MODULE module_sf_mynn 3
!-------------------------------------------------------------------
!Modifications implemented by Joseph Olson NOAA/GSD/AMB - CU/CIRES
!for WRFv3.4 and WRFv3.4.1:
!
! BOTH LAND AND WATER:
!1) Calculation of stability parameter (z/L) taken from Li et al. (2010 BLM)
! for first iteration of first time step; afterwards, exact calculation.
!2) Fixed isflux=0 option to turn off scalar fluxes, but keep momentum
! fluxes for idealized studies (credit: Anna Fitch).
!3) Kinematic viscosity now varies with temperature
!4) Uses Monin-Obukhov flux-profile relationships more consistent with
! those used in the MYNN PBL code.
!5) Allows negative QFX, similar to MYJ scheme
!
! LAND only:
!1) iz0tlnd option is now available with the following options:
! (default) =0: Zilitinkevich (1995) with Czil=0.1,
! =1: Czil_new (modified according to Chen & Zhang 2008)
! =2: Modified Yang et al (2002, 2008) - generalized for all landuse
! =3: constant zt = z0/7.4 (original form; Garratt 1992)
!2) Relaxed u* minimum from 0.1 to 0.01
!
! WATER only:
!1) isftcflx option is now available with the following options:
! (default) =0: z0, zt, and zq from COARE3.0 (Fairall et al 2003)
! =1: z0 from Davis et al (2008), zt & zq from COARE3.0
! =2: z0 from Davis et al (2008), zt & zq from Garratt (1992)
! =3: z0 from Taylor and Yelland (2004), zt and zq from COARE3.0
! =4: z0 from Zilitinkevich (2001), zt & zq from COARE3.0
!
! SNOW/ICE only:
!1) Added Andreas (2002) snow/ice parameterization for thermal and
! moisture roughness to help reduce the cool/moist bias in the arctic
! region.
!
!NOTE: This code was primarily tested in combination with the RUC LSM.
! Performance with the Noah (or other) LSM is relatively unknown.
!-------------------------------------------------------------------
USE module_model_constants
, only: &
&p1000mb, cp, xlv, ep_2
USE module_sf_sfclay
, ONLY: sfclayinit
USE module_bl_mynn
, only: tv0, mym_condensation
!-------------------------------------------------------------------
IMPLICIT NONE
!-------------------------------------------------------------------
REAL, PARAMETER :: xlvcp=xlv/cp, ep_3=1.-ep_2
REAL, PARAMETER :: wmin=0.1 ! Minimum wind speed
REAL, PARAMETER :: zm2h=7.4 ! = z_0m/z_0h
REAL, PARAMETER :: charnock=0.016, bvisc=1.5e-5, z0hsea=5.e-5
REAL, PARAMETER :: VCONVC=1.0
REAL, PARAMETER :: SNOWZ0=0.012
REAL, DIMENSION(0:1000 ),SAVE :: PSIMTB,PSIHTB
CONTAINS
!-------------------------------------------------------------------
SUBROUTINE mynn_sf_init_driver(allowed_to_read) 1,1
LOGICAL, INTENT(in) :: allowed_to_read
!Fill the PSIM and PSIH tables. The subroutine "sfclayinit"
!can be found in module_sf_sfclay.F. This subroutine returns
!the forms from Dyer and Hicks (1974).
CALL sfclayinit
(allowed_to_read)
END SUBROUTINE mynn_sf_init_driver
!-------------------------------------------------------------------
SUBROUTINE SFCLAY_mynn(U3D,V3D,T3D,QV3D,P3D,dz8w, & 3,2
CP,G,ROVCP,R,XLV,PSFC,CHS,CHS2,CQS2,CPM, &
ZNT,UST,PBLH,MAVAIL,ZOL,MOL,REGIME,PSIM,PSIH, &
XLAND,HFX,QFX,LH,TSK,FLHC,FLQC,QGH,QSFC,RMOL, &
U10,V10,TH2,T2,Q2, &
GZ1OZ0,WSPD,BR,ISFFLX,DX, &
SVP1,SVP2,SVP3,SVPT0,EP1,EP2, &
KARMAN,EOMEG,STBOLT, &
itimestep,ch,th3d,pi3d,qc3d, &
tsq,qsq,cov,qcg, &
!JOE-add output
! z0zt_ratio,BulkRi,wstar,qstar,resist,logres, &
! Rreynolds,niters,psixrat,psitrat, &
!JOE-end
ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte, &
ustm,ck,cka,cd,cda,isftcflx,iz0tlnd )
!-------------------------------------------------------------------
IMPLICIT NONE
!-------------------------------------------------------------------
!-- U3D 3D u-velocity interpolated to theta points (m/s)
!-- V3D 3D v-velocity interpolated to theta points (m/s)
!-- T3D temperature (K)
!-- QV3D 3D water vapor mixing ratio (Kg/Kg)
!-- P3D 3D pressure (Pa)
!-- dz8w dz between full levels (m)
!-- CP heat capacity at constant pressure for dry air (J/kg/K)
!-- G acceleration due to gravity (m/s^2)
!-- ROVCP R/CP
!-- R gas constant for dry air (J/kg/K)
!-- XLV latent heat of vaporization for water (J/kg)
!-- PSFC surface pressure (Pa)
!-- ZNT roughness length (m)
!-- UST u* in similarity theory (m/s)
!-- USTM u* in similarity theory (m/s) w* added to WSPD. This is
! used to couple with TKE scheme but not in MYNN.
! (as of now, USTM = UST in this version)
!-- PBLH PBL height from previous time (m)
!-- MAVAIL surface moisture availability (between 0 and 1)
!-- ZOL z/L height over Monin-Obukhov length
!-- MOL T* (similarity theory) (K)
!-- REGIME flag indicating PBL regime (stable, unstable, etc.)
!-- PSIM similarity stability function for momentum
!-- PSIH similarity stability function for heat
!-- XLAND land mask (1 for land, 2 for water)
!-- HFX upward heat flux at the surface (W/m^2)
!-- QFX upward moisture flux at the surface (kg/m^2/s)
!-- LH net upward latent heat flux at surface (W/m^2)
!-- TSK surface temperature (K)
!-- FLHC exchange coefficient for heat (W/m^2/K)
!-- FLQC exchange coefficient for moisture (kg/m^2/s)
!-- CHS heat/moisture exchange coefficient for LSM (m/s)
!-- QGH lowest-level saturated mixing ratio
!-- U10 diagnostic 10m u wind
!-- V10 diagnostic 10m v wind
!-- TH2 diagnostic 2m theta (K)
!-- T2 diagnostic 2m temperature (K)
!-- Q2 diagnostic 2m mixing ratio (kg/kg)
!-- GZ1OZ0 log(z/z0) where z0 is roughness length
!-- WSPD wind speed at lowest model level (m/s)
!-- BR bulk Richardson number in surface layer
!-- ISFFLX isfflx=1 for surface heat and moisture fluxes
!-- DX horizontal grid size (m)
!-- SVP1 constant for saturation vapor pressure (=0.6112 kPa)
!-- SVP2 constant for saturation vapor pressure (=17.67 dimensionless)
!-- SVP3 constant for saturation vapor pressure (=29.65 K)
!-- SVPT0 constant for saturation vapor pressure (=273.15 K)
!-- EP1 constant for virtual temperature (Rv/Rd - 1) (dimensionless)
!-- EP2 constant for spec. hum. calc (Rd/Rv = 0.622) (dimensionless)
!-- EP3 constant for spec. hum. calc (1 - Rd/Rv = 0.378 ) (dimensionless)
!-- KARMAN Von Karman constant
!-- EOMEG angular velocity of earth's rotation (rad/s)
!-- STBOLT Stefan-Boltzmann constant (W/m^2/K^4)
!-- ck enthalpy exchange coeff at 10 meters
!-- cd momentum exchange coeff at 10 meters
!-- cka enthalpy exchange coeff at the lowest model level
!-- cda momentum exchange coeff at the lowest model level
!-- isftcflx =0: z0, zt, and zq from COARE3.0 (Fairall et al 2003)
! (water =1: z0 from Davis et al (2008), zt & zq from COARE3.0
! only) =2: z0 from Davis et al (2008), zt & zq from Garratt (1992)
! =3: z0 from Taylor and Yelland (2004), zt and zq from COARE3.0
! =4: z0 from Zilitinkevich (2001), zt & zq from COARE3.0
!-- iz0tlnd =0: Zilitinkevich (1995) with Czil=0.1,
! (land =1: Czil_new (modified according to Chen & Zhang 2008)
! only) =2: Modified Yang et al (2002, 2008) - generalized for all landuse
! =3: constant zt = z0/7.4 (Garratt 1992)
!-- ids start index for i in domain
!-- ide end index for i in domain
!-- jds start index for j in domain
!-- jde end index for j in domain
!-- kds start index for k in domain
!-- kde end index for k in domain
!-- ims start index for i in memory
!-- ime end index for i in memory
!-- jms start index for j in memory
!-- jme end index for j in memory
!-- kms start index for k in memory
!-- kme end index for k in memory
!-- its start index for i in tile
!-- ite end index for i in tile
!-- jts start index for j in tile
!-- jte end index for j in tile
!-- kts start index for k in tile
!-- kte end index for k in tile
!-------------------------------------------------------------------
INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte
!
INTEGER, INTENT(IN ) :: ISFFLX
REAL, INTENT(IN ) :: SVP1,SVP2,SVP3,SVPT0
REAL, INTENT(IN ) :: EP1,EP2,KARMAN,EOMEG,STBOLT
!
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) , &
INTENT(IN ) :: dz8w
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) , &
INTENT(IN ) :: QV3D, &
P3D, &
T3D, &
QC3D,&
th3d,pi3d,tsq,qsq,cov
INTEGER, INTENT(in) :: itimestep
REAL, DIMENSION( ims:ime, jms:jme ), INTENT(IN) ::&
& qcg
REAL, DIMENSION( ims:ime, jms:jme ), INTENT(INOUT) ::&
& ch
REAL, DIMENSION( ims:ime, jms:jme ) , &
INTENT(IN ) :: MAVAIL, &
PBLH, &
XLAND, &
TSK
REAL, DIMENSION( ims:ime, jms:jme ) , &
INTENT(OUT ) :: U10, &
V10, &
TH2, &
T2, &
!JOE-use value from LSM Q2, &
Q2
!JOE-moved down below QSFC
!
REAL, DIMENSION( ims:ime, jms:jme ) , &
INTENT(INOUT) :: REGIME, &
HFX, &
QFX, &
LH, &
MOL,RMOL,QSFC
!m the following 5 are change to memory size
!
REAL, DIMENSION( ims:ime, jms:jme ) , &
INTENT(INOUT) :: GZ1OZ0,WSPD,BR, &
PSIM,PSIH
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) , &
INTENT(IN ) :: U3D, &
V3D
REAL, DIMENSION( ims:ime, jms:jme ) , &
INTENT(IN ) :: PSFC
REAL, DIMENSION( ims:ime, jms:jme ) , &
INTENT(INOUT) :: ZNT, &
ZOL, &
UST, &
CPM, &
CHS2, &
CQS2, &
CHS
REAL, DIMENSION( ims:ime, jms:jme ) , &
INTENT(INOUT) :: FLHC,FLQC
REAL, DIMENSION( ims:ime, jms:jme ) , &
INTENT(INOUT) :: QGH
!JOE-begin
! REAL, DIMENSION( ims:ime, jms:jme ) , &
! INTENT(OUT) :: z0zt_ratio, &
! BulkRi,wstar,qstar,resist,logres, &
! Rreynolds,niters,psixrat,psitrat
!JOE-end
REAL, INTENT(IN ) :: CP,G,ROVCP,R,XLV,DX
REAL, OPTIONAL, DIMENSION( ims:ime, jms:jme ) , &
INTENT(OUT) :: ck,cka,cd,cda,ustm
INTEGER, OPTIONAL, INTENT(IN ) :: ISFTCFLX, IZ0TLND
!----------- LOCAL VARS -----------------------------------
REAL, DIMENSION( its:ite ) :: U1D, &
V1D, &
QV1D, &
P1D, &
T1D,qc1d
REAL, DIMENSION( its:ite ) :: dz8w1d
REAL, DIMENSION( its:ite ) :: vt1,vq1
REAL, DIMENSION(kts:kts+1) :: thl, qw, vt, vq
REAL :: ql
INTEGER :: I,J,K
!-----------------------------------------------------------
DO J=jts,jte
DO i=its,ite
dz8w1d(I) = dz8w(i,kts,j)
ENDDO
DO i=its,ite
U1D(i) =U3D(i,kts,j)
V1D(i) =V3D(i,kts,j)
QV1D(i)=QV3D(i,kts,j)
QC1D(i)=QC3D(i,kts,j)
P1D(i) =P3D(i,kts,j)
T1D(i) =T3D(i,kts,j)
ENDDO
IF (itimestep==1) THEN
DO i=its,ite
vt1(i)=0.
vq1(i)=0.
UST(i,j)=MAX(0.025*SQRT(U1D(i)*U1D(i) + V1D(i)*V1D(i)),0.001)
MOL(i,j)=0. ! Tstar
!qstar(i,j)=0.0
ENDDO
ELSE
DO i=its,ite
do k = kts,kts+1
ql = qc3d(i,k,j)/(1.+qc3d(i,k,j))
qw(k) = qv3d(i,k,j)/(1.+qv3d(i,k,j)) + ql
thl(k) = th3d(i,k,j)-xlvcp*ql/pi3d(i,k,j)
end do
! NOTE: The last grid number is kts+1 instead of kte.
CALL mym_condensation
(kts,kts+1, &
& dz8w(i,kts:kts+1,j), &
& thl(kts:kts+1), qw(kts:kts+1), &
& p3d(i,kts:kts+1,j),&
& pi3d(i,kts:kts+1,j), &
& tsq(i,kts:kts+1,j), &
& qsq(i,kts:kts+1,j), &
& cov(i,kts:kts+1,j), &
& vt(kts:kts+1), vq(kts:kts+1))
vt1(i) = vt(kts)
vq1(i) = vq(kts)
ENDDO
ENDIF
CALL SFCLAY1D_mynn
(J,U1D,V1D,T1D,QV1D,P1D,dz8w1d, &
CP,G,ROVCP,R,XLV,PSFC(ims,j),CHS(ims,j),CHS2(ims,j),&
CQS2(ims,j),CPM(ims,j),PBLH(ims,j), RMOL(ims,j), &
ZNT(ims,j),UST(ims,j),MAVAIL(ims,j),ZOL(ims,j), &
MOL(ims,j),REGIME(ims,j),PSIM(ims,j),PSIH(ims,j), &
XLAND(ims,j),HFX(ims,j),QFX(ims,j),TSK(ims,j), &
U10(ims,j),V10(ims,j),TH2(ims,j),T2(ims,j), &
Q2(ims,j),FLHC(ims,j),FLQC(ims,j),QGH(ims,j), &
QSFC(ims,j),LH(ims,j), &
GZ1OZ0(ims,j),WSPD(ims,j),BR(ims,j),ISFFLX,DX, &
SVP1,SVP2,SVP3,SVPT0,EP1,EP2,KARMAN,EOMEG,STBOLT, &
ch(ims,j),vt1,vq1,qc1d,qcg(ims,j),&
itimestep,&
!JOE-begin
! z0zt_ratio(ims,j),BulkRi(ims,j),wstar(ims,j),qstar(ims,j), &
! resist(ims,j),logres(ims,j),Rreynolds(ims,j),niters(ims,j), &
! psixrat(ims,j),psitrat(ims,j), &
!JOE-end
ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte &
,isftcflx,iz0tlnd, &
USTM(ims,j),CK(ims,j),CKA(ims,j), &
CD(ims,j),CDA(ims,j) &
)
ENDDO
END SUBROUTINE SFCLAY_MYNN
!-------------------------------------------------------------------
SUBROUTINE SFCLAY1D_mynn(J,UX,VX,T1D,QV1D,P1D,dz8w1d, & 1,25
CP,G,ROVCP,R,XLV,PSFCPA,CHS,CHS2,CQS2,CPM,PBLH,RMOL, &
ZNT,UST,MAVAIL,ZOL,MOL,REGIME,PSIM,PSIH, &
XLAND,HFX,QFX,TSK, &
U10,V10,TH2,T2,Q2,FLHC,FLQC,QGH, &
QSFC,LH,GZ1OZ0,WSPD,BR,ISFFLX,DX, &
SVP1,SVP2,SVP3,SVPT0,EP1,EP2, &
KARMAN,EOMEG,STBOLT, &
ch,vt1,vq1,qc1d,qcg, &
itimestep, &
!JOE-add
! zratio,BRi,wstar,qstar,resist,logres, &
! Rreynolds,niters,psixrat,psitrat, &
!JOE-end
ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte, &
isftcflx, iz0tlnd, &
ustm,ck,cka,cd,cda )
!-------------------------------------------------------------------
IMPLICIT NONE
!-------------------------------------------------------------------
REAL, PARAMETER :: XKA=2.4E-5 !molecular diffusivity
REAL, PARAMETER :: PRT=1. !prandlt number
INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte, &
J
!
INTEGER, INTENT(in) :: itimestep
INTEGER, INTENT(IN ) :: ISFFLX
REAL, INTENT(IN ) :: SVP1,SVP2,SVP3,SVPT0
REAL, INTENT(IN ) :: EP1,EP2,KARMAN,EOMEG,STBOLT
!
REAL, DIMENSION( ims:ime ) , &
INTENT(IN ) :: MAVAIL, &
PBLH, &
XLAND, &
TSK
!
REAL, DIMENSION( ims:ime ) , &
INTENT(IN ) :: PSFCPA
REAL, DIMENSION( ims:ime ) , &
INTENT(INOUT) :: REGIME, &
HFX, &
QFX, &
MOL,RMOL
!m the following 5 are changed to memory size---
!
REAL, DIMENSION( ims:ime ) , &
INTENT(INOUT) :: GZ1OZ0,WSPD,BR, &
PSIM,PSIH
REAL, DIMENSION( ims:ime ) , &
INTENT(INOUT) :: ZNT, &
ZOL, &
UST, &
CPM, &
CHS2, &
CQS2, &
CHS
!JOE-add
REAL, DIMENSION( its:ite ) :: zratio,BRi,wstar,qstar,&
resist,logres,Rreynolds, &
niters,psixrat,psitrat
! REAL, DIMENSION( ims:ime ) , &
! INTENT(OUT) :: zratio,BRi,wstar,qstar, &
! resist,logres,Rreynolds, &
! niters,psixrat,psitrat
!JOE-end
REAL, DIMENSION( ims:ime ) , &
INTENT(INOUT) :: FLHC,FLQC
REAL, DIMENSION( ims:ime ) , &
INTENT(INOUT) :: QGH,QSFC
REAL, DIMENSION( ims:ime ) , &
INTENT(OUT) :: U10,V10, &
!JOE-make qsfc inout (moved up) TH2,T2,Q2,QSFC,LH
TH2,T2,Q2,LH
REAL, INTENT(IN) :: CP,G,ROVCP,R,XLV,DX
! MODULE-LOCAL VARIABLES, DEFINED IN SUBROUTINE SFCLAY
REAL, DIMENSION( its:ite ), INTENT(IN ) :: dz8w1d
REAL, DIMENSION( its:ite ), INTENT(IN ) :: UX, &
VX, &
QV1D, &
P1D, &
T1D,qc1d
REAL, DIMENSION( ims:ime ), INTENT(IN) :: qcg
REAL, DIMENSION( ims:ime ), INTENT(INOUT) :: ch
REAL, DIMENSION( its:ite ), INTENT(IN) :: vt1,vq1
REAL, OPTIONAL, DIMENSION( ims:ime ) , &
INTENT(OUT) :: ck,cka,cd,cda,ustm
INTEGER, OPTIONAL, INTENT(IN ) :: ISFTCFLX, IZ0TLND
! LOCAL VARS
REAL, DIMENSION( its:ite ) :: z_t,z_q
REAL :: thl1,sqv1,sqc1,exner1,sqvg,sqcg,vv,ww
REAL, DIMENSION( its:ite ) :: ZA, &
THVX,ZQKL, &
THX,QX, &
PSIH2, &
PSIM2, &
PSIH10, &
PSIM10, &
GZ2OZ0, &
GZ10OZ0, &
WSPDI
!
REAL, DIMENSION( its:ite ) :: RHOX,GOVRTH
!
REAL, DIMENSION( its:ite) :: SCR4
REAL, DIMENSION( its:ite ) :: THGB, PSFC, QSFCMR
REAL, DIMENSION( its:ite ) :: GZ2OZt,GZ10OZt,GZ1OZt
!
INTEGER :: N,I,K,KK,L,NZOL,NK,NZOL2,NZOL10, ITER
INTEGER, PARAMETER :: ITMAX=5
REAL :: PL,THCON,TVCON,E1
REAL :: ZL,TSKV,DTHVDZ,DTHVM,VCONV,RZOL,RZOL2,RZOL10,ZOL2,ZOL10
REAL :: DTG,PSIX,DTTHX,DTHDZ,PSIX10,PSIT,PSIT2,PSIT10, &
PSIQ,PSIQ2,PSIQ10
REAL :: FLUXC,VSGD
real :: restar,VISC,psilim,DQG,OLDUST,OLDTST
!-------------------------------------------------------------------
!----CONVERT GROUND TEMPERATURE TO POTENTIAL TEMPERATURE:
DO I=its,ite
! PSFC cmb (or kPa)
PSFC(I)=PSFCPA(I)/1000.
THGB(I)=TSK(I)*(100./PSFC(I))**ROVCP
ENDDO
!
! SCR4(I,K) STORES EITHER TEMPERATURE OR VIRTUAL TEMPERATURE,
! DEPENDING ON IFDRY (CURRENTLY NOT USED, SO SCR4 == TVX).
DO 30 I=its,ite
! PL cmb
PL=P1D(I)/1000.
THCON=(100./PL)**ROVCP
THX(I)=T1D(I)*THCON
SCR4(I)=T1D(I)
THVX(I)=THX(I)
QX(I)=0.
30 CONTINUE
! INITIALIZE SOME VARIABLES HERE:
DO I=its,ite
niters(I)=0.
QGH(I)=0.
CPM(I)=CP
IF (itimestep .LE. 1) THEN
qstar(I)=0.0
ENDIF
ENDDO
! IF(IDRY.EQ.1)GOTO 80
DO 50 I=its,ite
QX(I)=QV1D(I)/(1.+QV1D(I)) !CONVERT TO SPEC HUM
TVCON=(1.+EP1*QX(I))
THVX(I)=THX(I)*TVCON
SCR4(I)=T1D(I)*TVCON
50 CONTINUE
!
DO 60 I=its,ite
IF (TSK(I) .LT. 273.15) THEN
!SATURATION VAPOR PRESSURE WRT ICE (SVP1=.6112; 10*mb)
E1=SVP1*EXP(4648*(1./273.15 - 1./TSK(I)) - &
11.64*LOG(273.15/TSK(I)) + 0.02265*(273.15 - TSK(I)))
ELSE
!SATURATION VAPOR PRESSURE WRT WATER (Bolton 1980)
E1=SVP1*EXP(SVP2*(TSK(I)-SVPT0)/(TSK(I)-SVP3))
ENDIF
QSFC(I)=EP2*E1/(PSFC(I)-ep_3*E1) !specific humidity
QSFCMR(I)=EP2*E1/(PSFC(I)-E1) !mixing ratio
!FOR LAND POINTS, QSFC can come from previous time step (in LSM)
!if(xland(i).gt.1.5 .or. QSFC(i).le.0.0) QSFC(I)=EP2*E1/(PSFC(I)-ep_3*E1)
! QGH CHANGED TO USE LOWEST-LEVEL AIR TEMP CONSISTENT WITH MYJSFC CHANGE
! Q2SAT = QGH IN LSM
IF (TSK(I) .LT. 273.15) THEN
!SATURATION VAPOR PRESSURE WRT ICE
E1=SVP1*EXP(4648*(1./273.15 - 1./T1D(I)) - &
11.64*LOG(273.15/T1D(I)) + 0.02265*(273.15 - T1D(I)))
ELSE
!SATURATION VAPOR PRESSURE WRT WATER (Bolton 1980)
E1=SVP1*EXP(SVP2*(T1D(I)-SVPT0)/(T1D(I)-SVP3))
ENDIF
PL=P1D(I)/1000.
QGH(I)=EP2*E1/(PL-ep_3*E1) !specific humidity
!QGH(I)=EP2*E1/(PL-E1) !mixing ratio
CPM(I)=CP*(1.+0.84*QX(I)/(1.-qx(i)))
60 CONTINUE
80 CONTINUE
!-----COMPUTE THE HEIGHT OF FULL- AND HALF-SIGMA LEVELS ABOVE GROUND
! LEVEL, AND THE LAYER THICKNESSES.
DO I=its,ite
RHOX(I)=PSFC(I)*1000./(R*SCR4(I))
ZQKL(I)=dz8w1d(I) !first full-sigma level
ZA(I)=0.5*ZQKL(I) !first half-sigma level
GOVRTH(I)=G/THX(I)
ENDDO
DO I=its,ite
WSPD(I)=SQRT(UX(I)*UX(I)+VX(I)*VX(I))
!account for partial condensation
exner1=(p1d(i)/p1000mb)**ROVCP
sqc1=qc1d(i)/(1.+qc1d(i)) !convert to spec hum.
sqv1=qx(i)
thl1=THX(I)-xlvcp/exner1*sqc1
sqvg=qsfc(i)
sqcg=qcg(i)/(1.+qcg(i)) !convert to spec hum.
vv = thl1-THGB(I)
ww = mavail(i)*(sqv1-sqvg) + (sqc1-sqcg)
TSKV=THGB(I)*(1.+EP1*QSFC(I)*MAVAIL(I))
DTHDZ=(THX(I)-THGB(I))
!DTHVDZ=(THVX(I)-TSKV)
DTHVDZ= (vt1(i) + 1.0)*vv + (vq1(i) + tv0)*ww
!--------------------------------------------------------
! Calculate the convective velocity scale (WSTAR) and
! subgrid-scale velocity (VSGD) following Beljaars (1995, QJRMS)
! and Mahrt and Sun (1995, MWR), respectively
!-------------------------------------------------------
! VCONV = 0.25*sqrt(g/tskv*pblh(i)*dthvm)
! Use Beljaars over land, old MM5 (Wyngaard) formula over water
IF (xland(i).lt.1.5) then !LAND (xland == 1)
fluxc = max(hfx(i)/rhox(i)/cp &
+ ep1*tskv*qfx(i)/rhox(i),0.)
WSTAR(I) = vconvc*(g/TSK(i)*pblh(i)*fluxc)**.33
ELSE !WATER (xland == 2)
IF(-DTHVDZ.GE.0)THEN
DTHVM=-DTHVDZ
ELSE
DTHVM=0.
ENDIF
!JOE-the Wyngaard formula is ~3 times larger than the Beljaars
!formula, so switch to Beljaars for water, but use VCONVC = 1.25,
!as in the COARE3.0 bulk parameterizations.
!WSTAR(I) = 2.*SQRT(DTHVM)
fluxc = max(hfx(i)/rhox(i)/cp &
+ ep1*tskv*qfx(i)/rhox(i),0.)
WSTAR(I) = 1.25*(g/TSK(i)*pblh(i)*fluxc)**.33
ENDIF
!--------------------------------------------------------
! Mahrt and Sun low-res correction
! (for 13 km ~ 0.37 m/s; for 3 km == 0 m/s)
!--------------------------------------------------------
VSGD = 0.32 * (max(dx/5000.-1.,0.))**.33
WSPD(I)=SQRT(WSPD(I)*WSPD(I)+WSTAR(I)*WSTAR(I)+vsgd*vsgd)
WSPD(I)=MAX(WSPD(I),wmin)
!--------------------------------------------------------
! CALCULATE THE BULK RICHARDSON NUMBER OF SURFACE LAYER,
! ACCORDING TO AKB(1976), EQ(12).
!--------------------------------------------------------
BR(I)=GOVRTH(I)*ZA(I)*DTHVDZ/(WSPD(I)*WSPD(I))
!SET LIMITS ACCORDING TO Li et al. (2010) Boundary-Layer Meteorol (p.158)
BR(I)=MAX(BR(I),-2.0)
BR(I)=MIN(BR(I),1.0)
BRi(I)=BR(I) !new variable for output - BR is not a "state" variable.
! IF PREVIOUSLY UNSTABLE, DO NOT LET INTO REGIMES 1 AND 2 (STABLE)
!if (itimestep .GT. 1) THEN
! IF(MOL(I).LT.0.)BR(I)=MIN(BR(I),0.0)
!ENDIF
!IF(I .eq. 2)THEN
! write(*,1006)"BR:",BR(I)," fluxc:",fluxc," vt1:",vt1(i)," vq1:",vq1(i)
! write(*,1007)"XLAND:",XLAND(I)," WSPD:",WSPD(I)," DTHVDZ:",DTHVDZ," WSTAR:",WSTAR(I)
!ENDIF
ENDDO
1006 format(A,F7.3,A,f9.4,A,f9.5,A,f9.4)
1007 format(A,F2.0,A,f6.2,A,f7.3,A,f7.2)
!--------------------------------------------------------------------
!--------------------------------------------------------------------
!--- BEGIN ITERATION LOOP (ITMAX=5); USUALLY CONVERGES IN TWO PASSES
!--------------------------------------------------------------------
!--------------------------------------------------------------------
DO I=its,ite
ITER = 1
DO WHILE (ITER .LE. ITMAX)
niters(I)=ITER
!COMPUTE KINEMATIC VISCOSITY
VISC=(1.32+0.009*(T1D(I)-273.15))*1.E-5
IF((XLAND(I)-1.5).GE.0)THEN
!--------------------------------------
! WATER
!--------------------------------------
!COMPUTE KINEMATIC VISCOSITY
VISC=(1.32+0.009*(T1D(I)-273.15))*1.E-5
!--------------------------------------
!CALCULATE z0 (znt)
!--------------------------------------
IF ( PRESENT(ISFTCFLX) ) THEN
IF ( ISFTCFLX .EQ. 0 ) THEN
!NAME OF SUBROUTINE IS MISLEADING - ACTUALLY VARIABLE CHARNOCK
!PARAMETER FROM COARE3.0:
CALL charnock_1955
(ZNT(i),UST(i),WSPD(i),visc)
ELSEIF ( ISFTCFLX .EQ. 1 .OR. ISFTCFLX .EQ. 2 ) THEN
CALL davis_etal_2008
(ZNT(i),UST(i))
ELSEIF ( ISFTCFLX .EQ. 3 ) THEN
CALL Taylor_Yelland_2001
(ZNT(i),UST(i),WSPD(i))
ELSEIF ( ISFTCFLX .EQ. 4 ) THEN
CALL charnock_1955
(ZNT(i),UST(i),WSPD(i),visc)
ENDIF
ELSE
!DEFAULT TO COARE 3.0
CALL charnock_1955
(ZNT(i),UST(i),WSPD(i),visc)
ENDIF
!COMPUTE ROUGHNESS REYNOLDS NUMBER (restar) USING NEW ZNT
! AHW: Garrattt formula: Calculate roughness Reynolds number
! Kinematic viscosity of air (linear approx to
! temp dependence at sea level)
restar=MAX(ust(i)*ZNT(i)/visc, 0.1)
!--------------------------------------
!CALCULATE z_t and z_q
!--------------------------------------
IF ( PRESENT(ISFTCFLX) ) THEN
IF ( ISFTCFLX .EQ. 0 ) THEN
CALL fairall_2001
(z_t(i),z_q(i),restar,UST(i),visc)
ELSEIF ( ISFTCFLX .EQ. 1 ) THEN
CALL fairall_2001
(z_t(i),z_q(i),restar,UST(i),visc)
ELSEIF ( ISFTCFLX .EQ. 2 ) THEN
CALL garratt_1992
(z_t(i),z_q(i),ZNT(i),restar,XLAND(I))
ELSEIF ( ISFTCFLX .EQ. 3 ) THEN
CALL fairall_2001
(z_t(i),z_q(i),restar,UST(i),visc)
ELSEIF ( ISFTCFLX .EQ. 4 ) THEN
CALL zilitinkevich_1995
(ZNT(i),z_t(i),z_q(i),restar,&
UST(I),KARMAN,XLAND(I),IZ0TLND)
ENDIF
ELSE
!DEFAULT TO COARE 3.0
CALL fairall_2001
(z_t(i),z_q(i),restar,UST(i),visc)
ENDIF
ELSE
!--------------------------------------
! LAND
!--------------------------------------
!COMPUTE ROUGHNESS REYNOLDS NUMBER (restar) USING DEFAULT ZNT
VISC=(1.32+0.009*(T1D(I)-273.15))*1.E-5
restar=MAX(ust(i)*ZNT(i)/visc, 0.1)
!--------------------------------------
!GET z_t and z_q
!--------------------------------------
!CHECK FOR SNOW/ICE POINTS OVER LAND
IF ( ZNT(i) .LE. SNOWZ0 .AND. TSK(I) .LE. 273.15 ) THEN
CALL Andreas_2002
(ZNT(i),restar,z_t(i),z_q(i))
ELSE
IF ( PRESENT(IZ0TLND) ) THEN
IF ( IZ0TLND .LE. 1 ) THEN
CALL zilitinkevich_1995
(ZNT(i),z_t(i),z_q(i),restar,&
UST(I),KARMAN,XLAND(I),IZ0TLND)
ELSEIF ( IZ0TLND .EQ. 2 ) THEN
CALL Yang_2008
(ZNT(i),z_t(i),z_q(i),UST(i),MOL(I),&
qstar(I),restar,visc,XLAND(I))
ELSEIF ( IZ0TLND .EQ. 3 ) THEN
!Original MYNN in WRF-ARW used this form:
CALL garratt_1992
(z_t(i),z_q(i),ZNT(i),restar,XLAND(I))
ENDIF
ELSE
!DEFAULT TO ZILITINKEVICH WITH CZIL = 0.1
CALL zilitinkevich_1995
(ZNT(i),z_t(i),z_q(i),restar,&
UST(I),KARMAN,XLAND(I),0)
ENDIF
ENDIF
ENDIF
zratio(i)=znt(i)/z_t(i)
Rreynolds(I)=restar
!ADD RESISTANCE (SOMEWHAT FOLLOWING JIMENEZ ET AL. (2012)) TO PROTECT AGAINST
!EXCESSIVE FLUXES WHEN USING A LOW FIRST MODEL LEVEL (ZA < 10 m).
!Formerly: GZ1OZ0(I)= LOG(ZA(I)/ZNT(I))
GZ1OZ0(I)= LOG((ZA(I)+ZNT(I))/ZNT(I))
GZ1OZt(I)= LOG((ZA(I)+z_t(i))/z_t(i))
GZ2OZ0(I)= LOG((2.0+ZNT(I))/ZNT(I))
GZ2OZt(I)= LOG((2.0+z_t(i))/z_t(i))
GZ10OZ0(I)=LOG((10.+ZNT(I))/ZNT(I))
GZ10OZt(I)=LOG((10.+z_t(i))/z_t(i))
!--------------------------------------------------------------------
!--- DIAGNOSE BASIC PARAMETERS FOR THE APPROPRIATE STABILITY CLASS:
!
! THE STABILITY CLASSES ARE DETERMINED BY BR (BULK RICHARDSON NO.).
!
! CRITERIA FOR THE CLASSES ARE AS FOLLOWS:
!
! 1. BR .GE. 0.2;
! REPRESENTS NIGHTTIME STABLE CONDITIONS (REGIME=1),
!
! 2. BR .LT. 0.2 .AND. BR .GT. 0.0;
! REPRESENTS DAMPED MECHANICAL TURBULENT CONDITIONS
! (REGIME=2),
!
! 3. BR .EQ. 0.0
! REPRESENTS FORCED CONVECTION CONDITIONS (REGIME=3),
!
! 4. BR .LT. 0.0
! REPRESENTS FREE CONVECTION CONDITIONS (REGIME=4).
!
!--------------------------------------------------------------------
IF (BR(I) .GT. 0.2) THEN
!===================================================
!---CLASS 1; STABLE (NIGHTTIME) CONDITIONS:
!===================================================
REGIME(I)=1.
!COMPUTE z/L
!CALL Li_etal_2010(ZOL(I),BR(I),ZA(I)/ZNT(I),zratio(I))
IF (ITER .EQ. 1 .AND. itimestep .LE. 1) THEN
CALL Li_etal_2010
(ZOL(I),BR(I),ZA(I)/ZNT(I),zratio(I))
ELSE
ZOL(I)=ZA(I)*KARMAN*9.81*MOL(I)/(THX(I)*MAX(UST(I),0.001)**2)
ZOL(I)=MAX(ZOL(I),0.0)
ZOL(I)=MIN(ZOL(I),20.0)
ENDIF
!COMPUTE PSIM and PSIH
IF((XLAND(I)-1.5).GE.0)THEN
! WATER
!CALL PSI_Suselj_Sood_2010(PSIM(I),PSIH(I),ZOL(I)) !produces neg TKE
!CALL PSI_Beljaars_Holtslag_1991(PSIM(I),PSIH(I),ZOL(I))
!CALL PSI_Businger_1971(PSIM(I),PSIH(I),ZOL(I))
CALL PSI_DyerHicks
(PSIM(I),PSIH(I),ZOL(I), z_t(I), ZNT(I), ZA(I))
ELSE
! LAND
!CALL PSI_Beljaars_Holtslag_1991(PSIM(I),PSIH(I),ZOL(I))
!CALL PSI_Businger_1971(PSIM(I),PSIH(I),ZOL(I))
!CALL PSI_Zilitinkevich_Esau_2007(PSIM(I),PSIH(I),ZOL(I))
CALL PSI_DyerHicks
(PSIM(I),PSIH(I),ZOL(I), z_t(I), ZNT(I), ZA(I))
ENDIF
!LOWER LIMIT ON PSI IN STABLE CONDITIONS
psilim = -10. !JOE: this limit will be hit for z/L > 2, but
! appears to be necessary to control "runaway cooling"
! in the polar regions..
PSIM(I)=MAX(PSIM(I),psilim)
PSIH(I)=MAX(PSIH(I),psilim)
PSIM10(I)=10./ZA(I)*PSIM(I)
PSIM10(I)=MAX(PSIM10(I),psilim)
PSIH10(I)=PSIM10(I)
PSIM2(I)=2./ZA(I)*PSIM(I)
PSIM2(I)=MAX(PSIM2(I),psilim)
PSIH2(I)=PSIM2(I)
RMOL(I) = ZOL(I)/ZA(I) !1.0/L
ELSEIF(BR(I) .GT. 0. .AND. BR(I) .LE. 0.2) THEN
!========================================================
!---CLASS 2; DAMPED MECHANICAL TURBULENCE:
!========================================================
REGIME(I)=2.
!COMPUTE z/L
!CALL Li_etal_2010(ZOL(I),BR(I),ZA(I)/ZNT(I),zratio(I))
IF (ITER .EQ. 1 .AND. itimestep .LE. 1) THEN
CALL Li_etal_2010
(ZOL(I),BR(I),ZA(I)/ZNT(I),zratio(I))
ELSE
ZOL(I)=ZA(I)*KARMAN*9.81*MOL(I)/(THX(I)*MAX(UST(I),0.001)**2)
ZOL(I)=MAX(ZOL(I),0.0)
ZOL(I)=MIN(ZOL(I),5.0)
ENDIF
!COMPUTE PSIM and PSIH
IF((XLAND(I)-1.5).GE.0)THEN
! WATER
!CALL PSI_Suselj_Sood_2010(PSIM(I),PSIH(I),ZOL(I))
!CALL PSI_Beljaars_Holtslag_1991(PSIM(I),PSIH(I),ZOL(I))
!CALL PSI_Businger_1971(PSIM(I),PSIH(I),ZOL(I))
CALL PSI_DyerHicks
(PSIM(I),PSIH(I),ZOL(I), z_t(I), ZNT(I), ZA(I))
ELSE
! LAND
!CALL PSI_Beljaars_Holtslag_1991(PSIM(I),PSIH(I),ZOL(I))
!CALL PSI_Businger_1971(PSIM(I),PSIH(I),ZOL(I))
!CALL PSI_Zilitinkevich_Esau_2007(PSIM(I),PSIH(I),ZOL(I))
CALL PSI_DyerHicks
(PSIM(I),PSIH(I),ZOL(I), z_t(I), ZNT(I), ZA(I))
ENDIF
!LOWER LIMIT ON PSI IN WEAKLY STABLE CONDITIONS
psilim = -10. !JOE: this limit is never hit in this regime.
! LOWER LIMIT ON PSI IN STABLE CONDITIONS
PSIM(I)=MAX(PSIM(I),psilim)
PSIH(I)=MAX(PSIH(I),psilim)
PSIM10(I)=10./ZA(I)*PSIM(I)
PSIM10(I)=MAX(PSIM10(I),psilim)
PSIH10(I)=PSIM10(I)
PSIM2(I)=2./ZA(I)*PSIM(I)
PSIM2(I)=MAX(PSIM2(I),psilim)
PSIH2(I)=PSIM2(I)
! 1.0 over Monin-Obukhov length
RMOL(I)= ZOL(I)/ZA(I)
ELSEIF(BR(I) .EQ. 0.) THEN
!=========================================================
!-----CLASS 3; FORCED CONVECTION/NEUTRAL:
!=========================================================
REGIME(I)=3.
PSIM(I)=0.0
PSIH(I)=PSIM(I)
PSIM10(I)=0.
PSIH10(I)=PSIM10(I)
PSIM2(I)=0.
PSIH2(I)=PSIM2(I)
!ZOL(I)=0.
IF(UST(I) .LT. 0.01)THEN
ZOL(I)=BR(I)*GZ1OZ0(I)
ELSE
ZOL(I)=KARMAN*GOVRTH(I)*ZA(I)*MOL(I)/(UST(I)*UST(I))
ENDIF
RMOL(I) = ZOL(I)/ZA(I)
ELSEIF(BR(I) .LT. 0.)THEN
!==========================================================
!-----CLASS 4; FREE CONVECTION:
!==========================================================
REGIME(I)=4.
!COMPUTE z/L
!CALL Li_etal_2010(ZOL(I),BR(I),ZA(I)/ZNT(I),zratio(I))
IF (ITER .EQ. 1 .AND. itimestep .LE. 1) THEN
CALL Li_etal_2010
(ZOL(I),BR(I),ZA(I)/ZNT(I),zratio(I))
ELSE
ZOL(I)=ZA(I)*KARMAN*9.81*MOL(I)/(THX(I)*MAX(UST(I),0.001)**2)
ZOL(I)=MAX(ZOL(I),-10.0)
ZOL(I)=MIN(ZOL(I),0.0)
ENDIF
ZOL10=10./ZA(I)*ZOL(I)
ZOL2=2./ZA(I)*ZOL(I)
ZOL(I)=MIN(ZOL(I),0.)
ZOL(I)=MAX(ZOL(I),-9.9999)
ZOL10=MIN(ZOL10,0.)
ZOL10=MAX(ZOL10,-9.9999)
ZOL2=MIN(ZOL2,0.)
ZOL2=MAX(ZOL2,-9.9999)
NZOL=INT(-ZOL(I)*100.)
RZOL=-ZOL(I)*100.-NZOL
NZOL10=INT(-ZOL10*100.)
RZOL10=-ZOL10*100.-NZOL10
NZOL2=INT(-ZOL2*100.)
RZOL2=-ZOL2*100.-NZOL2
!COMPUTE PSIM and PSIH
IF((XLAND(I)-1.5).GE.0)THEN
! WATER
!CALL PSI_Suselj_Sood_2010(PSIM(I),PSIH(I),ZOL(I))
!CALL PSI_Hogstrom_1996(PSIM(I),PSIH(I),ZOL(I), z_t(I), ZNT(I), ZA(I))
!CALL PSI_Businger_1971(PSIM(I),PSIH(I),ZOL(I))
CALL PSI_DyerHicks
(PSIM(I),PSIH(I),ZOL(I), z_t(I), ZNT(I), ZA(I))
ELSE
! LAND
!CALL PSI_Hogstrom_1996(PSIM(I),PSIH(I),ZOL(I), z_t(I), ZNT(I), ZA(I))
!CALL PSI_Businger_1971(PSIM(I),PSIH(I),ZOL(I))
CALL PSI_DyerHicks
(PSIM(I),PSIH(I),ZOL(I), z_t(I), ZNT(I), ZA(I))
ENDIF
PSIM10(I)=PSIMTB(NZOL10)+RZOL10*(PSIMTB(NZOL10+1)-PSIMTB(NZOL10))
PSIH10(I)=PSIHTB(NZOL10)+RZOL10*(PSIHTB(NZOL10+1)-PSIHTB(NZOL10))
PSIM2(I)=PSIMTB(NZOL2)+RZOL2*(PSIMTB(NZOL2+1)-PSIMTB(NZOL2))
PSIH2(I)=PSIHTB(NZOL2)+RZOL2*(PSIHTB(NZOL2+1)-PSIHTB(NZOL2))
!---LIMIT PSIH AND PSIM IN THE CASE OF THIN LAYERS AND
!---HIGH ROUGHNESS. THIS PREVENTS DENOMINATOR IN FLUXES
!---FROM GETTING TOO SMALL
PSIH(I)=MIN(PSIH(I),0.9*GZ1OZ0(I))
PSIM(I)=MIN(PSIM(I),0.9*GZ1OZ0(I))
PSIH2(I)=MIN(PSIH2(I),0.9*GZ2OZ0(I))
PSIM10(I)=MIN(PSIM10(I),0.9*GZ10OZ0(I))
RMOL(I) = ZOL(I)/ZA(I)
ENDIF
!------------------------------------------------------------
!-----COMPUTE THE FRICTIONAL VELOCITY:
!------------------------------------------------------------
! ZA(1982) EQS(2.60),(2.61).
GZ1OZ0(I) =LOG((ZA(I)+ZNT(I))/ZNT(I))
GZ10OZ0(I)=LOG((10.+ZNT(I))/ZNT(I))
PSIX=GZ1OZ0(I)-PSIM(I)
PSIX10=GZ10OZ0(I)-PSIM10(I)
! TO PREVENT OSCILLATIONS AVERAGE WITH OLD VALUE
OLDUST = UST(I)
UST(I)=0.5*UST(I)+0.5*KARMAN*WSPD(I)/PSIX
!NON-AVERAGED: UST(I)=KARMAN*WSPD(I)/PSIX
! Compute u* without vconv for use in HFX calc when isftcflx > 0
WSPDI(I)=SQRT(UX(I)*UX(I)+VX(I)*VX(I))
IF ( PRESENT(USTM) ) THEN
USTM(I)=0.5*USTM(I)+0.5*KARMAN*WSPDI(I)/PSIX
ENDIF
IF ((XLAND(I)-1.5).LT.0.) THEN !LAND
!JOE: UST(I)=MAX(UST(I),0.1)
UST(I)=MAX(UST(I),0.01) !Relaxing this limit
!Keep ustm = ust over land.
USTM(I)=UST(I)
ENDIF
!------------------------------------------------------------
!-----COMPUTE THE THERMAL AND MOISTURE RESISTANCE (PSIQ AND PSIT):
!------------------------------------------------------------
! LOWER LIMIT ADDED TO PREVENT LARGE FLHC IN SOIL MODEL
! ACTIVATES IN UNSTABLE CONDITIONS WITH THIN LAYERS OR HIGH Z0
GZ1OZt(I)= LOG((ZA(I)+z_t(i))/z_t(i))
GZ2OZt(I)= LOG((2.0+z_t(i))/z_t(i))
!PSIT=MAX(GZ1OZ0(I)-PSIH(I),2.)
PSIT=MAX(LOG((ZA(I)+z_t(i))/z_t(i))-PSIH(I) ,2.0)
PSIT2=MAX(LOG((2.0+z_t(i))/z_t(i))-PSIH2(I) ,2.0)
resist(I)=PSIT
logres(I)=GZ1OZt(I)
PSIQ=MAX(LOG((za(i)+z_q(i))/z_q(I))-PSIH(I) ,2.0)
PSIQ2=MAX(LOG((2.0+z_q(i))/z_q(I))-PSIH2(I) ,2.0)
!CARLSON AND BOLAND (1978):
IF((XLAND(I)-1.5).GE.0)THEN
ZL=ZNT(I)
ELSE
ZL=0.01
!PSIQ =MAX(LOG(KARMAN*UST(I)*ZA(I)/XKA + ZA(I)/ZL)-PSIH(I),2.0)
!PSIQ2=MAX(LOG(KARMAN*UST(I)*2./XKA + 2./ZL)-PSIH2(I) ,2.0)
ENDIF
!----------------------------------------------------
!COMPUTE THE TEMPERATURE SCALE (or FRICTION TEMPERATURE, T*)
!----------------------------------------------------
DTG=THX(I)-THGB(I)
OLDTST=MOL(I)
MOL(I)=KARMAN*DTG/PSIT/PRT
!t_star(I) = -HFX(I)/(UST(I)*CPM(I)*RHOX(I))
!t_star(I) = MOL(I)
!----------------------------------------------------
!COMPUTE THE MOISTURE SCALE (or q*)
DQG=(QX(i)-qsfc(i))*1000. !(kg/kg -> g/kg)
qstar(I)=KARMAN*DQG/PSIQ/PRT
!-----------------------------------------------------
!COMPUTE DIAGNOSTICS
!-----------------------------------------------------
!COMPUTE 10 M WNDS
!-----------------------------------------------------
! If the lowest model level is close to 10-m, use it
! instead of the flux-based diagnostic formula.
if (ZA(i) .gt. 7.0 .and. ZA(i) .lt. 13.0) then
U10(I)=UX(I)
V10(I)=VX(I)
else
U10(I)=UX(I)*PSIX10/PSIX
V10(I)=VX(I)*PSIX10/PSIX
endif
psixrat(I)=PSIX10/PSIX
psitrat(I)=PSIT2/PSIT
!-----------------------------------------------------
!COMPUTE 2m T, TH, AND Q
!THESE WILL BE OVERWRITTEN FOR LAND POINTS IN THE LSM
!-----------------------------------------------------
TH2(I)=THGB(I)+DTG*PSIT2/PSIT
!*** BE CERTAIN THAT THE 2-M THETA IS BRACKETED BY
!*** THE VALUES AT THE SURFACE AND LOWEST MODEL LEVEL.
!
!IF (THX(I)>THGB(I) .AND. (TH2(I)<THGB(I) .OR. TH2(I)>THX(I)) .OR. &
! THX(I)<THGB(I) .AND. (TH2(I)>THGB(I) .OR. TH2(I)<THX(I))) THEN
! TH2(I)=THGB(I)+2.*(THX(I)-THGB(I))/ZA(I)
!ENDIF
Q2(I)=QSFCMR(I)+(QV1D(I)-QSFCMR(I))*PSIQ2/PSIQ
T2(I) = TH2(I)*(PSFC(I)/100.)**ROVCP
!CHECK FOR CONVERGENCE
IF (ITER .GE. 2) THEN
!IF (ABS(OLDUST-UST(I)) .lt. 0.01) THEN
IF (ABS(OLDTST-MOL(I)) .lt. 0.01) THEN
ITER = ITMAX+1
END IF
!IF (I .eq. 2) THEN
! print*,"ITER:",ITER
! write(*,1001)"REGIME:",REGIME(I)," z/L:",ZOL(I)," U*:",UST(I)," Tstar:",MOL(I)
! write(*,1002)"PSIM:",PSIM(I)," PSIH:",PSIH(I)," W*:",WSTAR(I)," DTHV:",THVX(I)-THVGB(I)
! write(*,1003)"CPM:",CPM(I)," RHOX:",RHOX(I)," L:",ZOL(I)/ZA(I)," DTH:",THX(I)-THGB(I)
! write(*,1004)"Z0/Zt:",zratio(I)," Z0:",ZNT(I)," Zt:",z_t(I)," za:",za(I)
! write(*,1005)"Re:",restar," MAVAIL:",MAVAIL(I)," QSFC(I):",QSFC(I)," QX(I):",QX(I)
! print*,"VISC=",VISC," Z0:",ZNT(I)," T1D(i):",T1D(i)
! write(*,*)"============================================="
!ENDIF
ENDIF
ITER = ITER + 1
ENDDO ! end ITERATION-loop
ENDDO ! end i-loop
1001 format(A,F2.0, A,f10.4,A,f5.3, A,f11.5)
1002 format(A,f7.2, A,f7.2, A,f7.2, A,f10.3)
1003 format(A,f7.2, A,f7.2, A,f10.3,A,f10.3)
1004 format(A,f11.3,A,f9.7, A,f9.7, A,f6.2, A,f10.3)
1005 format(A,f9.2,A,f6.4,A,f7.4,A,f7.4)
!----------------------------------------------------------
! COMPUTE SURFACE HEAT AND MOISTURE FLUXES
!----------------------------------------------------------
DO I=its,ite
IF (ISFFLX .LT. 1) THEN
QFX(i) = 0.
HFX(i) = 0.
FLHC(I) = 0.
FLQC(I) = 0.
LH(I) = 0.
CHS(I) = 0.
CH(I) = 0.
CHS2(i) = 0.
CQS2(i) = 0.
IF(PRESENT(ck) .and. PRESENT(cd) .and. PRESENT(cka) .and. PRESENT(cda)) THEN
Ck(I) = 0.
Cd(I) = 0.
Cka(I)= 0.
Cda(I)= 0.
ENDIF
ELSE
PSIX=GZ1OZ0(I)-PSIM(I)
PSIX10=GZ10OZ0(I)-PSIM10(I)
PSIT=MAX(LOG((ZA(I)+z_t(i))/z_t(i))-PSIH(I) ,2.0)
PSIT2=MAX(LOG((2.0+z_t(i))/z_t(i))-PSIH2(I) ,2.0)
PSIT10=MAX(LOG((10.0+z_t(i))/z_t(i))-PSIH10(I) ,2.0)
PSIQ=MAX(LOG((za(i)+z_q(i))/z_q(I))-PSIH(I) ,2.0)
PSIQ2=MAX(LOG((2.0+z_q(i))/z_q(I))-PSIH2(I) ,2.0)
PSIQ10=MAX(LOG((10.0+z_q(i))/z_q(I))-PSIH10(I) ,2.0)
!OR USE CARLSON AND BOLLAND (NO LONGER USED):
IF((XLAND(I)-1.5).GE.0)THEN
ZL=ZNT(I)
ELSE
ZL=0.01 !APPROX THERMAL/MOISTURE ROUGHNESS LENGTH
!PSIQ=MAX(LOG(KARMAN*UST(I)*ZA(I)/XKA + ZA(I)/ZL)-PSIH(I),2.0)
!PSIQ2=MAX(LOG(KARMAN*UST(I)*2./XKA + 2./ZL)-PSIH2(I) ,2.0)
!PSIQ10=MAX(LOG(KARMAN*UST(I)*10./XKA + 2./ZL)-PSIH10(I) ,2.0)
ENDIF
!------------------------------------------
! CALCULATE THE EXCHANGE COEFFICIENTS FOR HEAT (FLHC)
! AND MOISTURE (FLQC)
!------------------------------------------
FLQC(I)=RHOX(I)*MAVAIL(I)*UST(I)*KARMAN/PSIQ
DTTHX=ABS(THX(I)-THGB(I))
IF(DTTHX.GT.1.E-5)THEN
FLHC(I)=CPM(I)*RHOX(I)*UST(I)*MOL(I)/(THX(I)-THGB(I))
ELSE
FLHC(I)=0.
ENDIF
!----------------------------------
! COMPUTE SURFACE MOISTURE FLUX:
!----------------------------------
QFX(I)=FLQC(I)*(QSFCMR(I)-QV1D(I))
!JOE: QFX(I)=MAX(QFX(I),0.) !originally did not allow neg QFX
QFX(I)=MAX(QFX(I),-0.02) !allows small neg QFX, like MYJ
LH(I)=XLV*QFX(I)
!----------------------------------
! COMPUTE SURFACE HEAT FLUX:
!----------------------------------
IF(XLAND(I)-1.5.GT.0.)THEN !WATER
HFX(I)=FLHC(I)*(THGB(I)-THX(I))
IF ( PRESENT(ISFTCFLX) ) THEN
IF ( ISFTCFLX.NE.0 ) THEN
! AHW: add dissipative heating term
HFX(I)=HFX(I)+RHOX(I)*USTM(I)*USTM(I)*WSPDI(I)
ENDIF
ENDIF
ELSEIF(XLAND(I)-1.5.LT.0.)THEN !LAND
HFX(I)=FLHC(I)*(THGB(I)-THX(I))
HFX(I)=MAX(HFX(I),-250.)
ENDIF
!CHS(I)=UST(I)*KARMAN/(ALOG(KARMAN*UST(I)*ZA(I) &
! /XKA+ZA(I)/ZL)-PSIH(I))
CHS(I)=UST(I)*KARMAN/PSIT
! The exchange coefficient for cloud water is assumed to be the
! same as that for heat. CH is multiplied by WSPD.
!ch(i)=chs(i)
ch(i)=flhc(i)/( cpm(i)*rhox(i) )
!THESE ARE USED FOR 2-M DIAGNOSTICS ONLY
!CQS2(I)=UST(I)*KARMAN/(ALOG(KARMAN*UST(I)*2.0 &
! /XKA+2.0/ZL)-PSIH2(I))
!CHS2(I)=UST(I)*KARMAN/(GZ2OZ0(I)-PSIH2(I))
CQS2(I)=UST(I)*KARMAN/PSIQ2
CHS2(I)=UST(I)*KARMAN/PSIT2
IF(PRESENT(ck) .and. PRESENT(cd) .and. PRESENT(cka) .and. PRESENT(cda)) THEN
Ck(I)=(karman/psix10)*(karman/psiq10)
Cd(I)=(karman/psix10)*(karman/psix10)
Cka(I)=(karman/psix)*(karman/psiq)
Cda(I)=(karman/psix)*(karman/psix)
ENDIF
ENDIF
ENDDO !end i-loop
END SUBROUTINE SFCLAY1D_mynn
!-------------------------------------------------------------------
SUBROUTINE zilitinkevich_1995(Z_0,Zt,Zq,restar,ustar,KARMAN,landsea,IZ0TLND) 3
! This subroutine returns the thermal and moisture roughness lengths
! from Zilitinkevich (1995) and Zilitinkevich et al. (2001) over
! land and water, respectively.
!
! MODS:
! 20120705 : added IZ0TLND option. Note: This option was designed
! to work with the Noah LSM and may be specific for that
! LSM only. Tests with RUC LSM showed no improvements.
IMPLICIT NONE
REAL, INTENT(IN) :: Z_0,restar,ustar,KARMAN,landsea
INTEGER, OPTIONAL, INTENT(IN):: IZ0TLND
REAL, INTENT(OUT) :: Zt,Zq
REAL :: CZIL !=0.100 in Chen et al. (1997)
!=0.075 in Zilitinkevich (1995)
!=0.500 in Lemone et al. (2008)
IF (landsea-1.5 .GT. 0) THEN !WATER
!THIS IS BASED ON Zilitinkevich, Grachev, and Fairall (2001;
!Their equations 15 and 16).
IF (restar .LT. 0.1) THEN
Zt = Z_0*EXP(KARMAN*2.0)
Zt = MIN( Zt, 6.0e-5)
Zt = MAX( Zt, 2.0e-9)
Zq = Z_0*EXP(KARMAN*3.0)
Zq = MIN( Zq, 6.0e-5)
Zq = MAX( Zq, 2.0e-9)
ELSE
Zt = Z_0*EXP(-KARMAN*(4.0*SQRT(restar)-3.2))
Zt = MIN( Zt, 6.0e-5)
Zt = MAX( Zt, 2.0e-9)
Zq = Z_0*EXP(-KARMAN*(4.0*SQRT(restar)-4.2))
Zq = MIN( Zt, 6.0e-5)
Zq = MAX( Zt, 2.0e-9)
ENDIF
ELSE !LAND
!Option to modify CZIL according to Chen & Zhang, 2009
IF ( IZ0TLND .EQ. 1 ) THEN
CZIL = 10.0 ** ( -0.40 * ( Z_0 / 0.07 ) )
ELSE
CZIL = 0.10
END IF
Zt = Z_0*EXP(-KARMAN*CZIL*SQRT(restar))
Zt = MIN( Zt, Z_0)
Zq = Z_0*EXP(-KARMAN*CZIL*SQRT(restar))
Zq = MIN( Zq, Z_0)
!Zq = Zt
ENDIF
return
END SUBROUTINE zilitinkevich_1995
!--------------------------------------------------------------------
SUBROUTINE davis_etal_2008(Z_0,ustar) 1
!This formulation for roughness length was designed to match
!the labratory experiments of Donelan et al. (2004).
!This is an update version from Davis et al. 2008, which
!corrects a small-bias in Z_0 (AHW real-time 2012).
IMPLICIT NONE
REAL, INTENT(IN) :: ustar
REAL, INTENT(OUT) :: Z_0
REAL :: ZW, ZN1, ZN2
REAL, PARAMETER :: G=9.81, OZO=1.59E-5
!OLD FORM: Z_0 = 10.*EXP(-10./(ustar**(1./3.)))
!NEW FORM:
ZW = MIN((ustar/1.06)**(0.3),1.0)
ZN1 = 0.011*ustar*ustar/G + OZO
ZN2 = 10.*exp(-9.5*ustar**(-.3333)) + &
0.11*1.5E-5/AMAX1(ustar,0.01)
Z_0 = (1.0-ZW) * ZN1 + ZW * ZN2
Z_0 = MAX( Z_0, 1.27e-7) !These max/mins were suggested by
Z_0 = MIN( Z_0, 2.85e-3) !Davis et al. (2008)
return
END SUBROUTINE davis_etal_2008
!--------------------------------------------------------------------
SUBROUTINE Taylor_Yelland_2001(Z_0,ustar,wsp10) 1
!This formulation for roughness length was designed account for
!wave steepness.
IMPLICIT NONE
REAL, INTENT(IN) :: ustar,wsp10
REAL, INTENT(OUT) :: Z_0
REAL, parameter :: g=9.81, pi=3.14159265
REAL :: hs, Tp, Lp
!hs is the significant wave height
hs = 0.0248*(wsp10**2.)
!Tp dominant wave period
Tp = 0.729*MAX(wsp10,0.1)
!Lp is the wavelength of the dominant wave
Lp = g*Tp**2/(2*pi)
Z_0 = 1200.*hs*(hs/Lp)**4.5
Z_0 = MAX( Z_0, 1.27e-7) !These max/mins were suggested by
Z_0 = MIN( Z_0, 2.85e-3) !Davis et al. (2008)
return
END SUBROUTINE Taylor_Yelland_2001
!--------------------------------------------------------------------
SUBROUTINE charnock_1955(Z_0,ustar,wsp10,visc) 3
!This version of Charnock's relation employs a varying
!Charnock parameter, similar to COARE3.0 [Fairall et al. (2003)].
!The Charnock parameter CZC is varied from .011 to .018
!between 10-m wsp = 10 and 18.
IMPLICIT NONE
REAL, INTENT(IN) :: ustar, visc, wsp10
REAL, INTENT(OUT) :: Z_0
REAL, PARAMETER :: G=9.81, CZO2=0.011
REAL :: CZC !variable charnock "constant"
CZC = CZO2 + 0.007*MIN(MAX((wsp10-10.)/8., 0.), 1.0)
Z_0 = CZC*ustar*ustar/G + (0.11*visc/MAX(ustar,0.1))
Z_0 = MAX( Z_0, 1.27e-7) !These max/mins were suggested by
Z_0 = MIN( Z_0, 2.85e-3) !Davis et al. (2008)
return
END SUBROUTINE charnock_1955
!--------------------------------------------------------------------
SUBROUTINE garratt_1992(Zt,Zq,Z_0,Ren,landsea) 2
!This formulation for the thermal and moisture roughness lengths
!(Zt and Zq) relates them to Z0 via the roughness Reynolds number (Ren).
!This formula comes from Fairall et al. (2003). It is modified from
!the original Garratt-Brutsaert model to better fit the COARE/HEXMAX
!data. The formula for land uses a constant ratio (Z_0/7.4) taken
!from Garratt (1992).
IMPLICIT NONE
REAL, INTENT(IN) :: Ren, Z_0,landsea
REAL, INTENT(OUT) :: Zt,Zq
REAL :: Rq
REAL, PARAMETER :: e=2.71828183
IF (landsea-1.5 .GT. 0) THEN !WATER
Zt = Z_0*EXP(2.0 - (2.48*(Ren**0.25)))
Zq = Z_0*EXP(2.0 - (2.28*(Ren**0.25)))
Zq = MIN( Zq, 5.5e-5)
Zq = MAX( Zq, 2.0e-9)
Zt = MIN( Zt, 5.5e-5)
Zt = MAX( Zt, 2.0e-9) !same lower limit as ECMWF
ELSE !LAND
Zq = Z_0/(e**2.) !taken from Garratt (1980,1992)
Zt = Zq
ENDIF
return
END SUBROUTINE garratt_1992
!--------------------------------------------------------------------
SUBROUTINE fairall_2001(Zt,Zq,Ren,ustar,visc) 4
!This formulation for thermal and moisture roughness length (Zt and Zq)
!as a function of the roughness Reynolds number (Ren) comes from the
!COARE3.0 formulation, empirically derived from COARE and HEXMAX data
![Fairall et al. (2003)]. Edson et al. (2004; JGR) suspected that this
!relationship overestimated roughness lengths for low Reynolds number
!flows, so a smooth flow relationship, taken from Garrattt (1992, p. 102),
!is used for flows with Ren < 2.
!
!Note that this formulation should not be used with the Davis et al.
!(2008) formulation for Zo, because that formulation produces much
!smaller u* (Ren), resulting in a large Zt and Zq. It works best with
!the Charnock or the Taylor and Yelland relationships.
!
!This is for use over water only.
IMPLICIT NONE
REAL, INTENT(IN) :: Ren,ustar,visc
REAL, INTENT(OUT) :: Zt,Zq
IF (Ren .le. 2.) then
Zt = (5.5e-5)*(Ren**(-0.60))
!FOR SMOOTH SEAS, USE GARRATT
Zq = 0.2*visc/MAX(ustar,0.1)
!Zq = 0.3*visc/MAX(ustar,0.1)
ELSE
!FOR ROUGH SEAS, USE FAIRALL
Zt = (5.5e-5)*(Ren**(-0.60))
Zq = Zt
ENDIF
Zt = MIN(Zt,1.0e-4)
Zt = MAX(Zt,2.0e-9)
Zq = MIN(Zt,1.0e-4)
Zq = MAX(Zt,2.0e-9)
return
END SUBROUTINE fairall_2001
!--------------------------------------------------------------------
SUBROUTINE Yang_2008(Z_0,Zt,Zq,ustar,tstar,qst,Ren,visc,landsea) 1
!This is a modified version of Yang et al (2002 QJRMS, 2008 JAMC)
!and Chen et al (2010, J of Hydromet). Although it was originally
!designed for arid regions with bare soil, it is modified
!here to perform over a broader spectrum of vegetation.
!
!The original formulation relates the thermal roughness length (Zt)
!to u* and T*:
!
! Zt = ht * EXP(-beta*(ustar**0.5)*(ABS(tstar)**0.25))
!
!where ht = Renc*visc/ustar and the critical Reynolds number
!(Renc) = 70. Beta was originally = 10 (2002 paper) but was revised
!to 7.2 (in 2008 paper). Their form typically varies the
!ratio Z0/Zt by a few orders of magnitude (1-1E4).
!
!This modified form uses beta = 0.5 and Renc = 350, so zt generally
!varies similarly to the Zilitinkevich form for small/moderate heat
!fluxes but can become ~O(1/2 Zilitinkevich) for very large negative T*.
!Also, the exponent (0.25) on tstar was changed to 1.0, since we found
!Zt was reduced too much for low-moderate positive heat fluxes.
!
!This should only be used over land!
IMPLICIT NONE
REAL, INTENT(IN) :: Z_0, Ren, ustar, tstar, qst, visc, landsea
REAL :: ht, tstar2
REAL, INTENT(OUT) :: Zt,Zq
REAL, PARAMETER :: Renc=350., beta=0.5, e=2.71828183
ht = Renc*visc/MAX(ustar,0.01)
tstar2 = MIN(tstar, 0.0)
Zt = ht * EXP(-beta*(ustar**0.5)*(ABS(tstar2)**1.0))
!Zq = ht * EXP(-beta*(ustar**0.5)*(ABS(qst)**1.0))
Zq = Zt
Zt = MIN(Zt, Z_0/2.0) !(e**2.)) !limit from Garratt (1980,1992)
Zq = MIN(Zq, Z_0/2.0) !(e**2.)) !limit from Garratt (1980,1992)
return
END SUBROUTINE Yang_2008
!--------------------------------------------------------------------
SUBROUTINE Andreas_2002(Z_0,Ren,Zt,Zq) 1
!This is taken from Andreas (2002; J. of Hydromet).
!
!This should only be used over snow/ice!
IMPLICIT NONE
REAL, INTENT(IN) :: Z_0, Ren
REAL, INTENT(OUT) :: Zt, Zq
REAL :: Ren2
REAL, PARAMETER :: bt0_s=1.25, bt0_t=0.149, bt0_r=0.317, &
bt1_s=0.0, bt1_t=-0.55, bt1_r=-0.565, &
bt2_s=0.0, bt2_t=0.0, bt2_r=-0.183
REAL, PARAMETER :: bq0_s=1.61, bq0_t=0.351, bq0_r=0.396, &
bq1_s=0.0, bq1_t=-0.628, bq1_r=-0.512, &
bq2_s=0.0, bq2_t=0.0, bq2_r=-0.180
Ren2 = Ren
! Make sure that Re is not outside of the range of validity
! for using their equations
IF (Ren2 .gt. 1000.) Ren2 = 1000.
IF (Ren2 .le. 0.135) then
Zt = Z_0*EXP(bt0_s + bt1_s*LOG(Ren2) + bt2_s*LOG(Ren2)**2)
Zq = Z_0*EXP(bq0_s + bq1_s*LOG(Ren2) + bq2_s*LOG(Ren2)**2)
ELSE IF (Ren2 .gt. 0.135 .AND. Ren2 .lt. 2.5) then
Zt = Z_0*EXP(bt0_t + bt1_t*LOG(Ren2) + bt2_t*LOG(Ren2)**2)
Zq = Z_0*EXP(bq0_t + bq1_t*LOG(Ren2) + bq2_t*LOG(Ren2)**2)
ELSE
Zt = Z_0*EXP(bt0_r + bt1_r*LOG(Ren2) + bt2_r*LOG(Ren2)**2)
Zq = Z_0*EXP(bq0_r + bq1_r*LOG(Ren2) + bq2_r*LOG(Ren2)**2)
ENDIF
return
END SUBROUTINE Andreas_2002
!--------------------------------------------------------------------
SUBROUTINE PSI_Hogstrom_1996(psi_m, psi_h, zL, Zt, Z_0, Za)
! This subroutine returns the stability functions based off
! of Hogstrom (1996).
IMPLICIT NONE
REAL, INTENT(IN) :: zL, Zt, Z_0, Za
REAL, INTENT(OUT) :: psi_m, psi_h
REAL :: x, x0, y, y0, zmL, zhL
zmL = Z_0*zL/Za
zhL = Zt*zL/Za
IF (zL .gt. 0.) THEN !STABLE (not well tested - seem large)
psi_m = -5.3*(zL - zmL)
psi_h = -8.0*(zL - zhL)
ELSE !UNSTABLE
x = (1.-19.0*zL)**0.25
x0= (1.-19.0*zmL)**0.25
y = (1.-11.6*zL)**0.5
y0= (1.-11.6*zhL)**0.5
psi_m = 2.*LOG((1.+x)/(1.+x0)) + LOG((1.+x**2.)/(1.+x0**2.)) - &
2.*ATAN(x) + 2*ATAN(x0)
psi_h = 2.*LOG((1.+y)/(1.+y0))
ENDIF
return
END SUBROUTINE PSI_Hogstrom_1996
!--------------------------------------------------------------------
SUBROUTINE PSI_DyerHicks(psi_m, psi_h, zL, Zt, Z_0, Za) 6
! This subroutine returns the stability functions based off
! of Hogstrom (1996), but with different constants compatible
! with Dyer and Hicks (1970/74?). This formulation is used for
! testing/development by Nakanishi (personal communication).
IMPLICIT NONE
REAL, INTENT(IN) :: zL, Zt, Z_0, Za
REAL, INTENT(OUT) :: psi_m, psi_h
REAL :: x, x0, y, y0, zmL, zhL
zmL = Z_0*zL/Za !Zo/L
zhL = Zt*zL/Za !Zt/L
IF (zL .gt. 0.) THEN !STABLE
psi_m = -5.0*(zL - zmL)
psi_h = -5.0*(zL - zhL)
ELSE !UNSTABLE
x = (1.-16.*zL)**0.25
x0= (1.-16.*zmL)**0.25
y = (1.-16.*zL)**0.5
y0= (1.-16.*zhL)**0.5
psi_m = 2.*LOG((1.+x)/(1.+x0)) + LOG((1.+x**2.)/(1.+x0**2.)) - &
2.*ATAN(x) + 2*ATAN(x0)
psi_h = 2.*LOG((1.+y)/(1.+y0))
ENDIF
return
END SUBROUTINE PSI_DyerHicks
!--------------------------------------------------------------------
SUBROUTINE PSI_Beljaars_Holtslag_1991(psi_m, psi_h, zL)
! This subroutine returns the stability functions based off
! of Beljaar and Holtslag 1991, which is an extension of Holtslag
! and Debruin 1989.
IMPLICIT NONE
REAL, INTENT(IN) :: zL
REAL, INTENT(OUT) :: psi_m, psi_h
REAL, PARAMETER :: a=1., b=0.666, c=5., d=0.35
IF (zL .lt. 0.) THEN !UNSTABLE
WRITE(*,*)"WARNING: Universal stability functions from"
WRITE(*,*)" Beljaars and Holtslag (1991) should only"
WRITE(*,*)" be used in the stable regime!"
psi_m = 0.
psi_h = 0.
ELSE !STABLE
psi_m = -(a*zL + b*(zL -(c/d))*exp(-d*zL) + (b*c/d))
psi_h = -((1.+.666*a*zL)**1.5 + &
b*(zL - (c/d))*exp(-d*zL) + (b*c/d) -1.)
ENDIF
return
END SUBROUTINE PSI_Beljaars_Holtslag_1991
!--------------------------------------------------------------------
SUBROUTINE PSI_Zilitinkevich_Esau_2007(psi_m, psi_h, zL)
! This subroutine returns the stability functions come from
! Zilitinkevich and Esau (2007, BM), which are formulatioed from the
! "generalized similarity theory" and tuned to the LES DATABASE64
! to determine their dependence on z/L.
IMPLICIT NONE
REAL, INTENT(IN) :: zL
REAL, INTENT(OUT) :: psi_m, psi_h
REAL, PARAMETER :: Cm=3.0, Ct=2.5
IF (zL .lt. 0.) THEN !UNSTABLE
WRITE(*,*)"WARNING: Universal stability function from"
WRITE(*,*)" Zilitinkevich and Esau (2007) should only"
WRITE(*,*)" be used in the stable regime!"
psi_m = 0.
psi_h = 0.
ELSE !STABLE
psi_m = -Cm*(zL**(5./6.))
psi_h = -Ct*(zL**(4./5.))
ENDIF
return
END SUBROUTINE PSI_Zilitinkevich_Esau_2007
!--------------------------------------------------------------------
SUBROUTINE PSI_Businger_1971(psi_m, psi_h, zL)
! This subroutine returns the flux-profile relationships
! of Businger el al. 1971.
IMPLICIT NONE
REAL, INTENT(IN) :: zL
REAL, INTENT(OUT) :: psi_m, psi_h
REAL :: x, y
REAL, PARAMETER :: Pi180 = 3.14159265/180.
IF (zL .lt. 0.) THEN !UNSTABLE
x = (1. - 15.0*zL)**0.25
y = (1. - 9.0*zL)**0.5
psi_m = LOG(((1.+x)/2.)**2.) + LOG((1.+x**2.)/2.) - &
2.*ATAN(x) + Pi180*90.
psi_h = 2.*LOG((1.+y)/2.)
ELSE !STABLE
psi_m = -4.7*zL
psi_h = -(4.7/0.74)*zL
ENDIF
return
END SUBROUTINE PSI_Businger_1971
!--------------------------------------------------------------------
SUBROUTINE PSI_Suselj_Sood_2010(psi_m, psi_h, zL)
!This subroutine returns flux-profile relatioships based off
!of Lobocki (1993), which is derived from the MY-level 2 model.
!Suselj and Sood (2010) applied the surface layer length scales
!from Nakanishi (2001) to get this new relationship. These functions
!are more agressive (larger magnitude) than most formulations. They
!showed improvement over water, but untested over land.
IMPLICIT NONE
REAL, INTENT(IN) :: zL
REAL, INTENT(OUT) :: psi_m, psi_h
REAL, PARAMETER :: Rfc=0.19, Ric=0.183, PHIT=0.8
IF (zL .gt. 0.) THEN !STABLE
psi_m = -(zL/Rfc + 1.1223*EXP(1.-1.6666/zL))
!psi_h = -zL*Ric/((Rfc**2.)*PHIT) + 8.209*(zL**1.1091)
!THEIR EQ FOR PSI_H CRASHES THE MODEL AND DOES NOT MATCH
!THEIR FIG 1. THIS EQ (BELOW) MATCHES THEIR FIG 1 BETTER:
psi_h = -(zL*Ric/((Rfc**2.)*5.) + 7.09*(zL**1.1091))
ELSE !UNSTABLE
psi_m = 0.9904*LOG(1. - 14.264*zL)
psi_h = 1.0103*LOG(1. - 16.3066*zL)
ENDIF
return
END SUBROUTINE PSI_Suselj_Sood_2010
!--------------------------------------------------------------------
SUBROUTINE Li_etal_2010(zL, Rib, zaz0, z0zt) 3
!This subroutine returns a more robust z/L that best matches
!the z/L from Hogstrom (1996) for unstable conditions and Beljaars
!and Holtslag (1991) for stable conditions.
IMPLICIT NONE
REAL, INTENT(OUT) :: zL
REAL, INTENT(IN) :: Rib, zaz0, z0zt
REAL :: alfa, beta, zaz02, z0zt2
REAL, PARAMETER :: au11=0.045, bu11=0.003, bu12=0.0059, &
bu21=-0.0828, bu22=0.8845, bu31=0.1739, &
bu32=-0.9213, bu33=-0.1057
REAL, PARAMETER :: aw11=0.5738, aw12=-0.4399, aw21=-4.901,&
aw22=52.50, bw11=-0.0539, bw12=1.540, &
bw21=-0.669, bw22=-3.282
REAL, PARAMETER :: as11=0.7529, as21=14.94, bs11=0.1569,&
bs21=-0.3091, bs22=-1.303
!set limits according to Li et al (2010), p 157.
zaz02=zaz0
IF (zaz0 .lt. 100.0) zaz02=100.
IF (zaz0 .gt. 100000.0) zaz02=100000.
!set more limits according to Li et al (2010)
z0zt2=z0zt
IF (z0zt .lt. 0.5) z0zt2=0.5
IF (z0zt .gt. 100.0) z0zt2=100.
alfa = LOG(zaz02)
beta = LOG(z0zt2)
IF (Rib .le. 0.0) THEN
zL = au11*alfa*Rib**2 + ( &
(bu11*beta + bu12)*alfa**2 + &
(bu21*beta + bu22)*alfa + &
(bu31*beta**2 + bu32*beta + bu33))*Rib
!if(zL .LT. -15 .OR. zl .GT. 0.)print*,"VIOLATION Rib<0:",zL
zL = MAX(zL,-15.) !LIMITS SET ACCORDING TO Li et al (2010)
zL = MIN(zL,0.) !Figure 1.
ELSEIF (Rib .gt. 0.0 .AND. Rib .le. 0.2) THEN
zL = ((aw11*beta + aw12)*alfa + &
(aw21*beta + aw22))*Rib**2 + &
((bw11*beta + bw12)*alfa + &
(bw21*beta + bw22))*Rib
!if(zL .LT. 0 .OR. zl .GT. 4)print*,"VIOLATION 0<Rib<0.2:",zL
zL = MIN(zL,4.) !LIMITS APPROX SET ACCORDING TO Li et al (2010)
zL = MAX(zL,0.) !THEIR FIGURE 1B.
ELSE
zL = (as11*alfa + as21)*Rib + bs11*alfa + &
bs21*beta + bs22
!if(zL .LE. 1 .OR. zl .GT. 23)print*,"VIOLATION Rib>0.2:",zL
zL = MIN(zL,20.) !LIMITS ACCORDING TO Li et al (2010), THIER
!FIGUE 1C.
zL = MAX(zL,1.)
ENDIF
return
END SUBROUTINE Li_etal_2010
!--------------------------------------------------------------------
END MODULE module_sf_mynn