SUBROUTINE Setup_Timekeeping ( grid ) 17,39
USE module_domain
USE module_configure
USE module_utility
IMPLICIT NONE
TYPE(domain), POINTER :: grid
! Local
TYPE(WRFU_TimeInterval) :: begin_time, end_time, zero_time, one_minute, one_hour, forever, padding_interval
TYPE(WRFU_TimeInterval) :: interval, run_length, dfl_length
TYPE(WRFU_Time) :: startTime, stopTime, initialTime
TYPE(WRFU_TimeInterval) :: stepTime
TYPE(WRFU_TimeInterval) :: tmp_step
INTEGER :: start_year,start_month,start_day,start_hour,start_minute,start_second
INTEGER :: end_year,end_month,end_day,end_hour,end_minute,end_second
INTEGER :: vortex_interval
#ifdef HWRF
!zhang's doing
real (kind=8) :: day_in_sec
REAL :: tstart
!end of zhang's doing
#endif
! #if (EM_CORE == 1)
INTEGER :: dfi_fwdstop_year,dfi_fwdstop_month,dfi_fwdstop_day,dfi_fwdstop_hour,dfi_fwdstop_minute,dfi_fwdstop_second
INTEGER :: dfi_bckstop_year,dfi_bckstop_month,dfi_bckstop_day,dfi_bckstop_hour,dfi_bckstop_minute,dfi_bckstop_second
! #endif
INTEGER :: restart_interval_d
INTEGER :: inputout_interval_d
INTEGER :: inputout_begin_y
INTEGER :: inputout_end_y
INTEGER :: inputout_begin_m
INTEGER :: inputout_begin_s
INTEGER :: inputout_begin_d
INTEGER :: inputout_begin_h
INTEGER :: inputout_end_m
INTEGER :: inputout_end_s
INTEGER :: inputout_end_d
INTEGER :: inputout_end_h
INTEGER :: restart_interval_m
INTEGER :: restart_interval_s
INTEGER :: restart_interval
INTEGER :: restart_interval_h
INTEGER :: inputout_interval_m
INTEGER :: inputout_interval_s
INTEGER :: inputout_interval
INTEGER :: inputout_interval_h
# include "set_timekeeping_defs.inc"
INTEGER :: grid_fdda, grid_sfdda
INTEGER :: run_days, run_hours, run_minutes, run_seconds
INTEGER :: time_step, time_step_fract_num, time_step_fract_den
INTEGER :: rc
REAL :: dt
CALL WRFU_TimeIntervalSet ( zero_time, rc=rc )
CALL wrf_check_error
( WRFU_SUCCESS, rc, &
'WRFU_TimeIntervalSet(zero_time) FAILED', &
__FILE__ , &
__LINE__ )
CALL WRFU_TimeIntervalSet ( one_minute, M=1, rc=rc )
CALL wrf_check_error
( WRFU_SUCCESS, rc, &
'WRFU_TimeIntervalSet(one_minute) FAILED', &
__FILE__ , &
__LINE__ )
CALL WRFU_TimeIntervalSet ( one_hour, H=1, rc=rc )
CALL wrf_check_error
( WRFU_SUCCESS, rc, &
'WRFU_TimeIntervalSet(one_hour) FAILED', &
__FILE__ , &
__LINE__ )
CALL WRFU_TimeIntervalSet ( forever, S=1700000000, rc=rc ) ! magic number; indicats an interval that is forever
CALL wrf_check_error
( WRFU_SUCCESS, rc, &
'WRFU_TimeIntervalSet(forever) FAILED', &
__FILE__ , &
__LINE__ )
! #if (EM_CORE == 1)
IF ( (grid%dfi_opt .EQ. DFI_NODFI) .OR. (grid%dfi_stage .EQ. DFI_SETUP) ) THEN
! #endif
CALL nl_get_start_year(grid%id,start_year)
CALL nl_get_start_month(grid%id,start_month)
CALL nl_get_start_day(grid%id,start_day)
CALL nl_get_start_hour(grid%id,start_hour)
CALL nl_get_start_minute(grid%id,start_minute)
CALL nl_get_start_second(grid%id,start_second)
#ifdef HWRF
!zhang's doing - check with zhan before adding this bit
! CALL nl_get_tstart ( grid%id , tstart )
! CALL jdn_sec(day_in_sec,start_year,start_month,start_day,start_hour,start_minute,start_second)
! day_in_sec = day_in_sec + tstart*3600.
! CALL jdn_ymd_hms(day_in_sec,start_year,start_month,start_day,start_hour,start_minute,start_second)
!end of zhang's doing
#endif
CALL WRFU_TimeSet(startTime, YY=start_year, MM=start_month, DD=start_day, &
H=start_hour, M=start_minute, S=start_second,&
rc=rc)
CALL wrf_check_error
( WRFU_SUCCESS, rc, &
'WRFU_TimeSet(startTime) FAILED', &
__FILE__ , &
__LINE__ )
! #if (EM_CORE == 1)
ELSE
IF ( grid%dfi_opt .EQ. DFI_DFL ) THEN
IF ( grid%dfi_stage .EQ. DFI_FWD ) THEN
CALL nl_get_start_year(grid%id,start_year)
CALL nl_get_start_month(grid%id,start_month)
CALL nl_get_start_day(grid%id,start_day)
CALL nl_get_start_hour(grid%id,start_hour)
CALL nl_get_start_minute(grid%id,start_minute)
CALL nl_get_start_second(grid%id,start_second)
ELSE IF ( grid%dfi_stage .EQ. DFI_FST ) THEN
CALL nl_get_start_year(grid%id,start_year)
CALL nl_get_start_month(grid%id,start_month)
CALL nl_get_start_day(grid%id,start_day)
CALL nl_get_start_hour(grid%id,start_hour)
CALL nl_get_start_minute(grid%id,start_minute)
CALL nl_get_start_second(grid%id,start_second)
run_length = grid%stop_subtime - grid%start_subtime
CALL WRFU_TimeIntervalGet( run_length, S=run_seconds, rc=rc )
! What about fractional seconds?
run_seconds = run_seconds / 2
CALL WRFU_TimeIntervalSet ( run_length, S=run_seconds, rc=rc )
CALL WRFU_TimeSet(startTime, YY=start_year, MM=start_month, DD=start_day, &
H=start_hour, M=start_minute, S=start_second,&
rc=rc)
startTime = startTime + run_length
CALL WRFU_TimeGet(startTime, YY=start_year, MM=start_month, DD=start_day, &
H=start_hour, M=start_minute, S=start_second,&
rc=rc)
END IF
ELSE IF ( grid%dfi_opt .EQ. DFI_DDFI ) THEN
IF ( grid%dfi_stage .EQ. DFI_FWD ) THEN
CALL nl_get_dfi_bckstop_year(grid%id,start_year)
CALL nl_get_dfi_bckstop_month(grid%id,start_month)
CALL nl_get_dfi_bckstop_day(grid%id,start_day)
CALL nl_get_dfi_bckstop_hour(grid%id,start_hour)
CALL nl_get_dfi_bckstop_minute(grid%id,start_minute)
CALL nl_get_dfi_bckstop_second(grid%id,start_second)
ELSE IF ( grid%dfi_stage .EQ. DFI_BCK ) THEN
CALL nl_get_start_year(grid%id,start_year)
CALL nl_get_start_month(grid%id,start_month)
CALL nl_get_start_day(grid%id,start_day)
CALL nl_get_start_hour(grid%id,start_hour)
CALL nl_get_start_minute(grid%id,start_minute)
CALL nl_get_start_second(grid%id,start_second)
ELSE IF ( grid%dfi_stage .EQ. DFI_FST ) THEN
CALL nl_get_start_year(grid%id,start_year)
CALL nl_get_start_month(grid%id,start_month)
CALL nl_get_start_day(grid%id,start_day)
CALL nl_get_start_hour(grid%id,start_hour)
CALL nl_get_start_minute(grid%id,start_minute)
CALL nl_get_start_second(grid%id,start_second)
END IF
ELSE IF ( grid%dfi_opt .EQ. DFI_TDFI ) THEN
IF ( grid%dfi_stage .EQ. DFI_FWD ) THEN
CALL nl_get_dfi_bckstop_year(grid%id,start_year)
CALL nl_get_dfi_bckstop_month(grid%id,start_month)
CALL nl_get_dfi_bckstop_day(grid%id,start_day)
CALL nl_get_dfi_bckstop_hour(grid%id,start_hour)
CALL nl_get_dfi_bckstop_minute(grid%id,start_minute)
CALL nl_get_dfi_bckstop_second(grid%id,start_second)
! Here, we look at head_grid to determine run_length.
! Since start_subtime and stop_subtime were
! updated for nesting, they no longer bound the dfi
! time window, so, start_subtime and stop_subtime from
! from the grid structure won't work. However, we can use
! head_grid since the dfi time window is the same for all
! domains.
run_length = head_grid%start_subtime - head_grid%stop_subtime
CALL WRFU_TimeIntervalGet( run_length, S=run_seconds, rc=rc )
! What about fractional seconds?
run_seconds = run_seconds / 2
CALL WRFU_TimeIntervalSet ( run_length, S=run_seconds, rc=rc )
CALL WRFU_TimeSet(startTime, YY=start_year, MM=start_month, DD=start_day, &
H=start_hour, M=start_minute, S=start_second,&
rc=rc)
startTime = startTime + run_length
CALL WRFU_TimeGet(startTime, YY=start_year, MM=start_month, DD=start_day, &
H=start_hour, M=start_minute, S=start_second,&
rc=rc)
ELSE IF ( grid%dfi_stage .EQ. DFI_BCK ) THEN
CALL nl_get_start_year(grid%id,start_year)
CALL nl_get_start_month(grid%id,start_month)
CALL nl_get_start_day(grid%id,start_day)
CALL nl_get_start_hour(grid%id,start_hour)
CALL nl_get_start_minute(grid%id,start_minute)
CALL nl_get_start_second(grid%id,start_second)
ELSE IF ( grid%dfi_stage .EQ. DFI_FST ) THEN
CALL nl_get_start_year(grid%id,start_year)
CALL nl_get_start_month(grid%id,start_month)
CALL nl_get_start_day(grid%id,start_day)
CALL nl_get_start_hour(grid%id,start_hour)
CALL nl_get_start_minute(grid%id,start_minute)
CALL nl_get_start_second(grid%id,start_second)
ELSE IF ( grid%dfi_stage .EQ. DFI_STARTFWD ) THEN
CALL nl_get_start_year(grid%id,start_year)
CALL nl_get_start_month(grid%id,start_month)
CALL nl_get_start_day(grid%id,start_day)
CALL nl_get_start_hour(grid%id,start_hour)
CALL nl_get_start_minute(grid%id,start_minute)
CALL nl_get_start_second(grid%id,start_second)
END IF
END IF
IF ( grid%dfi_stage .EQ. DFI_STARTBCK ) THEN
CALL WRFU_ClockGet( grid%domain_clock, CurrTime=startTime, rc=rc)
ELSE
CALL WRFU_TimeSet(startTime, YY=start_year, MM=start_month, DD=start_day, &
H=start_hour, M=start_minute, S=start_second,&
rc=rc)
ENDIF
CALL wrf_check_error
( WRFU_SUCCESS, rc, &
'WRFU_TimeSet(startTime) FAILED', &
__FILE__ , &
__LINE__ )
END IF
! #endif
CALL nl_get_run_days(1,run_days)
CALL nl_get_run_hours(1,run_hours)
CALL nl_get_run_minutes(1,run_minutes)
CALL nl_get_run_seconds(1,run_seconds)
! #if (EM_CORE == 1)
IF ( (grid%dfi_opt .EQ. DFI_NODFI) .OR. (grid%dfi_stage .EQ. DFI_SETUP) .OR. (grid%dfi_stage .EQ. DFI_FST)) THEN
! #endif
IF ( grid%id .EQ. head_grid%id .AND. &
( run_days .gt. 0 .or. run_hours .gt. 0 .or. run_minutes .gt. 0 .or. run_seconds .gt. 0 )) THEN
CALL WRFU_TimeIntervalSet ( run_length , D=run_days, H=run_hours, M=run_minutes, S=run_seconds, rc=rc )
! #if (EM_CORE == 1)
IF ( grid%dfi_stage .EQ. DFI_FST .AND. grid%dfi_opt .EQ. DFI_DFL ) THEN
CALL nl_get_start_year(grid%id,start_year)
CALL nl_get_start_month(grid%id,start_month)
CALL nl_get_start_day(grid%id,start_day)
CALL nl_get_start_hour(grid%id,start_hour)
CALL nl_get_start_minute(grid%id,start_minute)
CALL nl_get_start_second(grid%id,start_second)
CALL WRFU_TimeSet(initialTime, YY=start_year, MM=start_month, DD=start_day, &
H=start_hour, M=start_minute, S=start_second,&
rc=rc)
dfl_length = startTime - initialTime
run_length = run_length - dfl_length
END IF
! #endif
CALL wrf_check_error
( WRFU_SUCCESS, rc, &
'WRFU_TimeIntervalSet(run_length) FAILED', &
__FILE__ , &
__LINE__ )
stopTime = startTime + run_length
ELSE
CALL nl_get_end_year(grid%id,end_year)
CALL nl_get_end_month(grid%id,end_month)
CALL nl_get_end_day(grid%id,end_day)
CALL nl_get_end_hour(grid%id,end_hour)
CALL nl_get_end_minute(grid%id,end_minute)
CALL nl_get_end_second(grid%id,end_second)
CALL WRFU_TimeSet(stopTime, YY=end_year, MM=end_month, DD=end_day, &
H=end_hour, M=end_minute, S=end_second,&
rc=rc )
CALL wrf_check_error
( WRFU_SUCCESS, rc, &
'WRFU_TimeSet(stopTime) FAILED', &
__FILE__ , &
__LINE__ )
run_length = stopTime - startTime
ENDIF
! #if (EM_CORE == 1)
ELSE IF ( grid%dfi_stage .EQ. DFI_STARTFWD ) THEN
CALL nl_get_time_step ( 1, time_step )
CALL nl_get_time_step_fract_num( 1, time_step_fract_num )
CALL nl_get_time_step_fract_den( 1, time_step_fract_den )
CALL WRFU_TimeIntervalSet( run_length, S=time_step, Sn=time_step_fract_num, Sd=time_step_fract_den, rc=rc)
stopTime = startTime + run_length
ELSE IF ( grid%dfi_stage .EQ. DFI_STARTBCK ) THEN
CALL nl_get_time_step ( 1, time_step )
CALL nl_get_time_step_fract_num( 1, time_step_fract_num )
CALL nl_get_time_step_fract_den( 1, time_step_fract_den )
CALL WRFU_TimeIntervalSet( run_length, S=time_step, Sn=time_step_fract_num, Sd=time_step_fract_den, rc=rc)
stopTime = startTime + run_length
ELSE
IF ( grid%dfi_opt .EQ. DFI_DFL ) THEN
IF ( grid%dfi_stage .EQ. DFI_FWD ) THEN
CALL nl_get_dfi_fwdstop_year(grid%id,end_year)
CALL nl_get_dfi_fwdstop_month(grid%id,end_month)
CALL nl_get_dfi_fwdstop_day(grid%id,end_day)
CALL nl_get_dfi_fwdstop_hour(grid%id,end_hour)
CALL nl_get_dfi_fwdstop_minute(grid%id,end_minute)
CALL nl_get_dfi_fwdstop_second(grid%id,end_second)
END IF
ELSE IF ( grid%dfi_opt .EQ. DFI_DDFI ) THEN
IF ( grid%dfi_stage .EQ. DFI_FWD ) THEN
CALL nl_get_dfi_fwdstop_year(grid%id,end_year)
CALL nl_get_dfi_fwdstop_month(grid%id,end_month)
CALL nl_get_dfi_fwdstop_day(grid%id,end_day)
CALL nl_get_dfi_fwdstop_hour(grid%id,end_hour)
CALL nl_get_dfi_fwdstop_minute(grid%id,end_minute)
CALL nl_get_dfi_fwdstop_second(grid%id,end_second)
ELSE IF ( grid%dfi_stage .EQ. DFI_BCK ) THEN
CALL nl_get_dfi_bckstop_year(grid%id,end_year)
CALL nl_get_dfi_bckstop_month(grid%id,end_month)
CALL nl_get_dfi_bckstop_day(grid%id,end_day)
CALL nl_get_dfi_bckstop_hour(grid%id,end_hour)
CALL nl_get_dfi_bckstop_minute(grid%id,end_minute)
CALL nl_get_dfi_bckstop_second(grid%id,end_second)
END IF
ELSE IF ( grid%dfi_opt .EQ. DFI_TDFI ) THEN
IF ( grid%dfi_stage .EQ. DFI_FWD ) THEN
CALL nl_get_dfi_fwdstop_year(grid%id,end_year)
CALL nl_get_dfi_fwdstop_month(grid%id,end_month)
CALL nl_get_dfi_fwdstop_day(grid%id,end_day)
CALL nl_get_dfi_fwdstop_hour(grid%id,end_hour)
CALL nl_get_dfi_fwdstop_minute(grid%id,end_minute)
CALL nl_get_dfi_fwdstop_second(grid%id,end_second)
ELSE IF ( grid%dfi_stage .EQ. DFI_BCK ) THEN
CALL nl_get_dfi_bckstop_year(grid%id,end_year)
CALL nl_get_dfi_bckstop_month(grid%id,end_month)
CALL nl_get_dfi_bckstop_day(grid%id,end_day)
CALL nl_get_dfi_bckstop_hour(grid%id,end_hour)
CALL nl_get_dfi_bckstop_minute(grid%id,end_minute)
CALL nl_get_dfi_bckstop_second(grid%id,end_second)
END IF
END IF
CALL WRFU_TimeSet(stopTime, YY=end_year, MM=end_month, DD=end_day, &
H=end_hour, M=end_minute, S=end_second,&
rc=rc)
CALL wrf_check_error
( WRFU_SUCCESS, rc, &
'WRFU_TimeSet(dfistopfwdTime) FAILED', &
__FILE__ , &
__LINE__ )
run_length = stopTime - startTime
END IF
! #endif
IF ( run_length .GT. zero_time ) THEN
padding_interval = forever
ELSE
padding_interval = zero_time - forever
ENDIF
IF ( grid%id .EQ. head_grid%id ) THEN
CALL nl_get_time_step ( 1, time_step )
CALL nl_get_time_step_fract_num( 1, time_step_fract_num )
CALL nl_get_time_step_fract_den( 1, time_step_fract_den )
dt = real(time_step) + real(time_step_fract_num) / real(time_step_fract_den)
#ifdef PLANET
! 2004-12-08 ADT notes:
! We have gotten the timestep from integers in the namelist, and they have just
! been converted to the timestep, "dt", used by the physics code just above.
! After this point, the integers are only used to update the clock used for,
! and we want to leave that on a "24-hour" type schedule, so we don't need to
! modify those integers. Theoretically they refer to a portion of the planet's
! solar day. The only thing we have to do is convert the *real* timestep, dt,
! to useful SI units. This is easily accomplished by multiplying it by the
! variable P2SI, which was designed for just this purpose. After multiplication,
! make sure every subsequent part of the model knows what the value is.
dt = dt * P2SI
#endif
CALL nl_set_dt( grid%id, dt )
grid%dt = dt
CALL WRFU_TimeIntervalSet(stepTime, S=time_step, Sn=time_step_fract_num, Sd=time_step_fract_den, rc=rc)
CALL wrf_check_error
( WRFU_SUCCESS, rc, &
'WRFU_TimeIntervalSet(stepTime) FAILED', &
__FILE__ , &
__LINE__ )
ELSE
tmp_step = domain_get_time_step
( grid%parents(1)%ptr )
stepTime = domain_get_time_step
( grid%parents(1)%ptr ) / &
grid%parent_time_step_ratio
grid%dt = grid%parents(1)%ptr%dt / grid%parent_time_step_ratio
CALL nl_set_dt( grid%id, grid%dt )
ENDIF
! create grid%domain_clock and associated state
CALL domain_clock_create
( grid, TimeStep= stepTime, &
StartTime=startTime, &
StopTime= stopTime )
CALL domain_clockprint
( 150, grid, &
'DEBUG setup_timekeeping(): clock after creation,' )
! Set default value for SIMULATION_START_DATE.
! This is overwritten later in input_wrf(), if needed.
IF ( grid%id .EQ. head_grid%id ) THEN
CALL nl_set_simulation_start_year ( 1 , start_year )
CALL nl_set_simulation_start_month ( 1 , start_month )
CALL nl_set_simulation_start_day ( 1 , start_day )
CALL nl_set_simulation_start_hour ( 1 , start_hour )
CALL nl_set_simulation_start_minute ( 1 , start_minute )
CALL nl_set_simulation_start_second ( 1 , start_second )
ENDIF
#include "set_timekeeping_alarms.inc"
! RESTART INTERVAL
! restart_interval is left there (and means minutes) for consistency, but
! restart_interval_m will take precedence if specified
CALL nl_get_restart_interval( 1, restart_interval ) ! same as minutes
CALL nl_get_restart_interval_d( 1, restart_interval_d )
CALL nl_get_restart_interval_h( 1, restart_interval_h )
CALL nl_get_restart_interval_m( 1, restart_interval_m )
CALL nl_get_restart_interval_s( 1, restart_interval_s )
IF ( restart_interval_m .EQ. 0 ) restart_interval_m = restart_interval
IF ( MAX( restart_interval_d, &
restart_interval_h, restart_interval_m , restart_interval_s ) .GT. 0 ) THEN
CALL WRFU_TimeIntervalSet( interval, D=restart_interval_d, &
H=restart_interval_h, M=restart_interval_m, S=restart_interval_s, rc=rc )
CALL wrf_check_error
( WRFU_SUCCESS, rc, &
'WRFU_TimeIntervalSet(restart_interval) FAILED', &
__FILE__ , &
__LINE__ )
ELSE
interval = padding_interval
ENDIF
CALL domain_alarm_create
( grid, RESTART_ALARM, interval )
! INPUTOUT INTERVAL
CALL nl_get_inputout_interval( grid%id, inputout_interval ) ! same as minutes
CALL nl_get_inputout_interval_d( grid%id, inputout_interval_d )
CALL nl_get_inputout_interval_h( grid%id, inputout_interval_h )
CALL nl_get_inputout_interval_m( grid%id, inputout_interval_m )
CALL nl_get_inputout_interval_s( grid%id, inputout_interval_s )
IF ( inputout_interval_m .EQ. 0 ) inputout_interval_m = inputout_interval
IF ( MAX( inputout_interval_d, &
inputout_interval_h, inputout_interval_m , inputout_interval_s ) .GT. 0 ) THEN
CALL WRFU_TimeIntervalSet( interval, D=inputout_interval_d, &
H=inputout_interval_h, M=inputout_interval_m, S=inputout_interval_s, rc=rc )
CALL wrf_check_error
( WRFU_SUCCESS, rc, &
'WRFU_TimeIntervalSet(inputout_interval) FAILED', &
__FILE__ , &
__LINE__ )
ELSE
interval = padding_interval
ENDIF
CALL nl_get_inputout_begin_y( grid%id, inputout_begin_y )
CALL nl_get_inputout_begin_d( grid%id, inputout_begin_d )
CALL nl_get_inputout_begin_h( grid%id, inputout_begin_h )
CALL nl_get_inputout_begin_m( grid%id, inputout_begin_m )
CALL nl_get_inputout_begin_s( grid%id, inputout_begin_s )
IF ( MAX( inputout_begin_y, inputout_begin_d, &
inputout_begin_h, inputout_begin_m , inputout_begin_s ) .GT. 0 ) THEN
CALL WRFU_TimeIntervalSet( begin_time , D=inputout_begin_d, &
H=inputout_begin_h, M=inputout_begin_m, S=inputout_begin_s, rc=rc )
CALL wrf_check_error
( WRFU_SUCCESS, rc, &
'WRFU_TimeIntervalSet(inputout_begin) FAILED', &
__FILE__ , &
__LINE__ )
ELSE
begin_time = zero_time
ENDIF
CALL nl_get_inputout_end_y( grid%id, inputout_end_y )
CALL nl_get_inputout_end_d( grid%id, inputout_end_d )
CALL nl_get_inputout_end_h( grid%id, inputout_end_h )
CALL nl_get_inputout_end_m( grid%id, inputout_end_m )
CALL nl_get_inputout_end_s( grid%id, inputout_end_s )
IF ( MAX( inputout_end_y, inputout_end_d, &
inputout_end_h, inputout_end_m , inputout_end_s ) .GT. 0 ) THEN
CALL WRFU_TimeIntervalSet( end_time , D=inputout_end_d, &
H=inputout_end_h, M=inputout_end_m, S=inputout_end_s, rc=rc )
CALL wrf_check_error
( WRFU_SUCCESS, rc, &
'WRFU_TimeIntervalSet(inputout_end) FAILED', &
__FILE__ , &
__LINE__ )
ELSE
end_time = padding_interval
ENDIF
CALL domain_alarm_create
( grid, INPUTOUT_ALARM, interval, begin_time, end_time )
#ifdef WRF_CHEM
! AUXINPUT5_ INTERVAL
! auxinput5_interval is left there (and means minutes) for consistency, but
! auxinput5_interval_m will take precedence if specified
CALL nl_get_auxinput5_interval( grid%id, auxinput5_interval ) ! same as minutes
CALL nl_get_auxinput5_interval_d( grid%id, auxinput5_interval_d )
CALL nl_get_auxinput5_interval_h( grid%id, auxinput5_interval_h )
CALL nl_get_auxinput5_interval_m( grid%id, auxinput5_interval_m )
CALL nl_get_auxinput5_interval_s( grid%id, auxinput5_interval_s )
IF ( auxinput5_interval_m .EQ. 0 ) auxinput5_interval_m = auxinput5_interval
IF ( MAX( auxinput5_interval_d, &
auxinput5_interval_h, auxinput5_interval_m , auxinput5_interval_s ) .GT. 0 ) THEN
CALL WRFU_TimeIntervalSet( interval, D=auxinput5_interval_d, &
H=auxinput5_interval_h, M=auxinput5_interval_m, S=auxinput5_interval_s, rc=rc )
CALL wrf_check_error
( WRFU_SUCCESS, rc, &
'WRFU_TimeIntervalSet(auxinput5_interval) FAILED', &
__FILE__ , &
__LINE__ )
ELSE
interval = padding_interval
ENDIF
CALL nl_get_auxinput5_begin_y( grid%id, auxinput5_begin_y )
CALL nl_get_auxinput5_begin_d( grid%id, auxinput5_begin_d )
CALL nl_get_auxinput5_begin_h( grid%id, auxinput5_begin_h )
CALL nl_get_auxinput5_begin_m( grid%id, auxinput5_begin_m )
CALL nl_get_auxinput5_begin_s( grid%id, auxinput5_begin_s )
IF ( MAX( auxinput5_begin_y, auxinput5_begin_d, &
auxinput5_begin_h, auxinput5_begin_m , auxinput5_begin_s ) .GT. 0 ) THEN
CALL WRFU_TimeIntervalSet( begin_time , D=auxinput5_begin_d, &
H=auxinput5_begin_h, M=auxinput5_begin_m, S=auxinput5_begin_s, rc=rc )
CALL wrf_check_error
( WRFU_SUCCESS, rc, &
'WRFU_TimeIntervalSet(auxinput5_begin) FAILED', &
__FILE__ , &
__LINE__ )
ELSE
begin_time = zero_time
ENDIF
CALL nl_get_auxinput5_end_y( grid%id, auxinput5_end_y )
CALL nl_get_auxinput5_end_d( grid%id, auxinput5_end_d )
CALL nl_get_auxinput5_end_h( grid%id, auxinput5_end_h )
CALL nl_get_auxinput5_end_m( grid%id, auxinput5_end_m )
CALL nl_get_auxinput5_end_s( grid%id, auxinput5_end_s )
IF ( MAX( auxinput5_end_y, auxinput5_end_d, &
auxinput5_end_h, auxinput5_end_m , auxinput5_end_s ) .GT. 0 ) THEN
CALL WRFU_TimeIntervalSet( end_time , D=auxinput5_end_d, &
H=auxinput5_end_h, M=auxinput5_end_m, S=auxinput5_end_s, rc=rc )
CALL wrf_check_error
( WRFU_SUCCESS, rc, &
'WRFU_TimeIntervalSet(auxinput5_end) FAILED', &
__FILE__ , &
__LINE__ )
ELSE
end_time = padding_interval
ENDIF
CALL domain_alarm_create
( grid, AUXINPUT5_ALARM, interval, begin_time, end_time )
!TBH: Should be OK to remove the "#else" section and the code it contains
!TBH: because later code overwrites grid%alarms( AUXINPUT5_ALARM )...
!TBH: In fact, by setting namelist values for auxinput5 correctly, it ought
!TBH: to be possible to get rid of all "#ifdef WRF_CHEM" bits in this file...
CALL WRFU_AlarmEnable( grid%alarms( AUXINPUT5_ALARM ), rc=rc )
CALL WRFU_AlarmRingerOn( grid%alarms( AUXINPUT5_ALARM ), rc=rc )
! TBH: NOTE: Proper setting of namelist variables for auxinput5 ought to
! TBH: make this hard-coded bit unnecessary.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! add for wrf_chem emiss input
CALL WRFU_AlarmEnable( grid%alarms( AUXINPUT5_ALARM ), rc=rc )
CALL WRFU_AlarmRingerOn( grid%alarms( AUXINPUT5_ALARM ), rc=rc )
! end for wrf chem emiss input
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
#endif
! without this test, it's possible for the value of the WRF_ALARM_SECS_TIL_NEXT_RING
! that is written as metadata to a restart file to be garbage for BOUNDARY_ALARM for
! the nests. Parallel NetCDF does a header check on all the metadata being written
! from multiple processors and if it differs, it throws up an error. This avoids that.
IF ( grid%id .EQ. 1 ) THEN ! only moad can have specified boundaries
CALL domain_alarm_create
( grid, BOUNDARY_ALARM )
CALL WRFU_AlarmEnable( grid%alarms( BOUNDARY_ALARM ), rc=rc )
CALL wrf_check_error
( WRFU_SUCCESS, rc, &
'WRFU_AlarmEnable(BOUNDARY_ALARM) FAILED', &
__FILE__ , &
__LINE__ )
CALL WRFU_AlarmRingerOn( grid%alarms( BOUNDARY_ALARM ), rc=rc )
CALL wrf_check_error
( WRFU_SUCCESS, rc, &
'WRFU_AlarmRingerOn(BOUNDARY_ALARM) FAILED', &
__FILE__ , &
__LINE__ )
ENDIF
! This is the interval at which the code in time_for_move in share/mediation_integrate.F
! will recompute the center of the Vortex. Other times, it will use the last position.
!
vortex_interval = 0
#ifdef MOVE_NESTS
CALL nl_get_vortex_interval ( grid%id , vortex_interval )
#endif
CALL WRFU_TimeIntervalSet( interval, M=vortex_interval, rc=rc )
CALL wrf_check_error
( WRFU_SUCCESS, rc, &
'WRFU_TimeIntervalSet(interval) for computing vortex center FAILED', &
__FILE__ , &
__LINE__ )
CALL domain_alarm_create
( grid, COMPUTE_VORTEX_CENTER_ALARM, interval )
#ifdef MOVE_NESTS
CALL WRFU_AlarmEnable( grid%alarms( COMPUTE_VORTEX_CENTER_ALARM ), rc=rc )
CALL wrf_check_error
( WRFU_SUCCESS, rc, &
'WRFU_AlarmEnable(COMPUTE_VORTEX_CENTER_ALARM) FAILED', &
__FILE__ , &
__LINE__ )
CALL WRFU_AlarmRingerOn( grid%alarms( COMPUTE_VORTEX_CENTER_ALARM ), rc=rc )
CALL wrf_check_error
( WRFU_SUCCESS, rc, &
'WRFU_AlarmRingerOn(COMPUTE_VORTEX_CENTER_ALARM) FAILED', &
__FILE__ , &
__LINE__ )
#else
! Go ahead and let the alarm be defined, but disable it, since we are not using moving nests here.
CALL WRFU_AlarmDisable( grid%alarms( COMPUTE_VORTEX_CENTER_ALARM ), rc=rc )
CALL wrf_check_error
( WRFU_SUCCESS, rc, &
'WRFU_AlarmDisable(COMPUTE_VORTEX_CENTER_ALARM) FAILED', &
__FILE__ , &
__LINE__ )
#endif
grid%time_set = .TRUE.
! Initialize derived time quantities in grid state.
! These are updated in domain_clockadvance().
CALL domain_clock_get
( grid, minutesSinceSimulationStart=grid%xtime )
CALL domain_clock_get
( grid, currentDayOfYearReal=grid%julian )
WRITE(wrf_err_message,*) 'setup_timekeeping: set xtime to ',grid%xtime
CALL wrf_debug
( 100, TRIM(wrf_err_message) )
WRITE(wrf_err_message,*) 'setup_timekeeping: set julian to ',grid%julian
CALL wrf_debug
( 100, TRIM(wrf_err_message) )
CALL wrf_debug
( 100 , 'setup_timekeeping: returning...' )
END SUBROUTINE Setup_Timekeeping