!WRF:model_layer:physics
!
!
!
!

module module_shcu_grims 2
!
   integer,parameter :: nxtdp = 5001
   integer,parameter :: nxthe = 241,nythe = 151
   integer,parameter :: nxma = 151,nyma = 121
   integer,parameter :: nxsvp = 7501
!
   real,parameter :: t0c = 2.7315e+2
   real,parameter :: psat = 6.1078e+2
   real,parameter :: rd = 2.8705e+2
   real,parameter :: rv = 4.6150e+2
   real,parameter :: cp = 1.0046e+3
   real,parameter :: hvap = 2.5000e+6
   real,parameter :: cvap = 1.8460e+3
   real,parameter :: cliq = 4.1855e+3
   real,parameter :: cice = 2.1060E+3
   real,parameter :: hsub = 2.8340E+6
   real,parameter :: terrm = 1.e-4
!
   real,parameter :: rocp=rd/cp
   real,parameter :: cpor=cp/rd
   real,parameter :: eps=rd/rv
   real,parameter :: ttp=t0c+0.01
   real,parameter :: psatk=psat*1.e-3
   real,parameter :: psatb=psatk*1.e-2
   real,parameter :: dldt=cvap-cliq,xa=-dldt/rv,xb=xa+hvap/(rv*ttp)
   real,parameter :: dldti=cvap-cice,xai=-dldti/rv,xbi=xai+hsub/(rv*ttp)
!
   real,save :: c1xma,c2xma,c1yma,c2yma,c1xpvs,c2xpvs
   real,save :: c1xtdp,c2xtdp,c1xthe,c2xthe,c1ythe,c2ythe
   real,save :: tbtdp(nxtdp)
   real,save :: tbthe(nxthe,nythe)
   real,save :: tbtma(nxma,nyma), tbqma(nxma,nyma)
   real,save :: tbpvs(nxsvp)
contains
!
!-------------------------------------------------------------------------------

   subroutine grims(qv3d,t3d,p3di,p3d,pi3d,z3di, & 1,1
                    wstar,hpbl,delta, &
                    rthshten,rqvshten, &
                    dt,g,xlv,rd,rv,rcp,p1000mb, &
                    kpbl2d,znu,raincv, &
                    ids,ide, jds,jde, kds,kde, &
                    ims,ime, jms,jme, kms,kme, &
                    its,ite, jts,jte, kts,kte)
!-------------------------------------------------------------------------------
   implicit none
!-------------------------------------------------------------------------------
!
! input argument
!
!-- qv3d 3d specific humidity (kgkg-1)
!-- t3d 3d temperature (k)
!-- p3di 3d pressure (pa) at interface level
!-- p3d 3d pressure (pa)
!-- pi3d 3d exner function (dimensionless)
!-- z3di 3d z at interface level (m)
!-- wstar convective velocity scale (ms-1) from pbl
!-- hpbl pbl height (m)
!-- delta entrainment layer depth (m)
!-- rthshten computed theta tendency due to shallow convection scheme
!-- rqvshten computed q_v tendency due to shallow convection scheme
!-- dt time step (s)
!-- g acceleration due to gravity (m/s^2)
!-- xlv latent heat of vaporization (j/kg)
!-- rd gas constant for dry air (j/kg/k)
!-- rv gas constant for water vapor (j/kg/k)
!-- kpbl2d k-index for pbl top
!-- raincv time-step precipitation from cumulus convection scheme
!-- znu eta values (sigma values)
!-- ids start index for i in domain
!-- ide end index for i in domain
!-- jds start index for j in domain
!-- jde end index for j in domain
!-- kds start index for k in domain
!-- kde end index for k in domain
!-- ims start index for i in memory
!-- ime end index for i in memory
!-- jms start index for j in memory
!-- jme end index for j in memory
!-- kms start index for k in memory
!-- kme end index for k in memory
!-- its start index for i in tile
!-- ite end index for i in tile
!-- jts start index for j in tile
!-- jte end index for j in tile
!-- kts start index for k in tile
!-- kte end index for k in tile
!
! output argument
!-- rthshten computed theta tendency due to shallow convection scheme
!-- rqvshten computed q_v tendency due to shallow convection scheme
!-------------------------------------------------------------------------------
!
! local
!
!-- icps cps index, =1 for deep convection
!-- pi2di 2d exner function at interface level (dimensionless)
!-- delp2di 2d pressuer depth (pa) between interface levels
!-- zl 2d z (m)
!-- t1 2d temperature (k) will be changed by shallow convection
!-- q1 2d specific humidity (kgkg-1) will be changed by shallow convection
!-- levshc maximum k-level for shallow convection
!
   integer, intent(in ) :: ids,ide, jds,jde, kds,kde, &
                                     ims,ime, jms,jme, kms,kme, &
                                     its,ite, jts,jte, kts,kte
!
   real, intent(in ) :: dt,g,xlv,rd,rv,rcp,p1000mb
!
   integer, dimension( ims:ime, jms:jme ) , &
             intent(in ) :: kpbl2d
!
   real, dimension( ims:ime, kms:kme, jms:jme ) , &
             intent(in ) :: qv3d, &
                                                                          t3d, &
                                                                         p3di, &
                                                                          p3d, &
                                                                         pi3d, &
                                                                         z3di
!
   real, dimension( ims:ime, jms:jme ) , &
             intent(in ) :: hpbl, &
                                                                        wstar, &
                                                                        delta, &
                                                                       raincv
!
   real, dimension( kms:kme ) , &
             intent(in ) :: znu
!
   real, dimension( ims:ime, kms:kme, jms:jme ) , &
             optional , &
             intent(inout) :: rthshten, &
                                                                     rqvshten
!
! local variables
!
   integer :: i,j,k,levshc
   real :: sigshc,rdelt
!
   integer, dimension( its:ite ) :: icps
   real, dimension( its:ite, kts:kte+1 ) :: pi2di
   real, dimension( its:ite, kts:kte ) :: delp2di, &
                                                                           zl, &
                                                                           t1, &
                                                                           q1
!
   rdelt = 1.0/dt
   sigshc = 0.6
   levshc = 0
!
   do k = kts,kte
     if(znu(k).gt.sigshc) levshc = k + 1
   enddo
!
   pi2di(:,:) = 0.0
   delp2di(:,:) = 0.0
   zl(:,:) = 0.0
   t1(:,:) = 0.0
   q1(:,:) = 0.0
!
   do j = jts,jte ! outmost j loop
     icps(:) = 0
     do k = kts,kte
       do i = its,ite
         pi2di(i,k) = (p3di(i,k,j)/p1000mb)**rcp
       enddo
     enddo
     do i = its,ite
       pi2di(i,kte+1) = (p3di(i,kte+1,j)/p1000mb)**rcp
     enddo
!
     do k = kts,kte
       do i = its,ite
         delp2di(i,k) = p3di(i,k,j)-p3di(i,k+1,j)
         zl(i,k) = 0.5*(z3di(i,k,j)+z3di(i,k+1,j))
         t1(i,k) = t3d(i,k,j)
         q1(i,k) = qv3d(i,k,j)
       enddo
     enddo
!
     do i = its,ite
       if(raincv(i,j) .gt. 1.e-30) icps(i)=1
     enddo
!
     call grims2d(q=q1(its,kts),t=t1(its,kts),prsi=p3di(ims,kms,j), &
              prsik=pi2di(its,kts),delprsi=delp2di(its,kts), &
              prsl=p3d(ims,kms,j),prslk=pi3d(ims,kms,j),zl=zl(its,kts), &
              wstar=wstar(ims,j),hpbl=hpbl(ims,j),delta=delta(ims,j), &
              dt=dt,cp=cp,g=g,xlv=xlv,rd=rd,rv=rv, &
              icps=icps(its),kpbl=kpbl2d(ims,j),levshc=levshc, &
              ids=ids,ide=ide, jds=jds,jde=jde, kds=kds,kde=kde, &
              ims=ims,ime=ime, jms=jms,jme=jme, kms=kms,kme=kme, &
              its=its,ite=ite, jts=jts,jte=jte, kts=kts,kte=kte )
!
     if(present(rthshten).and.present(rqvshten)) then
       do k = kts,kte
         do i = its,ite
           rthshten(i,k,j)=(t1(i,k)-t3d(i,k,j))/pi3d(i,k,j)*rdelt
           rqvshten(i,k,j)=(q1(i,k)-qv3d(i,k,j))*rdelt
         enddo
       enddo
     endif
!
   enddo ! end outmost j loop
!
   end subroutine grims
!-------------------------------------------------------------------------------
!
!-------------------------------------------------------------------------------

   subroutine grims2d(q,t,prsi,prsik,delprsi,prsl,prslk,zl, & 1,3
                       wstar,hpbl,delta, &
                       dt,cp,g,xlv,rd,rv, &
                       icps,kpbl,levshc, &
                       ids,ide, jds,jde, kds,kde, &
                       ims,ime, jms,jme, kms,kme, &
                       its,ite, jts,jte, kts,kte)
!-------------------------------------------------------------------------------
   implicit none
!-------------------------------------------------------------------------------
!
!   this scheme applies an eddy-diffusion approach within the shallow convective 
!   layer defined by the moist static energy profile and is coupled to the 
!   ysu pbl properties. this scheme names after the grims
!   shallow convection scheme since it was developed/evaluated in grims.
!
!   coded by song-you hong (yonsei university; ysu) and
!   implemented by jihyeon jang, junhong lee (ysu), and wei wang (ncar)
!       winter 2012
!
! references:
!   hong et al. (2013, manuscript in preparation)
!   hong et al. (2013, asia-pacific j. atmos. sci.) the global/regional 
!       integrated model system (grims)        
!
!-------------------------------------------------------------------------------
!
   integer, intent(in ) :: levshc, &
                                  ids,ide, jds,jde, kds,kde, &
                                  ims,ime, jms,jme, kms,kme, &
                                  its,ite, jts,jte, kts,kte
!
   real, intent(in ) :: dt,cp,g,xlv,rd,rv
!
   integer, dimension( ims:ime ) , &
             intent(in ) :: kpbl
!
   real, dimension( ims:ime, kms:kme ) , &
             intent(in ) :: prsi
!
   real, dimension( its:ite, kts:kte+1 ) , &
             intent(in ) :: prsik
!
   real, dimension( its:ite, kts:kte ) , &
             intent(in ) :: delprsi, &
                                                                           zl
!
   real, dimension( ims:ime, kms:kme ) , &
             intent(in ) :: prsl, &
                                                                        prslk
!
   integer, dimension( its:ite ) , &
             intent(in ) :: icps
!
   real, dimension( its:ite, kts:kte ) , &
             intent(inout) :: q, &
                                                                            t
!
   real, dimension( ims:ime ) , &
             intent(in ) :: hpbl, &
                                                                        wstar, &
                                                                        delta
!
! profile shape parameter
!
   real,parameter :: pfac = 3.
!
! maximum and minimum diffusivity
!
   real,parameter :: xkzmax = 50., xkzmin = 0.001
!
! maxium distance of a parcel to lcl (m)
!
   real,parameter :: zdiffcr1 = 1500., zdiffcr2 = 1500.
!
! bounds of parcel origin
!
   integer,parameter :: kliftl=2,kliftu=2
!
! scale factor for wstar
!
   real,parameter :: wsfac = 1.47
!
! local variables and arrays
!
   logical :: lshc(its:ite),flg(ite-its+1)
   integer :: i,ik,ik1,iku,k,k1,k2,kt,n2
   integer :: index2(ite-its+1)
   integer :: klcl(ite-its+1),kbot(ite-its+1)
   integer :: ktop(ite-its+1)
   integer :: lmin(ite-its+1)
   integer :: kb(ite-its+1),kbcon(ite-its+1)
   real :: eps,epsm1
   real :: eldq,xkzh,cpdt,rtdls
   real :: dmse,dtodsu,dtodsl,dsig,dsdz1,dsdz2
   real :: q2((ite-its+1)*kte)
   real :: t2((ite-its+1)*kte)
   real :: al((ite-its+1)*(kte-1))
   real :: ad((ite-its+1)*kte)
   real :: au((ite-its+1)*(kte-1))
   real :: delprsi2((ite-its+1)*kte)
   real :: prsi2((ite-its+1)*kte),prsik2((ite-its+1)*kte)
   real :: prsl2((ite-its+1)*kte),prslk2((ite-its+1)*kte)
   real :: qeso2((ite-its+1)*kte),rh2(ite-its+1)
   real :: depth(ite-its+1),zdiff1(ite-its+1),zdiff2(ite-its+1)
   real :: hmin(ite-its+1),hmax(ite-its+1)
   real :: z(1:(ite-its+1),kts:kte)
   real :: heo(1:(ite-its+1),kts:kte)
   real :: heso(1:(ite-its+1),kts:kte)
   real :: pik,height,xkzfac
!-------------------------------------------------------------------------------
!
   eps = rd/rv
   epsm1 = eps-1
!
   do i = its,ite
     lshc(i)=.false.
   enddo
!
! check for moist static instability to trigger convection
!
   do k = kts,levshc-1
     do i = its,ite
       if(icps(i).eq.0.and.kpbl(i).ge.2) then
         eldq = xlv*(q(i,k)-q(i,k+1))
         cpdt = cp*(t(i,k)-t(i,k+1))
         rtdls = (prsl(i,k)-prsl(i,k+1))/prsi(i,k+1)*rd*0.5*(t(i,k)+t(i,k+1))
         dmse = eldq+cpdt-rtdls
         lshc(i) = lshc(i).or.dmse.gt.0.
       endif
     enddo
   enddo
   do i = its,ite
     if(wstar(i).lt.0.001) lshc(i)=.false.
   enddo
!
! reset i-dimension for active clouds
!
   n2 = 0
   do i = its,ite
     if(lshc(i)) then
       n2 = n2+1
       index2(n2) = i
     endif
   enddo
!
   if(n2.eq.0) return
!
! prepare the variables
!
   do k = kts,levshc
     do i = 1,n2
       if(lshc(index2(i))) then
         ik = (k-1)*n2+i
         pik = prsl(index2(i),k)
         q2(ik) = q(index2(i),k)
         t2(ik) = t(index2(i),k)
         delprsi2(ik) = delprsi(index2(i),k)
         prsi2(ik) = prsi(index2(i),k)
         prsl2(ik) = prsl(index2(i),k)
         prsik2(ik)= prsik(index2(i),k)
         prslk2(ik)= prslk(index2(i),k)
         z(i,k) = zl(index2(i),k)
         qeso2(ik) = fpvs_pa(t2(ik))
         qeso2(ik) = eps * qeso2(ik) / (pik + epsm1 * qeso2(ik))
         qeso2(ik) = max(qeso2(ik),1.E-8)
         heo(i,k) = g * z(i,k) + cp* t2(ik) + xlv * q2(ik)
         heso(i,k) = g * z(i,k) + cp* t2(ik) + xlv * qeso2(ik)
       endif
     enddo
   enddo
!
! determine largest moist static energy for updraft originating level
!
   do i = 1,n2
     if(lshc(index2(i))) then
       hmax(i) = heo(i,1)
       kb(i) = 1
       kbcon(i) = levshc
       flg(i) = .true.
       zdiff1(i) = -1.0
       zdiff2(i) = -1.0
     endif
   enddo
!
   do k = kts+1,levshc-1
     do i = 1,n2
       if(lshc(index2(i))) then
         if(heo(i,k).gt.hmax(i).and.k.le.kpbl(index2(i))) then
           kb(i) = k
           hmax(i) = heo(i,k)
         endif
       endif
     enddo
   enddo
!
! check the buoyancy of a parcel by the distance to lcl and lfc
!
   do k = kts+1,levshc-1
     do i = 1,n2
       if(lshc(index2(i)).and.flg(i)) then
         if(k.gt.kb(i).and.heo(i,kb(i)).gt.heso(i,k)) then
           flg(i) = .false.
           kbcon(i) = k
         endif
       endif
     enddo
   enddo
!
   do i = 1,n2
     if(lshc(index2(i))) then
       zdiff1(i) = z(i,kpbl(index2(i)))-z(i,kb(i))
       zdiff2(i) = z(i,kbcon(i))-z(i,kb(I))
       if(zdiff1(i).gt.zdiffcr1.or.zdiff1(i).lt.0.) lshc(index2(i)) = .false.
       if(zdiff2(i).gt.zdiffcr2) lshc(index2(i)) = .false.
     endif
   enddo
!
! compute moist adiabat and determine cloud top
!
   call phys_moist_adiabat_pa(n2,levshc-1,kliftl,kliftu, &
                           prsl2,prsik2,prslk2,t2,q2, &
                           klcl,kbot,ktop,al,au,rd,rv, &
                            ids,ide, jds,jde, kds,kde, &
                            ims,ime, jms,jme, kms,kme, &
                            its,ite, jts,jte, kts,kte)
!
   do i = 1,n2
     if(lshc(index2(i))) then
       kbot(i) = max(kpbl(index2(i)),2)
       kbot(i) = min(kbot(i),levshc)
       ktop(i) = ktop(i)+1
     endif
   enddo
!
! revise the cloud top below minimum moist static energy
!
   do i = 1,n2
     if(lshc(index2(i))) then
       hmin(i) = heo(i,kbot(i))
       lmin(i) = levshc
     endif
   enddo
!
   do k = kts,levshc
     do i = 1,n2
       if(lshc(index2(i))) then
         if(heo(i,k).lt.hmin(i).and.k.ge.kbot(i).and.k.le.ktop(i)) then
           lmin(i) = k + 1
           hmin(i) = heo(i,k)
         endif
       endif
     enddo
   enddo
!
   do i = 1,n2
     if(lshc(index2(i))) then
       ktop(i) = min(ktop(i),lmin(i))
     endif
   enddo
!
   do i = 1,n2
     if(lshc(index2(i))) then
       if((ktop(i)-kbot(i)).le.1) then
         lshc(index2(i)) = .false.
       endif
     endif
   enddo
!
! compute diffusion properties
!
   do i = 1,n2
     if(lshc(index2(i))) then
       k = kbot(i)-1
       ik=(k-1)*n2+i
       rh2(i) = q2(ik)/qeso2(ik)
     endif
   enddo
!
   k1 = levshc+1
   k2 = 0
   do i = 1,n2
     if(.not.lshc(index2(i))) then
       kbot(i) = levshc+1
       ktop(i) = 0
     else
       depth(i) = z(i,ktop(i))-z(i,kbot(i))
     endif
     k1 = min(k1,kbot(i))
     k2 = max(k2,ktop(i))
   enddo
   kt = k2-k1+1
   if(kt.lt.2) return
!
! set eddy viscosity coefficient xkzh at sigma interfaces
!
   do i = 1,n2
     ik = (k1-1)*n2+i
     ad(ik) = 1.
   enddo
!
   do k = kts,levshc-1
     do i = 1,n2
       if(k.ge.kbot(i).and.k.lt.ktop(i)) then
         ik = (k-1)*n2+i
         iku = k*n2+i
         rtdls = (prsl2(ik)-prsl2(iku))/prsi2(iku)*rd*0.5*(t2(ik)+t2(iku))
         au(ik) = g/rtdls
       endif
     enddo
   enddo
!
   do k = k1,k2-1
     do i = 1,n2
       ik = (k-1)*n2+i
       iku = k*n2+i
       dtodsl = 2.*dt/delprsi2(ik)
       dtodsu = 2.*dt/delprsi2(iku)
       dsig = prsl2(ik)-prsl2(iku)
       if(k.ge.kbot(i).and.k.lt.ktop(i)) then
         height = z(i,k)-z(i,kbot(i))
         xkzfac = rh2(i)*wsfac*wstar(index2(i))*delta(index2(i))
         xkzh = min(max(xkzfac*(1.-height/depth(i))**pfac,xkzmin),xkzmax)
       else
         xkzh = 0.
       endif
       dsdz1 = xkzh*dsig*au(ik)*g/cp
       dsdz2 = xkzh*dsig*au(ik)*au(ik)
       au(ik) = -dtodsl*dsdz2
       al(ik) = -dtodsu*dsdz2
       ad(ik) = ad(ik)-au(ik)
       ad(iku) = 1.-al(ik)
       t2(ik) = t2(ik)+dtodsl*dsdz1
       t2(iku) = t2(iku)-dtodsu*dsdz1
     enddo
   enddo
!
! solve tri-diagonal matrix
!
   ik1 = (k1-1)*n2+1
   call scv_tri_diagonal_grims(n2,n2,kt,al(ik1),ad(ik1),au(ik1), &
                                q2(ik1),t2(ik1),au(ik1),q2(ik1),t2(ik1))
!
! feedback to large-scale variables
!
   do k = k1,k2
     do i = 1,n2
       if(lshc(index2(i))) then
         ik = (k-1)*n2+i
         q(index2(i),k) = q2(ik)
         t(index2(i),k) = t2(ik)
       endif
     enddo
   enddo
!
   return
   end subroutine grims2d
!-------------------------------------------------------------------------------
!
!-------------------------------------------------------------------------------

   subroutine scv_tri_diagonal_grims(lons2,l,n,cl,cm,cu,r1,r2,au,a1,a2) 1
!-------------------------------------------------------------------------------
!
! subprogram: scv_tri_diagonal
!
! abstract: this routine solves multiple tridiagonal matrix problems
! with 2 right-hand-side and solution vectors for every matrix.
! the solutions are found by eliminating off-diagonal coefficients,
! marching first foreward then backward along the matrix diagonal.
! the computations are vectorized around the number of matrices.
! no checks are made for zeroes on the diagonal or singularity.
!
! program history log:
! 1991-05-07 iredell
! 2009-03-01 jung-eun kim fortran 90 and modules
!
! usage: call scv_tri_diagonal(l,n,cl,cm,cu,r1,r2,au,a1,a2)
!
! input argument list:
! l - integer number of tridiagonal matrices
! n - integer order of the matrices
! cl - real (l,2:n) lower diagonal matrix elements
! cm - real (l,n) main diagonal matrix elements
! cu - real (l,n-1) upper diagonal matrix elements
! (may be equivalent to au if no longer needed)
! r1 - real (l,n) 1st right-hand-side vector elements
! (may be equivalent to a1 if no longer needed)
! r2 - real (l,n) 2nd right-hand-side vector elements
! (may be equivalent to a2 if no longer needed)
!
! output argument list:
! au - real (l,n-1) work array
! a1 - real (l,n) 1st solution vector elements
! a2 - real (l,n) 2nd solution vector elements
!
! remarks: this routine can be easily modified to solve a different
! number of right-hand-sides and solutions per matrix besides 2.
!
!-------------------------------------------------------------------------------
   implicit none
   integer :: lons2,l,n,i,k
   real :: fk
   real :: cl(l,2:n),cm(l,n),cu(l,n-1),r1(l,n),r2(l,n), &
                            au(l,n-1),a1(l,n),a2(l,n)
!-------------------------------------------------------------------------------
   do i = 1,lons2
     fk = 1./cm(i,1)
     au(i,1)= fk*cu(i,1)
     a1(i,1)= fk*r1(i,1)
     a2(i,1)= fk*r2(i,1)
   enddo
!
   do k = 2,n-1
     do i = 1,lons2
       fk = 1./(cm(i,k)-cl(i,k)*au(i,k-1))
       au(i,k) = fk*cu(i,k)
       a1(i,k) = fk*(r1(i,k)-cl(i,k)*a1(i,k-1))
       a2(i,k) = fk*(r2(i,k)-cl(i,k)*a2(i,k-1))
     enddo
   enddo
!
   do i = 1,lons2
     fk = 1./(cm(i,n)-cl(i,n)*au(i,n-1))
     a1(i,n) = fk*(r1(i,n)-cl(i,n)*a1(i,n-1))
     a2(i,n) = fk*(r2(i,n)-cl(i,n)*a2(i,n-1))
   enddo
   do k = n-1,1,-1
     do i = 1,lons2
       a1(i,k) = a1(i,k)-au(i,k)*a1(i,k+1)
       a2(i,k) = a2(i,k)-au(i,k)*a2(i,k+1)
     enddo
   enddo
!
   return
   end subroutine scv_tri_diagonal_grims
!-------------------------------------------------------------------------------
!
!-------------------------------------------------------------------------------

   subroutine phys_moist_adiabat_pa(ilev,klev,k1,k2, & 1,2
                                 prsl,prsik,prslk,tenv,qenv, &
                                 klcl,kbot,ktop,tcld,qcld,rd,rv, &
                                      ids,ide, jds,jde, kds,kde, &
                                      ims,ime, jms,jme, kms,kme, &
                                      its,ite, jts,jte, kts,kte)
!-------------------------------------------------------------------------------
!
! subprogram: phys_moist_adiabat_pa
!
! abstract:
! - compute moist adiabatic cloud soundings
! - atmospheric columns of temperature and specific humidity
! are examined by this routine for conditional instability.
! the test parcel is chosen from the layer between layers k1 and k2
! that has the warmest potential wet-bulb temperature.
! excess cloud temperatures and specific humidities are returned
! where the lifted parcel is found to be buoyant.
! fast inlinable functions are invoked to compute
! dewpoint and lifting condensation level temperatures,
! equivalent potential temperature at the lcl, and
! temperature and specific humidity of the ascending parcel.
!
! program history log:
! 1983-11-01 phillips
! 1991-05-07 iredell arguments changed, code tidied
! 2000-01-01 song-you hong physcis options
! 2009-10-01 jung-eun kim f90 format with standard physics modules
! 2010-07-01 myung-seo koo dimension allocatable with namelist input
!
! usage: call phys_moist_adiabat_pa(ilev,klev,k1,k2, &
! prsl,prslk,prsik,tenv,qenv, &
! klcl,kbot,ktop,tcld,qcld,rd,rv, &
! ids,ide, jds,jde, kds,kde, &
! ims,ime, jms,jme, kms,kme, &
! its,ite, jts,jte, kts,kte)
!
! input argument list:
! ilev - integer number of atmospheric columns
! klev - integer number of sigma levels in a column
! k1 - integer lowest level from which a parcel can originate
! k2 - integer highest level from which a parcel can originate
! prsl - real (ilev,klev) pressure values
! prslk,prsik - real (ilev,klev) pressure values to the kappa
! tenv - real (ilev,klev) environment temperatures
! qenv - real (ilev,klev) environment specific humidities
!
! output argument list:
! klcl - integer (ilev) level just above lcl (klev+1 if no lcl)
! kbot - integer (ilev) level just above cloud bottom
! ktop - integer (ilev) level just below cloud top
! - note that kbot(i) gt ktop(i) if no cloud.
! tcld - real (ilev,klev) of excess cloud temperatures.
! (parcel t minus environ t, or 0. where no cloud)
! qcld - real (ilev,klev) of excess cloud specific humidities.
! (parcel q minus environ q, or 0. where no cloud)
!
! subprograms called:
! ftdp - function to compute dewpoint temperature
! ftlcl - function to compute lcl temperature
! fthe - function to compute equivalent potential temperature
! ftma - function to compute parcel temperature and humidity
!
! remarks: all functions are inlined by fpp.
! nonstandard automatic arrays are used.
!
!-------------------------------------------------------------------------------
   implicit none
!
   integer,parameter :: nx=151,ny=121
   integer :: ilev,klev,k1,k2
   real :: prsl(ilev,klev),prslk(ilev,klev),prsik(ilev,klev)
   real :: tenv(ilev,klev),qenv(ilev,klev)
   integer :: klcl(ilev),kbot(ilev),ktop(ilev)
   real :: tcld(ilev,klev),qcld(ilev,klev)
   real :: rd,rv
   integer :: ids,ide, jds,jde, kds,kde, &
                            ims,ime, jms,jme, kms,kme, &
                            its,ite, jts,jte, kts,kte
!
! local arrays
!
   real :: slkma(ilev)
   real :: thema(ilev)
   real :: pv,tdpd
   real :: slklcl,thelcl,tlcl
   real :: xj,yj
   real :: ftx1,ftx2,ftma1,qx1,qx2,qma,tma,tvcld,tvenv
   real :: eps,epsm1,ftv
   integer :: i,k,jx,jy
!-------------------------------------------------------------------------------
!
! compute parameters
!
   eps=rd/rv
   epsm1=rd/rv-1.
   ftv=rv/rd-1.
!
! determine warmest potential wet-bulb temperature between k1 and k2.
! compute its lifting condensation level.
!
   do i = 1,ilev
     slkma(i)=0.
     thema(i)=0.
   enddo
!
   do k = k1,k2
     do i = 1,ilev
       pv=prsl(i,k)*1.e-3*qenv(i,k)/(eps-epsm1*qenv(i,k))
       tdpd=tenv(i,k)-ftdp(pv)
       if(tdpd.gt.0.) then
         tlcl=ftlcl(tenv(i,k),tdpd)
         slklcl=prslk(i,k)/prsik(i,1)*tlcl/tenv(i,k)
       else
         tlcl=tenv(i,k)
         slklcl=prslk(i,k)/prsik(i,1)
       endif
       thelcl=fthe(tlcl,slklcl*prsik(i,1))
       if(thelcl.gt.thema(i)) then
         slkma(i)=slklcl
         thema(i)=thelcl
       endif
     enddo
   enddo
!
! set cloud temperatures and humidities wherever the parcel lifted up
! the moist adiabat is buoyant with respect to the environment.
!
   do i = 1,ilev
     klcl(i)=klev+1
     kbot(i)=klev+1
     ktop(i)=0
   enddo
!
   do k = kts,klev
     do i = 1,ilev
       tcld(i,k)=0.
       qcld(i,k)=0.
     enddo
   enddo
!
   do k = k1,klev
     do i = 1,ilev
       if(prslk(i,k)/prsik(i,1).le.slkma(i)) then
         klcl(i)=min(klcl(i),k)
!
! insert ftma tma=ftma(thema(i),prslk(i,k),qma)
!
         xj=min(max(c1xma+c2xma*thema(i),1.),float(nx))
         yj=min(max(c1yma+c2yma*prslk(i,k),1.),float(ny))
         jx=min(xj,nx-1.)
         jy=min(yj,ny-1.)
         ftx1=tbtma(jx,jy)+(xj-jx)*(tbtma(jx+1,jy)-tbtma(jx,jy))
         ftx2=tbtma(jx,jy+1)+(xj-jx)*(tbtma(jx+1,jy+1)-tbtma(jx,jy+1))
         ftma1=ftx1+(yj-jy)*(ftx2-ftx1)
         qx1=tbqma(jx,jy)+(xj-jx)*(tbqma(jx+1,jy)-tbqma(jx,jy))
         qx2=tbqma(jx,jy+1)+(xj-jx)*(tbqma(jx+1,jy+1)-tbqma(jx,jy+1))
         qma=qx1+(yj-jy)*(qx2-qx1)
         tma=ftma1
!
         tvcld=tma*(1.+ftv*qma)
         tvenv=tenv(i,k)*(1.+ftv*qenv(i,k))
         if(tvcld.gt.tvenv) then
           kbot(i)=min(kbot(i),k)
           ktop(i)=max(ktop(i),k)
           tcld(i,k)=tma-tenv(i,k)
           qcld(i,k)=qma-qenv(i,k)
         endif
       endif
     enddo
   enddo
!
   return
   end subroutine phys_moist_adiabat_pa
!-------------------------------------------------------------------------------
!
!-------------------------------------------------------------------------------

   function ftdp(pv) 1
!-------------------------------------------------------------------------------
   implicit none
!-------------------------------------------------------------------------------
   real :: ftdp
!
   integer :: jx
   real :: xj
   real :: xmax,xmin,xinc
   real :: pv
!
   xmin= 0.001
   xmax=10.001
   xinc=(xmax-xmin)/(nxtdp-1)
   c1xtdp=1.-xmin/xinc
   c2xtdp=1./xinc
!
   xj=min(max(c1xtdp+c2xtdp*pv,1.),float(nxtdp))
   jx=min(xj,nxtdp-1.)
   ftdp=tbtdp(jx)+(xj-jx)*(tbtdp(jx+1)-tbtdp(jx))
!
   return
   end function
!-------------------------------------------------------------------------------
!
!-------------------------------------------------------------------------------

   function ftlcl(t,tdpd) 3
!-------------------------------------------------------------------------------
   implicit none
!-------------------------------------------------------------------------------
   real :: ftlcl
!
   real,parameter :: clcl1=0.954442e+0, clcl2=0.967772e-3, &
                       clcl3=-0.710321e-3,clcl4=-0.270742e-5
   real :: t,tdpd
!
   ftlcl=t-tdpd*(clcl1+clcl2*t+tdpd*(clcl3+clcl4*t))
!
   return
   end function
!-------------------------------------------------------------------------------
!
!-------------------------------------------------------------------------------

   function fthe(t,pk) 3
!-------------------------------------------------------------------------------
   implicit none
!-------------------------------------------------------------------------------
   real :: fthe
!
   integer :: jx,jy
   real :: xmin,xmax,xinc,ymin,ymax,yinc
   real :: xj,yj
   real :: ftx1,ftx2
   real :: t,pk
!
   xmin=ttp-90.
   xmax=ttp+30.
   xinc=(xmax-xmin)/(nxthe-1)
   c1xthe=1.-xmin/xinc
   c2xthe=1./xinc
   ymin=0.04**rocp
   ymax=1.10**rocp
   yinc=(ymax-ymin)/(nythe-1)
   c1ythe=1.-ymin/yinc
   c2ythe=1./yinc
!
   xj=min(c1xthe+c2xthe*t,float(nxthe))
   yj=min(c1ythe+c2ythe*pk,float(nythe))
   if(xj.ge.1..and.yj.ge.1.) then
     jx=min(xj,nxthe-1.)
     jy=min(yj,nythe-1.)
     ftx1=tbthe(jx,jy)+(xj-jx)*(tbthe(jx+1,jy)-tbthe(jx,jy))
     ftx2=tbthe(jx,jy+1)+(xj-jx)*(tbthe(jx+1,jy+1)-tbthe(jx,jy+1))
     fthe=ftx1+(yj-jy)*(ftx2-ftx1)
   else
     fthe=0.
   endif
!
   return
   end function
!-------------------------------------------------------------------------------
!
!-------------------------------------------------------------------------------

   function fpvs_pa(t) 1
!-------------------------------------------------------------------------------
   implicit none
!-------------------------------------------------------------------------------
   real :: fpvs_pa
!
   integer :: jx
   real :: xmax,xmin,xinc
   real :: xj
   real :: t
!
   xmin=180.0
   xmax=330.0
!
   xj=min(max(c1xpvs+c2xpvs*t,1.),float(nxsvp))
   jx=min(xj,nxsvp-1.)
   fpvs_pa=tbpvs(jx)+(xj-jx)*(tbpvs(jx+1)-tbpvs(jx))
   fpvs_pa=fpvs_pa * 1.e3
!
   return
   end function
!-------------------------------------------------------------------------------
!
!-------------------------------------------------------------------------------

   subroutine grimsinit(rthshten,rqvshten, & 1,4
                        restart, &
                        ids,ide, jds,jde, kds,kde, &
                        ims,ime, jms,jme, kms,kme, &
                        its,ite, jts,jte, kts,kte )
!-------------------------------------------------------------------------------
   implicit none
!-------------------------------------------------------------------------------
   logical , intent(in) :: restart
   integer , intent(in) :: ids, ide, jds, jde, kds, kde, &
                                      ims, ime, jms, jme, kms, kme, &
                                      its, ite, jts, jte, kts, kte
   real, dimension( ims:ime , kms:kme , jms:jme ) , intent(out) :: &
                                                                     rthshten, &
                                                                     rqvshten
   integer :: i, j, k, itf, jtf, ktf
!
   jtf=min0(jte,jde-1)
   ktf=min0(kte,kde-1)
   itf=min0(ite,ide-1)
   if(.not.restart)then
     do j = jts,jtf
       do k = kts,ktf
         do i = its,itf
           rthshten(i,k,j)=0.
           rqvshten(i,k,j)=0.
         enddo
       enddo
     enddo
   endif
!
   call funct_dew_point_temp_init
   call funct_pot_temp_init
   call funct_moist_adiabat_init
   call funct_svp_init
!
   end subroutine grimsinit
!-------------------------------------------------------------------------------
!
!-------------------------------------------------------------------------------

   subroutine funct_dew_point_temp_init 1,1
!-------------------------------------------------------------------------------
   implicit none
!-------------------------------------------------------------------------------
   integer :: jx
   real :: xmax,xmin,xinc,pv,x,t
!
   xmin= 0.001
   xmax=10.001
   xinc=(xmax-xmin)/(nxtdp-1)
   c1xtdp=1.-xmin/xinc
   c2xtdp=1./xinc
   t=208.0
   do jx=1,nxtdp
     x=xmin+(jx-1)*xinc
     pv=x
     t=ftdpxg(t,pv)
     tbtdp(jx)=t
   enddo
!
   return
   end subroutine funct_dew_point_temp_init
!-------------------------------------------------------------------------------
!
!-------------------------------------------------------------------------------

   subroutine funct_pot_temp_init 1,1
!-------------------------------------------------------------------------------
   implicit none
!-------------------------------------------------------------------------------
   integer :: jx,jy
   real :: xmin,xmax,xinc,ymin,ymax,yinc
   real :: x,y,t,pk
!
   xmin=ttp-90.
   xmax=ttp+30.
   xinc=(xmax-xmin)/(nxthe-1)
   c1xthe=1.-xmin/xinc
   c2xthe=1./xinc
   ymin=0.04**rocp
   ymax=1.10**rocp
   yinc=(ymax-ymin)/(nythe-1)
   c1ythe=1.-ymin/yinc
   c2ythe=1./yinc
!
   do jy = 1,nythe
     y=ymin+(jy-1)*yinc
     pk=y
     do jx = 1,nxthe
       x=xmin+(jx-1)*xinc
       t=x
       tbthe(jx,jy)=fthex(t,pk)
     enddo
   enddo
!
   return
   end subroutine funct_pot_temp_init
!-------------------------------------------------------------------------------
!
!-------------------------------------------------------------------------------

   subroutine funct_moist_adiabat_init 1,1
!-------------------------------------------------------------------------------
   implicit none
!-------------------------------------------------------------------------------
   integer :: jx,jy
   real :: xmin,xmax,xinc,ymin,ymax,yinc
   real :: y,pk,t,x,the,q
!
   xmin=200.
   xmax=500.
   xinc=(xmax-xmin)/(nxma-1)
   c1xma=1.-xmin/xinc
   c2xma=1./xinc
   ymin=0.01**rocp
   ymax=1.10**rocp
   yinc=(ymax-ymin)/(nyma-1)
   c1yma=1.-ymin/yinc
   c2yma=1./yinc
!
   do jy = 1,nyma
     y=ymin+(jy-1)*yinc
     pk=y
     t=xmin*y
     do jx = 1,nxma
       x=xmin+(jx-1)*xinc
       the=x
       t=ftmaxg(t,the,pk,q)
       tbtma(jx,jy)=t
       tbqma(jx,jy)=q
     enddo
   enddo
!
   return
   end subroutine funct_moist_adiabat_init
!-------------------------------------------------------------------------------
!
!-------------------------------------------------------------------------------

   subroutine funct_svp_init 1,1
!-------------------------------------------------------------------------------
   implicit none
!-------------------------------------------------------------------------------
   integer :: jx
   real :: xmin,xmax,xinc
   real :: t,x
!
   xmin=180.0
   xmax=330.0
   xinc=(xmax-xmin)/(nxsvp-1)
   c1xpvs=1.-xmin/xinc
   c2xpvs=1./xinc
   do jx = 1,nxsvp
     x=xmin+(jx-1)*xinc
     t=x
     tbpvs(jx)=fpvsx(t)
   enddo
!
   return
   end subroutine funct_svp_init
!-------------------------------------------------------------------------------
!
!-------------------------------------------------------------------------------

   function ftdpxg(tg,pv) 3
!-------------------------------------------------------------------------------
   implicit none
!-------------------------------------------------------------------------------
   real :: ftdpxg
!
   real :: tg,pv
   real :: t,tr,pvt,el,dpvt,terr
!
   t=tg
   tr=ttp/t
   pvt=psatk*(tr**xa)*exp(xb*(1.-tr))
   el=hvap+dldt*(t-ttp)
   dpvt=el*pvt/(rv*t**2)
   terr=(pvt-pv)/dpvt
   t=t-terr
!
   do while(abs(terr).gt.terrm)
     tr=ttp/t
     pvt=psatk*(tr**xa)*exp(xb*(1.-tr))
     el=hvap+dldt*(t-ttp)
     dpvt=el*pvt/(rv*t**2)
     terr=(pvt-pv)/dpvt
     t=t-terr
   enddo
   ftdpxg=t
!
   return
   end function
!-------------------------------------------------------------------------------
!
!-------------------------------------------------------------------------------

   function fthex(t,pk) 2
!-------------------------------------------------------------------------------
   implicit none
!-------------------------------------------------------------------------------
   real :: fthex
!
   real :: t,pk,p
   real :: tr, pv, pd, el, expo
!
   p=pk**cpor
   tr=ttp/t
   pv=psatb*(tr**xa)*exp(xb*(1.-tr))
   pd=p-pv
   if(pd.gt.0.) then
     el=hvap+dldt*(t-ttp)
     expo=el*eps*pv/(cp*t*pd)
     expo = min(expo,100.0)
     fthex=t*pd**(-rocp)*exp(expo)
   else
     fthex=0.
   endif
!
   return
   end function
!-------------------------------------------------------------------------------
!
!-------------------------------------------------------------------------------

   function ftmaxg(tg,the,pk,qma) 1
!-------------------------------------------------------------------------------
   implicit none
!-------------------------------------------------------------------------------
   real :: ftmaxg
   real :: tg,the,pk,t,p,tr,pv,pd,el,expo,thet,dthet,terr,qma
!
   t=tg
   p=pk**cpor
   tr=ttp/t
   pv=psatb*(tr**xa)*exp(xb*(1.-tr))
   pd=p-pv
   el=hvap+dldt*(t-ttp)
   expo=el*eps*pv/(cp*t*pd)
   thet=t*pd**(-rocp)*exp(expo)
   dthet=thet/t*(1.+expo*(dldt*t/el+el*p/(rv*t*pd)))
   terr=(thet-the)/dthet
   t=t-terr
!
   do while(abs(terr).gt.terrm)
     tr=ttp/t
     pv=psatb*(tr**xa)*exp(xb*(1.-tr))
     pd=p-pv
     el=hvap+dldt*(t-ttp)
     expo=el*eps*pv/(cp*t*pd)
     thet=t*pd**(-rocp)*exp(expo)
     dthet=thet/t*(1.+expo*(dldt*t/el+el*p/(rv*t*pd)))
     terr=(thet-the)/dthet
     t=t-terr
   enddo
   ftmaxg=t
   tr=ttp/t
   pv=psatb*(tr**xa)*exp(xb*(1.-tr))
   pd=p-pv
   qma=eps*pv/(pd+eps*pv)
!
   return
   end function
!-------------------------------------------------------------------------------
!
!-------------------------------------------------------------------------------

   function fpvsx(t) 5
!-------------------------------------------------------------------------------
   implicit none
!-------------------------------------------------------------------------------
   real :: fpvsx
!
   real :: t
   real :: tr
!
   tr=ttp/t
   if(t.ge.ttp) then
     fpvsx=psatk*(tr**xa)*exp(xb*(1.-tr))
   else
     fpvsx=psatk*(tr**xai)*exp(xbi*(1.-tr))
   endif
!
   return
   end function
!-------------------------------------------------------------------------------
end module module_shcu_grims