!WRF:MODEL_LAYER:PHYSICS ! MODULE module_sf_temfsfclay 2 CONTAINS !------------------------------------------------------------------- SUBROUTINE temfsfclay(u3d,v3d,th3d,qv3d,p3d,pi3d,rho,z,ht, & 1,1 cp,g,rovcp,r,xlv,psfc,chs,chs2,cqs2,cpm, & znt,ust,mavail,xland, & hfx,qfx,lh,tsk,flhc,flqc,qgh,qsfc, & u10,v10,th2,t2,q2, & svp1,svp2,svp3,svpt0,ep1,ep2, & karman,fCor,te_temf, & hd_temf,exch_temf,wm_temf, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte & ) !------------------------------------------------------------------- IMPLICIT NONE !------------------------------------------------------------------- ! ! This is the Total Energy - Mass Flux (TEMF) surface layer scheme. ! Initial implementation 2010 by Wayne Angevine, CIRES/NOAA ESRL. ! References: ! Angevine et al., 2010, MWR ! Angevine, 2005, JAM ! Mauritsen et al., 2007, JAS ! !------------------------------------------------------------------- !------------------------------------------------------------------- !-- u3d 3D u-velocity interpolated to theta points (m/s) !-- v3d 3D v-velocity interpolated to theta points (m/s) !-- th3d potential temperature (K) !-- qv3d 3D water vapor mixing ratio (Kg/Kg) !-- p3d 3D pressure (Pa) !-- cp heat capacity at constant pressure for dry air (J/kg/K) !-- g acceleration due to gravity (m/s^2) !-- rovcp R/CP !-- r gas constant for dry air (J/kg/K) !-- xlv latent heat of vaporization for water (J/kg) !-- psfc surface pressure (Pa) !-- chs heat/moisture exchange coefficient for LSM (m/s) !-- chs2 !-- cqs2 !-- cpm !-- znt roughness length (m) !-- ust u* in similarity theory (m/s) !-- mavail surface moisture availability (between 0 and 1) !-- xland land mask (1 for land, 2 for water) !-- hfx upward heat flux at the surface (W/m^2) !-- qfx upward moisture flux at the surface (kg/m^2/s) !-- lh net upward latent heat flux at surface (W/m^2) !-- tsk surface temperature (K) !-- flhc exchange coefficient for heat (W/m^2/K) !-- flqc exchange coefficient for moisture (kg/m^2/s) !-- qgh lowest-level saturated mixing ratio !-- qsfc ground saturated mixing ratio !-- u10 diagnostic 10m u wind !-- v10 diagnostic 10m v wind !-- th2 diagnostic 2m theta (K) !-- t2 diagnostic 2m temperature (K) !-- q2 diagnostic 2m mixing ratio (kg/kg) !-- svp1 constant for saturation vapor pressure (kPa) !-- svp2 constant for saturation vapor pressure (dimensionless) !-- svp3 constant for saturation vapor pressure (K) !-- svpt0 constant for saturation vapor pressure (K) !-- ep1 constant for virtual temperature (R_v/R_d - 1) (dimensionless) !-- ep2 constant for specific humidity calculation ! (R_d/R_v) (dimensionless) !-- karman Von Karman constant !-- fCor Coriolis parameter !-- ids start index for i in domain !-- ide end index for i in domain !-- jds start index for j in domain !-- jde end index for j in domain !-- kds start index for k in domain !-- kde end index for k in domain !-- ims start index for i in memory !-- ime end index for i in memory !-- jms start index for j in memory !-- jme end index for j in memory !-- kms start index for k in memory !-- kme end index for k in memory !-- its start index for i in tile !-- ite end index for i in tile !-- jts start index for j in tile !-- jte end index for j in tile !-- kts start index for k in tile !-- kte end index for k in tile !------------------------------------------------------------------- INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ! REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) , & INTENT(IN ) :: u3d, v3d, th3d, qv3d, p3d, pi3d, rho, z REAL, DIMENSION( ims:ime, jms:jme ) , & INTENT(IN ) :: mavail, xland, tsk, fCor, ht, psfc, znt REAL, DIMENSION( ims:ime, jms:jme ) , & INTENT(INOUT) :: hfx, qfx, lh, flhc, flqc REAL, DIMENSION( ims:ime, jms:jme ) , & INTENT(INOUT) :: ust, chs2, cqs2, chs, cpm, qgh, qsfc REAL, DIMENSION( ims:ime, jms:jme ) , & INTENT(OUT ) :: u10, v10, th2, t2, q2 REAL, DIMENSION( ims:ime, jms:jme ) , & INTENT(IN ) :: hd_temf REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) , & INTENT(INOUT) :: te_temf REAL, DIMENSION( ims:ime, jms:jme ) , & INTENT( OUT) :: exch_temf REAL, DIMENSION( ims:ime, jms:jme ) , & INTENT(INOUT) :: wm_temf REAL, INTENT(IN ) :: cp,g,rovcp,r,xlv REAL, INTENT(IN ) :: svp1,svp2,svp3,svpt0 REAL, INTENT(IN ) :: ep1,ep2,karman ! ! LOCAL VARS INTEGER :: J ! DO J=jts,jte CALL temfsfclay1d(j,u1d=u3d(ims,kms,j),v1d=v3d(ims,kms,j), & th1d=th3d(ims,kms,j),qv1d=qv3d(ims,kms,j),p1d=p3d(ims,kms,j), & pi1d=pi3d(ims,kms,j),rho=rho(ims,kms,j),z=z(ims,kms,j),& zsrf=ht(ims,j), & cp=cp,g=g,rovcp=rovcp,r=r,xlv=xlv,psfc=psfc(ims,j), & chs=chs(ims,j),chs2=chs2(ims,j),cqs2=cqs2(ims,j), & cpm=cpm(ims,j),znt=znt(ims,j),ust=ust(ims,j), & mavail=mavail(ims,j),xland=xland(ims,j), & hfx=hfx(ims,j),qfx=qfx(ims,j),lh=lh(ims,j),tsk=tsk(ims,j), & flhc=flhc(ims,j),flqc=flqc(ims,j),qgh=qgh(ims,j), & qsfc=qsfc(ims,j),u10=u10(ims,j),v10=v10(ims,j), & th2=th2(ims,j),t2=t2(ims,j),q2=q2(ims,j), & svp1=svp1,svp2=svp2,svp3=svp3,svpt0=svpt0, & ep1=ep1,ep2=ep2,karman=karman,fCor=fCor(ims,j), & te_temfx=te_temf(ims,kms,j),hd_temfx=hd_temf(ims,j), & exch_temfx=exch_temf(ims,j),wm_temfx=wm_temf(ims,j), & ids=ids,ide=ide, jds=jds,jde=jde, kds=kds,kde=kde, & ims=ims,ime=ime, jms=jms,jme=jme, kms=kms,kme=kme, & its=its,ite=ite, jts=jts,jte=jte, kts=kts,kte=kte & ) ENDDO END SUBROUTINE temfsfclay !------------------------------------------------------------------- SUBROUTINE temfsfclay1d(j,u1d,v1d,th1d,qv1d,p1d, & 1 pi1d,rho,z,zsrf,cp,g,rovcp,r,xlv,psfc, & chs,chs2,cqs2,cpm,znt,ust, & mavail,xland,hfx,qfx,lh,tsk, & flhc,flqc,qgh,qsfc,u10,v10, & th2,t2,q2,svp1,svp2,svp3,svpt0, & ep1,ep2,karman,fCor, & te_temfx,hd_temfx,exch_temfx,wm_temfx, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte & ) !!------------------------------------------------------------------- IMPLICIT NONE !!------------------------------------------------------------------- INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte, & j REAL, DIMENSION( ims:ime ), INTENT(IN ) :: & u1d,v1d,qv1d,p1d,th1d,pi1d,rho,z,zsrf REAL, INTENT(IN ) :: cp,g,rovcp,r,xlv REAL, DIMENSION( ims:ime ), INTENT(IN ) :: psfc,znt REAL, DIMENSION( ims:ime ), INTENT(INOUT) :: & chs,chs2,cqs2,cpm,ust REAL, DIMENSION( ims:ime ), INTENT(IN ) :: mavail,xland REAL, DIMENSION( ims:ime ), INTENT(INOUT) :: & hfx,qfx,lh REAL, DIMENSION( ims:ime ), INTENT(IN ) :: tsk REAL, DIMENSION( ims:ime ), INTENT( OUT) :: & flhc,flqc REAL, DIMENSION( ims:ime ), INTENT(INOUT) :: & qgh,qsfc REAL, DIMENSION( ims:ime ), INTENT( OUT) :: & u10,v10,th2,t2,q2 REAL, INTENT(IN ) :: svp1,svp2,svp3,svpt0 REAL, INTENT(IN ) :: ep1,ep2,karman REAL, DIMENSION( ims:ime ), INTENT(IN ) :: fCor,hd_temfx REAL, DIMENSION( ims:ime ), INTENT(INOUT) :: te_temfx REAL, DIMENSION( ims:ime ), INTENT( OUT) :: exch_temfx, wm_temfx ! !! LOCAL VARS ! TE model constants real, parameter :: visc_temf = 1.57e-5 real, parameter :: conduc_temf = 1.57e-5 / 0.733 logical, parameter :: MFopt = .true. ! Use mass flux or not real, parameter :: TEmin = 1e-3 real, parameter :: ftau0 = 0.17 real, parameter :: fth0 = 0.145 ! real, parameter :: fth0 = 0.12 ! WA 10/13/10 to make PrT0 ~= 1 real, parameter :: Cf = 0.185 real, parameter :: CN = 2.0 ! real, parameter :: Ceps = ftau0**1.5 real, parameter :: Ceps = 0.070 real, parameter :: Cgamma = Ceps real, parameter :: Cphi = Ceps ! real, parameter :: PrT0 = Cphi/Ceps * ftau0**2. / 2 / fth0**2. real, parameter :: PrT0 = Cphi/Ceps * ftau0**2 / 2. / fth0**2 ! integer :: i real :: e1 real, dimension( its:ite) :: wstr, ang, wm real, dimension( its:ite) :: z0t real, dimension( its:ite) :: dthdz, dqtdz, dudz, dvdz real, dimension( its:ite) :: lepsmin real, dimension( its:ite) :: thetav real, dimension( its:ite) :: zt,zm real, dimension( its:ite) :: N2, S, Ri, beta, ftau, fth, ratio real, dimension( its:ite) :: TKE, TE2 real, dimension( its:ite) :: ustrtilde, linv, leps real, dimension( its:ite) :: km, kh real, dimension( its:ite) :: qsfc_air !!------------------------------------------------------------------- !!!!!!! ****** ! WA Known outages: None do i = its,ite ! Main loop ! Calculate surface saturated q and q in air at surface e1=svp1*exp(svp2*(tsk(i)-svpt0)/(tsk(i)-svp3)) qsfc(i)=ep2*e1/((psfc(i)/1000.)-e1) qsfc_air(i) = qsfc(i) * mavail(i) thetav(i) = (tsk(i)/pi1d(i)) * (1. + 0.608*qsfc_air(i)) ! WA Assumes ql(env)=0, what if it isn't? ! WA TEST (R5) set z0t = z0 ! z0t(i) = znt(i) / 10.0 ! WA this is hard coded in Matlab version z0t(i) = znt(i) ! Get height and delta at turbulence levels and mass levels zt(i) = (z(i) - zsrf(i) - znt(i)) / 2. zm(i) = z(i) - zsrf(i) ! Gradients at first level dthdz(i) = (th1d(i)-(tsk(i)/pi1d(i))) / (zt(i) * log10(zm(i)/z0t(i))) dqtdz(i) = (qv1d(i)-qsfc_air(i)) / (zt(i) * log10(zm(i)/z0t(i))) dudz(i) = u1d(i) / (zt(i) * log10(zm(i)/znt(i))) dvdz(i) = v1d(i) / (zt(i) * log10(zm(i)/znt(i))) ! WA doing this because te_temf may not be initialized, ! would be better to do it in initialization routine but it's ! not available in module_physics_init. if (te_temfx(i) < TEmin) te_temfx(i) = TEmin if ( hfx(i) > 0.) then wstr(i) = (g * hd_temfx(i) / thetav(i) * (hfx(i)/(rho(i)*cp))) ** (1./3.) else wstr(i) = 0. end if ! Find stability parameters and length scale ! WA Calculation of N should really use d(thetaV)/dz not dthdz ! WA 7/1/09 allow N to be negative ! if ( dthdz(i) >= 0.) then ! N(i) = csqrt(g / thetav(i) * dthdz(i)) ! else ! N(i) = 0. ! end if N2(i) = g / thetav(i) * dthdz(i) S(i) = sqrt(dudz(i)**2. + dvdz(i)**2.) ! Ri(i) = N(i)**2. / S(i)**2. Ri(i) = N2(i) / S(i)**2. ! if (S(i) < 1e-15) Ri(i) = 1./1e-15 if (S(i) < 1e-15) then print *,'In TEMF SFC Limiting Ri,S,N2,Ri,u,v = ',S(i),N2(i),Ri(i),u1d(i),v1d(i) if (N2(i) >= 0) then Ri(i) = 0.2 else Ri(i) = -1. end if end if if (Ri(i) > 0.2) then ! WA TEST to prevent runaway Ri(i) = 0.2 end if beta(i) = g / thetav(i) ! WA 7/1/09 adjust ratio, ftau, fth for Ri>0 if (Ri(i) > 0) then ratio(i) = Ri(i)/(Cphi**2.*ftau0**2./(2.*Ceps**2.*fth0**2.)+3.*Ri(i)) ftau(i) = ftau0 * ((3./4.) / (1.+4.*Ri(i)) + 1./4.) fth(i) = fth0 / (1.+4.*Ri(i)) ! TE2(i) = 2. * te_temfx(i) * ratio(i) * N(i)**2. / beta(i)**2. TE2(i) = 2. * te_temfx(i) * ratio(i) * N2(i) / beta(i)**2. else ratio(i) = Ri(i)/(Cphi**2.*ftau0**2./(-2.*Ceps**2.*fth0**2.)+2.*Ri(i)) ftau(i) = ftau0 fth(i) = fth0 TE2(i) = 0. end if TKE(i) = te_temfx(i) * (1. - ratio(i)) ustrtilde(i) = sqrt(ftau(i) * TKE(i)) ! linv(i) = 1./karman / zt(i) + abs(fCor(i)) / (Cf*ustrtilde(i)) + N(i)/(CN*ustrtilde(i)) if (N2(i) > 0.) then linv(i) = 1./karman / zt(i) + abs(fCor(i)) / (Cf*ustrtilde(i)) + sqrt(N2(i))/(CN*ustrtilde(i)) else linv(i) = 1./karman / zt(i) + abs(fCor(i)) / (Cf*ustrtilde(i)) end if leps(i) = 1./linv(i) ! WA TEST (R4) remove lower limit on leps ! lepsmin(i) = min(0.4*zt(i), 5.) lepsmin(i) = 0. leps(i) = max(leps(i),lepsmin(i)) ! Find diffusion coefficients ! First use basic formulae for stable and neutral cases, ! then for convective conditions, and finally choose the larger km(i) = TKE(i)**1.5 * ftau(i)**2. / (-beta(i) * fth(i) * sqrt(TE2(i)) + Ceps * sqrt(TKE(i)*te_temfx(i)) / leps(i)) kh(i) = 2. * leps(i) * fth(i)**2. * TKE(i) / sqrt(te_temfx(i)) / Cphi km(i) = max(km(i),visc_temf) kh(i) = max(kh(i),conduc_temf) ! Surface fluxes ust(i) = sqrt(ftau(i)/ftau0) * sqrt(u1d(i)**2. + v1d(i)**2.) * leps(i) / log(zm(i)/znt(i)) / zt(i) ang(i) = atan2(v1d(i),u1d(i)) ! Calculate mixed scaling velocity (Moeng & Sullivan 1994 JAS p.1021) ! Replaces ust everywhere (WA need to reconsider?) ! WA wm is too large, makes surface flux too big and cools sfc too much ! wm(i) = (1./5. * (wstr(i)**3. + 5. * ust(i)**3.)) ** (1./3.) ! WA TEST (R2,R11) 7/23/10 reduce velocity scale to fix excessive fluxes wm(i) = 0.5 * (1./5. * (wstr(i)**3. + 5. * ust(i)**3.)) ** (1./3.) ! WA TEST 2/14/11 limit contribution of w* ! wm(i) = 0.5 * (1./5. * (min(0.8,wstr(i))**3. + 5. * ust(i)**3.)) ** (1./3.) ! WA TEST 2/22/11 average with previous value to reduce instability wm(i) = (wm(i) + wm_temfx(i)) / 2.0 wm_temfx(i) = wm(i) ! WA TEST (R3-R10) 7/23/10 wm = u* ! wm(i) = ust(i) ! Populate surface exchange coefficient variables to go back out ! for next time step of surface scheme ! Unit specifications in SLAB and sfclay are conflicting and probably ! incorrect. This will give a dynamic heat flux (W/m^2) or moisture ! flux (kg(water)/(m^2*s)) when multiplied by a difference. ! These formulae are the same as what's used above to get surface ! flux from surface temperature and specific humidity. flhc(i) = rho(i) * cp * fth(i)/fth0 * wm(i) * leps(i) / PrT0 / log(zm(i)/z0t(i)) / zt(i) flqc(i) = rho(i) * fth(i)/fth0 * wm(i) * leps(i) / PrT0 / log(zm(i)/z0t(i)) / zt(i) * mavail(i) exch_temfx(i) = flqc(i) / mavail(i) chs(i) = flqc(i) / rho(i) / mavail(i) ! WA Must exchange coeffs be limited to avoid runaway in some ! (convective?) conditions? Something like this is done in sfclay. ! Doing nothing for now. ! Populate surface heat and moisture fluxes hfx(i) = flhc(i) * (tsk(i) - th1d(i)*pi1d(i)) ! qfx(i) = flqc(i) * (qsfc_air(i) - qv1d(i)) ! WA 2/16/11 qfx(i) = flqc(i) * (qsfc(i) - qv1d(i)) qfx(i) = max(qfx(i),0.) ! WA this is done in sfclay, is it right? lh(i)=xlv*qfx(i) ! Populate 10 m winds and 2 m temp and 2 m exchange coeffs ! WA Note this only works if first mass level is above 10 m u10(i) = u1d(i) * log(10.0/znt(i)) / log(zm(i)/znt(i)) v10(i) = v1d(i) * log(10.0/znt(i)) / log(zm(i)/znt(i)) t2(i) = (tsk(i)/pi1d(i) + (th1d(i) - tsk(i)/pi1d(i)) * log(2.0/z0t(i)) / log(zm(i)/z0t(i))) * pi1d(i) ! WA this should also use pi at z0 th2(i) = t2(i) / pi1d(i) q2(i) = (qsfc_air(i) + (qv1d(i) - qsfc_air(i)) * log(2.0/znt(i)) / log(zm(i)/znt(i))) ! WA are these correct? Difference between chs2 and cqs2 is unclear ! At the moment the only difference is z0t vs. znt chs2(i) = fth(i)/fth0 * wm(i) * leps(i) / PrT0 / log(2.0/z0t(i)) / zt(i) cqs2(i) = fth(i)/fth0 * wm(i) * leps(i) / PrT0 / log(2.0/znt(i)) / zt(i) ! Calculate qgh (saturated at first-level temp) and cpm e1=svp1*exp(svp2*((th1d(i)*pi1d(i))-svpt0)/((th1d(i)*pi1d(i))-svp3)) qgh(i)=ep2*e1/((p1d(i)/1000.)-e1) cpm(i)=cp*(1.+0.8*qv1d(i)) end do ! Main loop END SUBROUTINE temfsfclay1d !==================================================================== SUBROUTINE temfsfclayinit( restart, allowed_to_read, & 1,1 wm_temf, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) logical , intent(in) :: restart, allowed_to_read REAL, DIMENSION( ims:ime, jms:jme ) , & INTENT( OUT) :: wm_temf integer , intent(in) :: ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ! Local variables integer :: i, j, itf, jtf ! CALL wrf_debug( 100, 'in temfsfclayinit' ) jtf = min0(jte,jde-1) itf = min0(ite,ide-1) ! if(.not.restart)then do j = jts,jtf do i = its,itf ! do j = jms,jme ! do i = ims,ime wm_temf(i,j) = 0.0 enddo enddo endif END SUBROUTINE temfsfclayinit !------------------------------------------------------------------- END MODULE module_sf_temfsfclay