !psi_h = -zL*Ric/((Rfc**2.)*PHIT) + 8.209*(zL**1.1091) !THEIR EQ FOR PSI_H CRASHES THE MODEL AND DOES NOT MATCH !THEIR FIG 1. THIS EQ (BELOW) MATCHES THEIR FIG 1 BETTER: psi_h = -(zL*Ric/((Rfc**2.)*5.) + 7.09*(zL**1.1091)) ELSE !UNSTABLE psi_m = 0.9904*LOG(1. - 14.264*zL) psi_h = 1.0103*LOG(1. - 16.3066*zL) ENDIF return END SUBROUTINE PSI_Suselj_Sood_2010 !-------------------------------------------------------------------- SUBROUTINE Li_etal_2010(zL, Rib, zaz0, z0zt) 3 !This subroutine returns a more robust z/L that best matches !the z/L from Hogstrom (1996) for unstable conditions and Beljaars !and Holtslag (1991) for stable conditions. IMPLICIT NONE REAL, INTENT(OUT) :: zL REAL, INTENT(IN) :: Rib, zaz0, z0zt REAL :: alfa, beta, zaz02, z0zt2 REAL, PARAMETER :: au11=0.045, bu11=0.003, bu12=0.0059, & bu21=-0.0828, bu22=0.8845, bu31=0.1739, & bu32=-0.9213, bu33=-0.1057 REAL, PARAMETER :: aw11=0.5738, aw12=-0.4399, aw21=-4.901,& aw22=52.50, bw11=-0.0539, bw12=1.540, & bw21=-0.669, bw22=-3.282 REAL, PARAMETER :: as11=0.7529, as21=14.94, bs11=0.1569,& bs21=-0.3091, bs22=-1.303 !set limits according to Li et al (2010), p 157. zaz02=zaz0 IF (zaz0 .lt. 100.0) zaz02=100. IF (zaz0 .gt. 100000.0) zaz02=100000. !set more limits according to Li et al (2010) z0zt2=z0zt IF (z0zt .lt. 0.5) z0zt2=0.5 IF (z0zt .gt. 100.0) z0zt2=100. alfa = LOG(zaz02) beta = LOG(z0zt2) IF (Rib .le. 0.0) THEN zL = au11*alfa*Rib**2 + ( & (bu11*beta + bu12)*alfa**2 + & (bu21*beta + bu22)*alfa + & (bu31*beta**2 + bu32*beta + bu33))*Rib !if(zL .LT. -15 .OR. zl .GT. 0.)print*,"VIOLATION Rib<0:",zL zL = MAX(zL,-15.) !LIMITS SET ACCORDING TO Li et al (2010) zL = MIN(zL,0.) !Figure 1. ELSEIF (Rib .gt. 0.0 .AND. Rib .le. 0.2) THEN zL = ((aw11*beta + aw12)*alfa + & (aw21*beta + aw22))*Rib**2 + & ((bw11*beta + bw12)*alfa + & (bw21*beta + bw22))*Rib !if(zL .LT. 0 .OR. zl .GT. 4)print*,"VIOLATION 0<Rib<0.2:",zL zL = MIN(zL,4.) !LIMITS APPROX SET ACCORDING TO Li et al (2010) zL = MAX(zL,0.) !THEIR FIGURE 1B. ELSE zL = (as11*alfa + as21)*Rib + bs11*alfa + & bs21*beta + bs22 !if(zL .LE. 1 .OR. zl .GT. 23)print*,"VIOLATION Rib>0.2:",zL zL = MIN(zL,20.) !LIMITS ACCORDING TO Li et al (2010), THIER !FIGUE 1C. zL = MAX(zL,1.) ENDIF return END SUBROUTINE Li_etal_2010 !-------------------------------------------------------------------- END MODULE module_sf_mynn