!_______________________________________________________________________________!
! !
! This module contains the microphysics sub-driver for the 2-moment version of !
! the Milbrandt-Yau (2005, JAS) microphysics scheme, along with all associated !
! subprograms. The main subroutine, 'mp_milbrandt2mom_main', is essentially !
! directly from the RPN-CMC physics library of the Canadian GEM model. It is !
! called by the wrapper 'mp_milbrandt2mom_driver' which makes the necessary !
! adjustments to the calling parameters for the interface to WRF. !
! !
! For questions, bug reports, etc. pertaining to the scheme, or to request !
! updates to the code (before the next offical WRF release) please contact !
! Jason Milbrandt (Environment Canada) at jason.milbrandt@ec.gc.ca !
! !
! Last modified: 2011-03-02 !
!_______________________________________________________________________________!
module my_fncs_mod 3
!==============================================================================!
! The following functions are used by the schemes in the multimoment package. !
! !
! Package version: 2.19.0 (internal bookkeeping) !
! Last modified : 2009-04-27 !
!==============================================================================!
implicit none
private
public :: NccnFNC,SxFNC,gamma,gammaDP,gser,gammln,gammp,cfg,gamminc
contains
!==============================================================================!
REAL FUNCTION NccnFNC(Win,Tin,Pin,CCNtype)
!---------------------------------------------------------------------------!
! This function returns number concentration (activated aerosols) as a
! function of w,T,p, based on polynomial approximations of detailed
! approach using a hypergeometric function, following Cohard and Pinty (2000a).
!---------------------------------------------------------------------------!
IMPLICIT NONE
! PASSING PARAMETERS:
real, intent(in) :: Win, Tin, Pin
integer, intent(in) :: CCNtype
! LOCAL PARAMETERS:
real :: T,p,x,y,a,b,c,d,e,f,g,h,T2,T3,T4,x2,x3,x4,p2
x= log10(Win*100.); x2= x*x; x3= x2*x; x4= x2*x2
T= Tin - 273.15; T2= T*T; T3= T2*T; T4= T2*T2
p= Pin*0.01; p2= p*p
if (CCNtype==1) then !Maritime
a= 1.47e-9*T4 -6.944e-8*T3 -9.933e-7*T2 +2.7278e-4*T -6.6853e-4
b=-1.41e-8*T4 +6.662e-7*T3 +4.483e-6*T2 -2.0479e-3*T +4.0823e-2
c= 5.12e-8*T4 -2.375e-6*T3 +4.268e-6*T2 +3.9681e-3*T -3.2356e-1
d=-8.25e-8*T4 +3.629e-6*T3 -4.044e-5*T2 +2.1846e-3*T +9.1227e-1
e= 5.02e-8*T4 -1.973e-6*T3 +3.944e-5*T2 -9.0734e-3*T +1.1256e0
f= -1.424e-6*p2 +3.631e-3*p -1.986
g= -0.0212*x4 +0.1765*x3 -0.3770*x2 -0.2200*x +1.0081
h= 2.47e-6*T3 -3.654e-5*T2 +2.3327e-3*T +0.1938
y= a*x4 + b*x3 + c*x2 + d*x + e + f*g*h
NccnFNC= 10.**min(2.,max(0.,y)) *1.e6 ![m-3]
else if (CCNtype==2) then !Continental
a= 0.
b= 0.
c=-2.112e-9*T4 +3.9836e-8*T3 +2.3703e-6*T2 -1.4542e-4*T -0.0698
d=-4.210e-8*T4 +5.5745e-7*T3 +1.8460e-5*T2 +9.6078e-4*T +0.7120
e= 1.434e-7*T4 -1.6455e-6*T3 -4.3334e-5*T2 -7.6720e-3*T +1.0056
f= 1.340e-6*p2 -3.5114e-3*p +1.9453
g= 4.226e-3*x4 -5.6012e-3*x3 -8.7846e-2*x2 +2.7435e-2*x +0.9932
h= 5.811e-9*T4 +1.5589e-7*T3 -3.8623e-5*T2 +1.4471e-3*T +0.1496
y= a*x4 +b*x3 +c*x2 + d*x + e + (f*g*h)
NccnFNC= 10.**max(0.,y) *1.e6
else
print*, '*** STOPPED in MODULE ### NccnFNC *** '
print*, ' Parameter CCNtype incorrectly specified'
stop
endif
END FUNCTION NccnFNC
!======================================================================!
real FUNCTION SxFNC(Win,Tin,Pin,Qsw,Qsi,CCNtype,WRT) 1
!---------------------------------------------------------------------------!
! This function returns the peak supersaturation achieved during ascent with
! activation of CCN aerosols as a function of w,T,p, based on polynomial
! approximations of detailed approach using a hypergeometric function,
! following Cohard and Pinty (2000a).
!---------------------------------------------------------------------------!
IMPLICIT NONE
! PASSING PARAMETERS:
integer, intent(IN) :: WRT
integer, intent(IN) :: CCNtype
real, intent(IN) :: Win, Tin, Pin, Qsw, Qsi
! LOCAL PARAMETERS:
real :: Si,Sw,Qv,T,p,x,a,b,c,d,f,g,h,Pcorr,T2corr,T2,T3,T4,x2,x3,x4,p2
real, parameter :: TRPL= 273.15
x= log10(max(Win,1.e-20)*100.); x2= x*x; x3= x2*x; x4= x2*x2
T= Tin; T2= T*T; T3= T2*T; T4= T2*T2
p= Pin*0.01; p2= p*p
if (CCNtype==1) then !Maritime
a= -5.109e-7*T4 -3.996e-5*T3 -1.066e-3*T2 -1.273e-2*T +0.0659
b= 2.014e-6*T4 +1.583e-4*T3 +4.356e-3*T2 +4.943e-2*T -0.1538
c= -2.037e-6*T4 -1.625e-4*T3 -4.541e-3*T2 -5.118e-2*T +0.1428
d= 3.812e-7*T4 +3.065e-5*T3 +8.795e-4*T2 +9.440e-3*T +6.14e-3
f= -2.012e-6*p2 + 4.1913e-3*p - 1.785e0
g= 2.832e-1*x3 -5.6990e-1*x2 +5.1105e-1*x -4.1747e-4
h= 1.173e-6*T3 +3.2174e-5*T2 -6.8832e-4*T +6.7888e-2
Pcorr= f*g*h
T2corr= 0.9581-4.449e-3*T-2.016e-4*T2-3.307e-6*T3-1.725e-8*T4
else if (CCNtype==2) then !Continental [computed for -35<T<-5C]
a= 3.80e-5*T2 +1.65e-4*T +9.88e-2
b= -7.38e-5*T2 -2.53e-3*T -3.23e-1
c= 8.39e-5*T2 +3.96e-3*T +3.50e-1
d= -1.88e-6*T2 -1.33e-3*T -3.73e-2
f= -1.9761e-6*p2 + 4.1473e-3*p - 1.771e0
g= 0.1539*x4 -0.5575*x3 +0.9262*x2 -0.3498*x -0.1293
h=-8.035e-9*T4+3.162e-7*T3+1.029e-5*T2-5.931e-4*T+5.62e-2
Pcorr= f*g*h
T2corr= 0.98888-5.0525e-4*T-1.7598e-5*T2-8.3308e-8*T3
else
print*, '*** STOPPED in MODULE ### SxFNC *** '
print*, ' Parameter CCNtype incorrectly specified'
stop
endif
Sw= (a*x3 + b*x2 +c*x + d) + Pcorr
Sw= 1. + 0.01*Sw
Qv= Qsw*Sw
Si= Qv/Qsi
Si= Si*T2corr
if (WRT.eq.1) then
SxFNC= Sw
else
SxFNC= Si
endif
if (Win.le.0.) SxFNC= 1.
END function SxFNC
!======================================================================!
real FUNCTION gamma(xx) 124
! Modified from "Numerical Recipes"
IMPLICIT NONE
! PASSING PARAMETERS:
real, intent(IN) :: xx
! LOCAL PARAMETERS:
integer :: j
real*8 :: ser,stp,tmp,x,y,cof(6),gammadp
SAVE cof,stp
DATA cof,stp/76.18009172947146d0,-86.50532032941677d0, &
24.01409824083091d0,-1.231739572450155d0,.1208650973866179d-2, &
-.5395239384953d-5,2.5066282746310005d0/
x=dble(xx)
y=x
tmp=x+5.5d0
tmp=(x+0.5d0)*log(tmp)-tmp
ser=1.000000000190015d0
! do j=1,6 !original
do j=1,4
!!do j=1,3 !gives result to within ~ 3 %
y=y+1.d0
ser=ser+cof(j)/y
enddo
gammadp=tmp+log(stp*ser/x)
gammadp= exp(gammadp)
#if (DWORDSIZE == 8 && RWORDSIZE == 8)
gamma = gammadp
#elif (DWORDSIZE == 8 && RWORDSIZE == 4)
gamma = sngl(gammadp)
#else
This is a temporary hack assuming double precision is 8 bytes.
#endif
END FUNCTION gamma
!======================================================================!
! ! !
! ! ! -- USED BY DIAGNOSTIC-ALPHA DOUBLE-MOMENT (SINGLE-PRECISION) VERSION --
! ! ! FOR FUTURE VERSIONS OF M-Y PACKAGE WITH, THIS S/R CAN BE USED
! ! !
! ! ! real FUNCTION diagAlpha(Dm,x)
! ! !
! ! ! IMPLICIT NONE
! ! !
! ! ! integer :: x
! ! ! real :: Dm
! ! ! real, dimension(5) :: c1,c2,c3,c4
! ! ! real, parameter :: pi = 3.14159265
! ! ! real, parameter :: alphaMAX= 80.e0
! ! ! data c1 /19.0, 12.0, 4.5, 5.5, 3.7/
! ! ! data c2 / 0.6, 0.7, 0.5, 0.7, 0.3/
! ! ! data c3 / 1.8, 1.7, 5.0, 4.5, 9.0/
! ! ! data c4 /17.0, 11.0, 5.5, 8.5, 6.5/
! ! ! diagAlpha= c1(x)*tanh(c2(x)*(1.e3*Dm-c3(x)))+c4(x)
! ! ! if (x==5.and.Dm>0.008) diagAlpha= 1.e3*Dm-2.6
! ! ! diagAlpha= min(diagAlpha, alphaMAX)
! ! !
! ! ! END function diagAlpha
! ! !
! ! ! !======================================================================!
! ! !
! ! ! -- USED BY DIAGNOSTIC-ALPHA DOUBLE-MOMENT (SINGLE-PRECISION) VERSION --
! ! ! FOR FUTURE VERSIONS OF M-Y PACKAGE WITH, THIS S/R CAN BE USED
! ! !
! ! ! real FUNCTION solveAlpha(Q,N,Z,Cx,rho)
! ! !
! ! ! IMPLICIT NONE
! ! !
! ! ! ! PASSING PARAMETERS:
! ! ! real, intent(IN) :: Q, N, Z, Cx, rho
! ! !
! ! ! ! LOCAL PARAMETERS:
! ! ! real :: a,g,a1,g1,g2,tmp1
! ! ! integer :: i
! ! ! real, parameter :: alphaMax= 40.
! ! ! real, parameter :: epsQ = 1.e-14
! ! ! real, parameter :: epsN = 1.e-3
! ! ! real, parameter :: epsZ = 1.e-32
! ! !
! ! ! ! Q mass mixing ratio
! ! ! ! N total concentration
! ! ! ! Z reflectivity
! ! ! ! Cx (pi/6)*RHOx
! ! ! ! rho air density
! ! ! ! a alpha (returned as solveAlpha)
! ! ! ! g function g(a)= [(6+a)(5+a)(4+a)]/[(3+a)(2+a)(1+a)],
! ! ! ! where g = (Cx/(rho*Q))**2.*(Z*N)
! ! !
! ! !
! ! ! if (Q==0. .or. N==0. .or. Z==0. .or. Cx==0. .or. rho==0.) then
! ! ! ! For testing/debugging only; this module should never be called
! ! ! ! if the above condition is true.
! ! ! print*,'*** STOPPED in MODULE ### solveAlpha *** '
! ! ! print*,'*** : ',Q,N,Z,Cx*1.9099,rho
! ! ! stop
! ! ! endif
! ! !
! ! ! IF (Q>epsQ .and. N>epsN .and. Z>epsZ ) THEN
! ! !
! ! ! tmp1= Cx/(rho*Q)
! ! ! g = tmp1*Z*tmp1*N ! g = (Z*N)*[Cx / (rho*Q)]^2
! ! !
! ! ! !Note: The above order avoids OVERFLOW, since tmp1*tmp1 is very large
! ! !
! ! ! !----------------------------------------------------------!
! ! ! ! !Solve alpha numerically: (brute-force; for testing only)
! ! ! ! a= 0.
! ! ! ! g2= 999.
! ! ! ! do i=0,4000
! ! ! ! a1= i*0.01
! ! ! ! g1= (6.+a1)*(5.+a1)*(4.+a1)/((3.+a1)*(2.+a1)*(1.+a1))
! ! ! ! if(abs(g-g1)<abs(g-g2)) then
! ! ! ! a = a1
! ! ! ! g2= g1
! ! ! ! endif
! ! ! ! enddo
! ! ! !----------------------------------------------------------!
! ! !
! ! ! !Piecewise-polynomial approximation of g(a) to solve for a: [2004-11-29]
! ! ! if (g>=20.) then
! ! ! a= 0.
! ! ! else
! ! ! g2= g*g
! ! ! if (g<20. .and.g>=13.31) a= 3.3638e-3*g2 - 1.7152e-1*g + 2.0857e+0
! ! ! if (g<13.31.and.g>=7.123) a= 1.5900e-2*g2 - 4.8202e-1*g + 4.0108e+0
! ! ! if (g<7.123.and.g>=4.200) a= 1.0730e-1*g2 - 1.7481e+0*g + 8.4246e+0
! ! ! if (g<4.200.and.g>=2.946) a= 5.9070e-1*g2 - 5.7918e+0*g + 1.6919e+1
! ! ! if (g<2.946.and.g>=1.793) a= 4.3966e+0*g2 - 2.6659e+1*g + 4.5477e+1
! ! ! if (g<1.793.and.g>=1.405) a= 4.7552e+1*g2 - 1.7958e+2*g + 1.8126e+2
! ! ! if (g<1.405.and.g>=1.230) a= 3.0889e+2*g2 - 9.0854e+2*g + 6.8995e+2
! ! ! if (g<1.230) a= alphaMax
! ! ! endif
! ! !
! ! ! solveAlpha= max(0.,min(a,alphaMax))
! ! !
! ! ! ELSE
! ! !
! ! ! solveAlpha= 0.
! ! !
! ! ! ENDIF
! ! !
! ! ! END FUNCTION solveAlpha
!======================================================================!
FUNCTION gammaDP(xx) 3
! Modified from "Numerical Recipes"
IMPLICIT NONE
! PASSING PARAMETERS:
DOUBLE PRECISION, INTENT(IN) :: xx
! LOCAL PARAMETERS:
DOUBLE PRECISION :: gammaDP
INTEGER :: j
DOUBLE PRECISION :: ser,stp,tmp,x,y,cof(6)
SAVE cof,stp
DATA cof,stp/76.18009172947146d0,-86.50532032941677d0, &
24.01409824083091d0,-1.231739572450155d0,.1208650973866179d-2, &
-.5395239384953d-5,2.5066282746310005d0/
x=xx
y=x
tmp=x+5.5d0
tmp=(x+0.5d0)*log(tmp)-tmp
ser=1.000000000190015d0
! do j=1,6 !original
do j=1,4
!!do j=1,3 !gives result to within ~ 3 %
y=y+1.d0
ser=ser+cof(j)/y
enddo
gammaDP=tmp+log(stp*ser/x)
gammaDP= exp(gammaDP)
END FUNCTION gammaDP
!======================================================================!
SUBROUTINE gser(gamser,a,x,gln) 2,4
! USES gammln
! Returns the incomplete gamma function P(a,x) evaluated by its series
! representation as gamser. Also returns GAMMA(a) as gln.
implicit none
integer :: itmax
real :: a,gamser,gln,x,eps
parameter (itmax=100, eps=3.e-7)
integer :: n
real :: ap,de1,summ
gln=gammln
(a)
if(x.le.0.)then
if(x.lt.0.) call wrf_error_fatal
( 'WARNING: x <0 in gser' )
gamser=0.
return
endif
ap=a
summ=1./a
de1=summ
do n=1,itmax
ap=ap+1.
de1=de1*x/ap
summ=summ+de1
if(abs(de1).lt.abs(summ)*eps) goto 1
enddo
call wrf_error_fatal
( 'Warning: a too large, itmax too small in gser')
1 gamser=summ*exp(-x+a*log(x)-gln)
return
END SUBROUTINE gser
!======================================================================!
real FUNCTION gammln(xx) 4
! Returns value of ln(GAMMA(xx)) for xx>0
! (modified from "Numerical Recipes")
IMPLICIT NONE
! PASSING PARAMETERS:
real, intent(IN) :: xx
! LOCAL PARAMETERS:
integer :: j
real*8 :: ser,stp,tmp,x,y,cof(6)
SAVE cof,stp
DATA cof,stp/76.18009172947146d0,-86.50532032941677d0, &
24.01409824083091d0,-1.231739572450155d0,.1208650973866179d-2, &
-.5395239384953d-5,2.5066282746310005d0/
x=dble(xx)
y=x
tmp=x+5.5d0
tmp=(x+0.5d0)*log(tmp)-tmp
ser=1.000000000190015d0
do j=1,6 !original
! do j=1,4
y=y+1.d0
ser=ser+cof(j)/y
enddo
#if (DWORDSIZE == 8 && RWORDSIZE == 8)
gammln= tmp+log(stp*ser/x)
#elif (DWORDSIZE == 8 && RWORDSIZE == 4)
gammln= sngl( tmp+log(stp*ser/x) )
#else
This is a temporary hack assuming double precision is 8 bytes.
#endif
END FUNCTION gammln
!======================================================================!
real FUNCTION gammp(a,x) 3,5
! USES gcf,gser
! Returns the incomplete gamma function P(a,x)
implicit none
real :: a,x,gammcf,gamser,gln
if(x.lt.0..or.a.le.0.) call wrf_error_fatal
( 'warning : bad arguments in gammq' )
if(x.lt.a+1.)then
call gser
(gamser,a,x,gln)
gammp=gamser
else
call cfg
(gammcf,a,x,gln)
gammp=1.-gammcf
endif
return
END FUNCTION gammp
!======================================================================!
SUBROUTINE cfg(gammcf,a,x,gln) 1,2
! USES gammln
! Returns the incomplete gamma function (Q(a,x) evaluated by tis continued fraction
! representation as gammcf. Also returns ln(GAMMA(a)) as gln. ITMAX is the maximum
! allowed number of iterations; EPS is the relative accuracy; FPMIN is a number near
! the smallest representable floating-point number.
implicit none
integer :: i,itmax
real :: a,gammcf,gln,x,eps,fpmin
real :: an,b,c,d,de1,h
parameter (itmax=100,eps=3.e-7)
gln=gammln
(a)
b=x+1.-a
c=1./fpmin
d=1./b
h=d
do i= 1,itmax
an=-i*(i-a)
b=b+2.
d=an*d+b
if(abs(d).lt.fpmin)d=fpmin
c=b+an/c
if(abs(c).lt.fpmin) c=fpmin
d=1./d
de1=d*c
h=h*de1
if(abs(de1-1.).lt.eps) goto 1
enddo
call wrf_error_fatal
( 'Warning: a too large, itmax too small in gcf')
1 gammcf=exp(-x+a*log(x)-gln)*h
return
END SUBROUTINE cfg
!======================================================================!
real FUNCTION gamminc(p,xmax),1
! USES gammp, gammln
! Returns incomplete gamma function, gamma(p,xmax)= P(p,xmax)*GAMMA(p)
real :: p,xmax
gamminc= gammp
(p,xmax)*exp(gammln(p))
end FUNCTION gamminc
!======================================================================!
! real function x_tothe_y(x,y)
!
! implicit none
! real, intent(in) :: x,y
! x_tothe_y= exp(y*log(x))
!
! end function x_tothe_y
!======================================================================!
end module my_fncs_mod
!________________________________________________________________________________________!
module my_sedi_mod 1
!================================================================================!
! The following subroutines are used by the schemes in the multimoment package. !
! !
! Package version: 2.19.0 (internal bookkeeping) !
! Last modified : 2011-01-07 !
!================================================================================!
implicit none
private
public :: SEDI_main_1b,SEDI_main_2,countColumns
contains
!=====================================================================================!
SUBROUTINE SEDI_main_2(QX,NX,cat,Q,T,DE,iDE,gamfact,epsQ,epsN,afx,bfx,cmx,dmx, & 5,3
ckQx1,ckQx2,ckQx4,LXP,ni,nk,VxMax,DxMax,dt,DZ,massFlux, &
ktop_sedi,GRAV,massFlux3D)
!-------------------------------------------------------------------------------------!
! DOUBLE-MOMENT version of sedimentation subroutine for categories whose
! fall velocity equation is V(D) = gamfact * afx * D^bfx
!-------------------------------------------------------------------------------------!
! Passing parameters:
!
! VAR Description
! --- ------------
! QX mass mixing ratio of category x
! NX number concentration of category x
! cat: hydrometeor category:
! 1 rain
! 2 ice
! 3 snow
! 4 graupel
! 5 hail
!-------------------------------------------------------------------------------------!
use my_fncs_mod
implicit none
! PASSING PARAMETERS:
real, dimension(:,:), intent(inout) :: QX,NX,Q,T
real, dimension(:), intent(out) :: massFlux
real, optional, dimension(:,:), intent(out) :: massFlux3D
real, dimension(:,:), intent(in) :: DE,iDE,DZ
real, intent(in) :: epsQ,epsN,VxMax,LXP,afx,bfx,cmx,dmx,ckQx1,ckQx2,ckQx4,DxMax,dt,GRAV
integer, dimension(:), intent(in) :: ktop_sedi
integer, intent(in) :: ni,nk,cat
! LOCAL PARAMETERS:
logical :: slabHASmass,locallim,QxPresent
integer :: nnn,a,i,k,counter,l,km1,kp1,ks,kw,idzmin
integer, dimension(nk) :: flim_Q,flim_N
integer, dimension(ni) :: activeColumn,npassx,ke
real :: VqMax,VnMax,iLAMx,iLAMxB0,tmp1,tmp2,tmp3,Dx,iDxMax,icmx, &
VincFact,ratio_Vn2Vq,zmax_Q,zmax_N,tempo,idmx,Nos_Thompson, &
No_s,iLAMs
real, dimension(ni,nk) :: VVQ,VVN,RHOQX,gamfact
real, dimension(ni) :: dzMIN,dtx,VxMaxx
real, dimension(nk) :: vp_Q,vp_N,zt_Q,zt_N,zb_Q,zb_N,dzi,Q_star,N_star
real, dimension(0:nk) :: zz
real, parameter :: epsilon = 1.e-2
real, parameter :: thrd = 1./3.
real, parameter :: sxth = 1./6.
real, parameter :: CoMAX = 2.0
!-------------------------------------------------------------------------------------!
massFlux = 0.
!Factor to estimate increased V from size-sorting:
! - this factor should be higher for categories with more time-splitting, since Vmax
! increases after each sedimentation split step (to be tuned)
VincFact = 1.
if (present(massFlux3D)) massFlux3D= 0. !(for use in MAIN for diagnostics)
!Determine for which slabs and columns sedimentation should be computes:
call countColumns
(QX,ni,nk,epsQ,counter,activeColumn,ktop_sedi)
ratio_Vn2Vq= ckQx2/ckQx1
iDxMax= 1./DxMax
icmx = 1./cmx
idmx = 1./dmx
ks = nk
ke = ktop_sedi !(i-array) - formerly ke=1; now depends on max. level with hydrometeor
kw = -1 !direction of vertical leveling; -1 implies nk is bottom
VVQ = 0.
VVN = 0.
VqMax= 0.
VnMax= 0.
DO a= 1,counter
i= activeColumn(a)
VVQ(i,:) = 0.
do k= ktop_sedi(i),nk !formerly do k= 1,nk
QxPresent = (QX(i,k)>epsQ .and. NX(i,k)>epsN)
if (QxPresent) VVQ(i,k)= calcVV
()*ckQx1
if (present(massFlux3D)) massFlux3D(i,k)= VVQ(i,k)*DE(i,k)*QX(i,k) !(for use in MAIN)
enddo !k-loop
Vxmaxx(i)= min( VxMax, maxval(VVQ(i,:))*VincFact )
!note: dzMIN is min. value in column (not necessarily lowest layer in general)
dzMIN(i) = minval(DZ(i,:))
npassx(i)= max(1, nint( dt*Vxmaxx(i)/(CoMAX*dzMIN(i)) ))
dtx(i) = dt/float(npassx(i))
!- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -!
DO nnn= 1,npassx(i)
locallim = (nnn==1)
do k= ktop_sedi(i),nk !formerly do k= 1,nk
RHOQX(i,k) = DE(i,k)*QX(i,k)
QxPresent = (QX(i,k)>epsQ .and. NX(i,k)>epsN)
if (QxPresent) then
if (locallim) then !to avoid re-computing VVQ on first pass
VVQ(i,k)= -VVQ(i,k)
else
VVQ(i,k)= -calcVV()*ckQx1
endif
VVN(i,k)= VVQ(i,k)*ratio_Vn2Vq
VqMax = max(VxMAX,-VVQ(i,k))
VnMax = max(VxMAX,-VVN(i,k))
else
VVQ(i,k)= 0.
VVN(i,k)= 0.
VqMax = 0.
VnMax = 0.
endif
enddo !k-loop
!sum instantaneous surface mass flux at each split step: (for division later)
massFlux(i)= massFlux(i) - VVQ(i,nk)*DE(i,nk)*QX(i,nk)
!-- Perform single split sedimentation step:
! (formerly by calls to s/r 'blg4sedi', a modified [JM] version of 'blg2.ftn')
zz(ks)= 0.
do k= ks,ke(i),kw
zz(k+kw)= zz(k)+dz(i,k)
dzi(k) = 1./dz(i,k)
vp_Q(k) = 0.
vp_N(k) = 0.
enddo
do k=ks,ke(i),kw
zb_Q(k)= zz(k) + VVQ(i,k)*dtx(i)
zb_N(k)= zz(k) + VVN(i,k)*dtx(i)
enddo
zt_Q(ke(i))= zb_Q(ke(i)) + dz(i,ke(i))
zt_N(ke(i))= zb_N(ke(i)) + dz(i,ke(i))
do k= ks,ke(i)-kw,kw
zb_Q(k)= min(zb_Q(k+kw)-epsilon*dz(i,k), zz(k)+VVQ(i,k)*dtx(i))
zb_N(k)= min(zb_N(k+kw)-epsilon*dz(i,k), zz(k)+VVN(i,k)*dtx(i))
zt_Q(k)= zb_Q(k+kw)
zt_N(k)= zb_N(k+kw)
enddo
do k=ks,ke(i),kw !formerly k=1,nk
Q_star(k)= RHOQX(i,k)*dz(i,k)/(zt_Q(k)-zb_Q(k))
N_star(k)= NX(i,k)*dz(i,k)/(zt_N(k)-zb_N(k))
enddo
if (locallim) then
zmax_Q= abs(VqMax*dtx(i))
zmax_N= abs(VnMax*dtx(i))
do l=ks,ke(i),kw
flim_Q(l)= l
flim_N(l)= l
do k= l,ke(i),kw
if (zmax_Q.ge.zz(k)-zz(l+kw)) flim_Q(l)= k
if (zmax_N.ge.zz(k)-zz(l+kw)) flim_N(l)= k
enddo
enddo
endif
do l=ks,ke(i),kw
do k=l,flim_Q(l),kw
vp_Q(l)= vp_Q(l) + Q_star(k)*max(0.,min(zz(l+kw),zt_Q(k))-max(zz(l),zb_Q(k)))
enddo
do k=l,flim_N(l),kw
vp_N(l)= vp_N(l) + N_star(k)*max(0.,min(zz(l+kw),zt_N(k))-max(zz(l),zb_N(k)))
enddo
enddo
do k=ks,ke(i),kw
RHOQX(i,k)= vp_Q(k)*dzi(k)
NX(i,k)= vp_N(k)*dzi(k)
enddo
!--
do k= ktop_sedi(i),nk !formerly do k= 1,nk
QX(i,k)= RHOQX(i,k)*iDE(i,k)
!Prevent levels with zero N and nonzero Q and size-limiter:
QxPresent= (QX(i,k)>epsQ .and. NX(i,k)>epsN)
if (QxPresent) then !size limiter
Dx= (DE(i,k)*QX(i,k)/(NX(i,k)*cmx))**idmx
if (cat==1 .and. Dx>3.e-3) then
tmp1 = Dx-3.e-3; tmp1= tmp1*tmp1
tmp2 = (Dx/DxMAX); tmp2= tmp2*tmp2*tmp2
NX(i,k)= NX(i,k)*max((1.+2.e4*tmp1),tmp2)
else
NX(i,k)= NX(i,k)*(max(Dx,DxMAX)*iDxMAX)**dmx !impose Dx_max
endif
else !here, "QxPresent" implies correlated QX and NX
Q(i,k) = Q(i,k) + QX(i,k)
T(i,k) = T(i,k) - LXP*QX(i,k) !LCP for rain; LSP for i,s,g,h
QX(i,k)= 0.
NX(i,k)= 0.
endif
enddo
ENDDO !nnn-loop
!- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -!
!compute average mass flux during the full time step: (used to compute the
!instantaneous sedimentation rate [liq. equiv. volume flux] in the main s/r)
massFlux(i)= massFlux(i)/float(npassx(i))
ENDDO !a(i)-loop
!- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -!
CONTAINS
real function calcVV() 1
!Calculates portion of moment-weighted fall velocities
iLAMx = ((QX(i,k)*DE(i,k)/NX(i,k))*ckQx4)**idmx
iLAMxB0 = iLAMx**bfx
calcVV = gamfact(i,k)*iLAMxB0
end function calcVV
END SUBROUTINE SEDI_main_2
!=====================================================================================!
SUBROUTINE SEDI_main_1b(QX,cat,T,DE,iDE,gamfact,epsQ,afx,bfx,icmx,dmx,ckQx1,ckQx4, & 5,2
ni,nk,VxMax,DxMax,dt,DZ,massFlux,No_x,ktop_sedi,GRAV, &
massFlux3D)
!-------------------------------------------------------------------------------------!
! SINGLE-MOMENT version of sedimentation subroutine for categories whose
! fall velocity equation is V(D) = gamfact * afx * D^bfx
!-------------------------------------------------------------------------------------!
! Passing parameters:
!
! VAR Description
! --- ------------
! QX mass mixing ratio of category x
! cat: hydrometeor category:
! 1 rain
! 2 ice
! 3 snow
! 4 graupel
! 5 hail
!-------------------------------------------------------------------------------------!
use my_fncs_mod
implicit none
! PASSING PARAMETERS:
real, dimension(:,:), intent(inout) :: QX,T
real, dimension(:), intent(out) :: massFlux
real, optional, dimension(:,:), intent(out) :: massFlux3D
real, dimension(:,:), intent(in) :: DE,iDE,DZ
real, intent(in) :: epsQ,VxMax,afx,bfx,icmx,dmx,ckQx1,ckQx4,DxMax,dt,GRAV,No_x
integer, dimension(:), intent(in) :: ktop_sedi
integer, intent(in) :: ni,nk,cat !,ktop_sedi
! LOCAL PARAMETERS:
logical :: slabHASmass,locallim,QxPresent
integer :: nnn,a,i,k,counter,l,km1,kp1,ks,kw,idzmin !,ke
integer, dimension(nk) :: flim_Q
integer, dimension(ni) :: activeColumn,npassx,ke
real :: VqMax,iLAMx,iLAMxB0,tmp1,tmp2,Dx,iDxMax,VincFact,NX,iNo_x, &
zmax_Q,zmax_N,tempo
real, dimension(ni,nk) :: VVQ,RHOQX,gamfact
real, dimension(ni) :: dzMIN,dtx,VxMaxx
real, dimension(nk) :: vp_Q,zt_Q,zb_Q,dzi,Q_star
real, dimension(0:nk) :: zz
real, parameter :: epsilon = 1.e-2
real, parameter :: thrd = 1./3.
real, parameter :: sxth = 1./6.
real, parameter :: CoMAX = 2.0
!-------------------------------------------------------------------------------------!
massFlux= 0.
!Factor to estimate increased V from size-sorting:
! - this factor should be higher for categories with more time-splitting, since Vmax
! increases after each sedimentation split step (to be tuned)
VincFact= 1.
if (present(massFlux3D)) massFlux3D= 0. !(for use in MAIN for diagnostics)
!Determine for which slabs and columns sedimentation should be computes:
call countColumns
(QX,ni,nk,epsQ,counter,activeColumn,ktop_sedi)
iNo_x = 1./No_x
iDxMax= 1./DxMax
ks = nk
ke = ktop_sedi !(i-array) - old: ke=1
kw = -1 !direction of vertical leveling
VVQ = 0.
VqMax= 0.
DO a= 1,counter
i= activeColumn(a)
VVQ(i,:) = 0.
do k= ktop_sedi(i),nk !do k= 1,nk
QxPresent = (QX(i,k)>epsQ)
! if (QxPresent) VVQ(i,k)= calcVV()*ckQx1
if (QxPresent) then
!ice:
if (cat==2) then
NX = 5.*exp(0.304*(273.15-max(233.,T(i,k))))
iLAMx = (ckQx4*QX(i,k)*DE(i,k)/NX)**thrd
!snow:
else if (cat==3) then
iNo_x = 1./min(2.e+8, 2.e+6*exp(-0.12*min(-0.001,T(i,k)-273.15)))
iLAMx = sqrt(sqrt(QX(i,k)*DE(i,k)*icmx*sxth*iNo_x))
!rain, graupel, hail:
else
iLAMx = sqrt(sqrt(QX(i,k)*DE(i,k)*icmx*sxth*iNo_x))
endif
VVQ(i,k) = -gamfact(i,k)*ckQx1*iLAMx**bfx
! VqMax = max(VxMAX,-VVQ(i,k))
endif
if (present(massFlux3D)) massFlux3D(i,k)= -VVQ(i,k)*DE(i,k)*QX(i,k) !(for use in MAIN)
enddo !k-loop
Vxmaxx(i)= min( VxMax, maxval(VVQ(i,:))*VincFact )
!note: dzMIN is min. value in column (not necessarily lowest layer in general)
dzMIN(i) = minval(DZ(i,:))
npassx(i)= max(1, nint( dt*Vxmaxx(i)/(CoMAX*dzMIN(i)) ))
dtx(i) = dt/float(npassx(i))
!- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -!
DO nnn= 1,npassx(i)
locallim = (nnn==1)
do k= ktop_sedi(i),nk !do k= 1,nk
RHOQX(i,k) = DE(i,k)*QX(i,k)
QxPresent = (QX(i,k)>epsQ)
if (QxPresent) then
!ice:
if (cat==2) then
NX = 5.*exp(0.304*(273.15-max(233.,T(i,k))))
iLAMx = (ckQx4*QX(i,k)*DE(i,k)/NX)**thrd
!snow:
else if (cat==3) then
iNo_x = 1./min(2.e+8, 2.e+6*exp(-0.12*min(-0.001,T(i,k)-273.15)))
iLAMx = sqrt(sqrt(QX(i,k)*DE(i,k)*icmx*sxth*iNo_x))
!rain, graupel, hail:
else
iLAMx = sqrt(sqrt(QX(i,k)*DE(i,k)*icmx*sxth*iNo_x))
endif
VVQ(i,k) = -gamfact(i,k)*ckQx1*iLAMx**bfx
VqMax = max(VxMAX,-VVQ(i,k))
endif
enddo !k-loop
!-- Perform single split sedimentation step: (formerly by calls to s/r 'blg4sedi')
zz(ks)= 0.
do k= ks,ke(i),kw
zz(k+kw)= zz(k)+dz(i,k)
dzi(k) = 1./dz(i,k)
vp_Q(k) = 0.
enddo
do k=ks,ke(i),kw
zb_Q(k)= zz(k) + VVQ(i,k)*dtx(i)
enddo
zt_Q(ke(i))= zb_Q(ke(i)) + dz(i,ke(i))
do k= ks,ke(i)-kw,kw
zb_Q(k)= min(zb_Q(k+kw)-epsilon*dz(i,k), zz(k)+VVQ(i,k)*dtx(i))
zt_Q(k)= zb_Q(k+kw)
enddo
do k=ks,ke(i),kw !k=1,nk
Q_star(k)= RHOQX(i,k)*dz(i,k)/(zt_Q(k)-zb_Q(k))
enddo
if (locallim) then
zmax_Q= abs(VqMax*dtx(i))
do l=ks,ke(i),kw
flim_Q(l)= l
do k= l,ke(i),kw
if (zmax_Q.ge.zz(k)-zz(l+kw)) flim_Q(l)= k
enddo
enddo
endif
do l=ks,ke(i),kw
do k=l,flim_Q(l),kw
vp_Q(l)= vp_Q(l) + Q_star(k)*max(0.,min(zz(l+kw),zt_Q(k))-max(zz(l),zb_Q(k)))
enddo
enddo
do k=ks,ke(i),kw
RHOQX(i,k)= vp_Q(k)*dzi(k)
enddo
!--
do k= ktop_sedi(i),nk ! do k= 1,nk
QX(i,k)= RHOQX(i,k)*iDE(i,k)
enddo
!sum instantaneous flux at each split step: (for division later)
massFlux(i)= massFlux(i) - VVQ(i,nk)*DE(i,nk)*QX(i,nk)
ENDDO !nnn-loop
!- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -!
!compute average flux during the full time step: (this will be used to compute
! the instantaneous sedimentation rate [volume flux] in the main s/r)
massFlux(i)= massFlux(i)/float(npassx(i))
ENDDO !a(i)-loop
!- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -!
END SUBROUTINE SEDI_main_1b
!=====================================================================================!
SUBROUTINE countColumns(QX,ni,nk,minQX,counter,activeColumn,ktop_sedi) 2
! Searches the hydrometeor array QX(ni,nk) for non-zero (>minQX) values.
! Returns the array if i-indices (activeColumn) for the columns (i)
! which contain at least one non-zero value, as well as the number of such
! columns (counter).
implicit none
!PASSING PARAMETERS:
integer, intent(in) :: ni,nk !,ktop_sedi
integer, dimension(:), intent(in) :: ktop_sedi
integer, intent(out) :: counter
integer, dimension(:), intent(out) :: activeColumn
real, dimension(:,:), intent(in) :: QX
real, intent(in) :: minQX
!LOCAL PARAMETERS:
integer :: i !,k
integer, dimension(ni) :: k
! k= ktop_sedi-1 ! k=0
counter = 0
activeColumn= 0
do i=1,ni
k(i)= ktop_sedi(i)-1 ! k=0
do
k(i)=k(i)+1
if (QX(i,k(i))>minQX) then
counter=counter+1
activeColumn(counter)=i
k(i)=0
exit
else
if (k(i)==nk) then
k(i)=0
exit
endif
endif
enddo
enddo !i-loop
END SUBROUTINE countColumns
!=====================================================================================!
end module my_sedi_mod
!________________________________________________________________________________________!
module my_dmom_mod 1
implicit none
private
public :: mp_milbrandt2mom_main
contains
!_______________________________________________________________________________________!
SUBROUTINE mp_milbrandt2mom_main(W_omega,T,Q,QC,QR,QI,QN,QG,QH,NC,NR,NY,NN,NG,NH,PS,TM, & 1,110
QM,QCM,QRM,QIM,QNM,QGM,QHM,NCM,NRM,NYM,NNM,NGM,NHM,PSM,S,RT_rn1,RT_rn2,RT_fr1,RT_fr2,&
RT_sn1,RT_sn2,RT_sn3,RT_pe1,RT_pe2,RT_peL,RT_snd,GZ,T_TEND,Q_TEND,QCTEND,QRTEND, &
QITEND,QNTEND,QGTEND,QHTEND,NCTEND,NRTEND,NYTEND,NNTEND,NGTEND,NHTEND,dt,NI,N,NK, &
J,KOUNT,CCNtype,precipDiag_ON,sedi_ON,warmphase_ON,autoconv_ON,icephase_ON,snow_ON, &
initN,dblMom_c,dblMom_r,dblMom_i,dblMom_s,dblMom_g,dblMom_h,Dm_c,Dm_r,Dm_i,Dm_s, &
Dm_g,Dm_h,ZET,ZEC,SLW,VIS,VIS1,VIS2,VIS3,h_CB,h_ML1,h_ML2,h_SN,SS01,SS02,SS03,SS04, &
SS05,SS06,SS07,SS08,SS09,SS10,SS11,SS12,SS13,SS14,SS15,SS16,SS17,SS18,SS19,SS20)
use my_fncs_mod
use my_sedi_mod
!--WRF:
use module_model_constants
, ONLY: CPD => cp, CPV => cpv, RGASD => r_d, RGASV => r_v, &
EPS1 => EP_2, DELTA => EP_1, CAPPA => rcp, GRAV => g, CHLC => XLV, CHLF => XLF
!==
implicit none
!CALLING PARAMETERS:
integer, intent(in) :: NI,NK,N,J,KOUNT,CCNtype
real, intent(in) :: dt
real, dimension(:), intent(in) :: PS,PSM
real, dimension(:), intent(out) :: h_CB,h_ML1,h_ML2,h_SN
real, dimension(:), intent(out) :: RT_rn1,RT_rn2,RT_fr1,RT_fr2,RT_sn1,RT_sn2, &
RT_sn3,RT_pe1,RT_pe2,RT_peL,ZEC,RT_snd
real, dimension(:,:), intent(in) :: W_omega,S,GZ
real, dimension(:,:), intent(inout) :: T,Q,QC,QR,QI,QN,QG,QH,NC,NR,NY,NN,NG,NH, &
TM,QM,QCM,QRM,QIM,QNM,QGM,QHM,NCM,NRM,NYM,NNM,NGM,NHM
real, dimension(:,:), intent(out) :: T_TEND,QCTEND,QRTEND,QITEND,QNTEND, &
QGTEND,QHTEND,Q_TEND,NCTEND,NRTEND,NYTEND,NNTEND,NGTEND,NHTEND,ZET,Dm_c, &
Dm_r,Dm_i,Dm_s,Dm_g,Dm_h,SLW,VIS,VIS1,VIS2,VIS3,SS01,SS02,SS03,SS04,SS05,SS06, &
SS07,SS08,SS09,SS10,SS11,SS12,SS13,SS14,SS15,SS16,SS17,SS18,SS19,SS20
logical, intent(in) :: dblMom_c,dblMom_r,dblMom_i,dblMom_s, &
dblMom_g,dblMom_h,precipDiag_ON,sedi_ON,icephase_ON,snow_ON,warmphase_ON, &
autoconv_ON,initN
!_______________________________________________________________________________________
! !
! Milbrandt-Yau Multimoment Bulk Microphysics Scheme !
! - double-moment version - !
!_______________________________________________________________________________________!
! Package version: 2.19.0 (internal bookkeeping) !
! Last modified : 2011-03-02 !
!_______________________________________________________________________________________!
!
! Author:
! J. Milbrandt, McGill University (August 2004)
!
! Major revisions:
!
! 001 J. Milbrandt (Dec 2006) - Converted the full Milbrandt-Yau (2005) multimoment
! (RPN) scheme to an efficient fixed-dispersion double-moment
! version
! 002 J. Milbrandt (Mar 2007) - Added options for single-moment/double-moment for
! each hydrometeor category
! 003 J. Milbrandt (Feb 2008) - Modified single-moment version for use in GEM-LAM-2.5
! 004 J. Milbrandt (Nov 2008) - Modified double-moment version for use in 2010 Vancouver
! Olympics GEM-LAM configuration
! 005 J. Milbrandt (Aug 2009) - Modified (dmom) for PHY_v5.0.4, for use in V2010 system:
! + reduced ice/snow capacitance to C=0.25D (from C=0.5D)
! + added diagnostic fields (VIS, levels, etc.)
! + added constraints to snow size distribution (No_s and
! LAMDA_s limits, plus changed m-D parameters
! + modified solid-to-liquid ratio calculation, based on
! volume flux (and other changes)
! + added back sedimentation of ice category
! + modified condition for conversion of graupel to hail
! + corrected bug it diagnostic "ice pellets" vs. "hail"
! + minor bug corrections (uninitialized values, etc.)
! 006 J. Milbrandt (Jan 2011) - Bug fixes and minor code clean-up from PHY_v5.1.3 version
! + corrected latent heat constants in thermodynamic functions
! (ABi and ABw) for sublimation and evaporation
! + properly initialized variables No_g and No_h
! + changed max ice crystal size (fallspeed) to 5 mm (2 m s-1)
! + imposed maximum ice number concentration of 1.e+7 m-3
! + removed unused supersaturation reduction
!
! Object:
! Computes changes to the temperature, water vapor mixing ratio, and the
! mixing ratios and total number concentrations of six hydrometeor species
! resulting from cloud microphysical interactions at saturated grid points.
! Liquid and solid surface precipitation rates from sedimenting hydrometeor
! categories are also computed.
!
! This subroutine and the associated modules form the single/double-moment
! switchable verion of the multimoment bulk microphysics package, the full
! version of which is described in the references below.
!
! References: Milbrandt and Yau, (2005a), J. Atmos. Sci., vol.62, 3051-3064
! --------- and ---, (2005b), J. Atmos. Sci., vol.62, 3065-3081
! (and references therein)
!
! Please report bugs to: jason.milbrandt@ec.gc.ca
!_______________________________________________________________________________________!
!
! Arguments: Description: Units:
!- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -!
! - Input -
!
! NI number of x-dir points (in local subdomain)
! NK number of vertical levels
! N not used (to be removed)
! J y-dir index (local subdomain)
! KOUNT current model time step number
! dt model time step [s]
! CCNtype switch for airmass type
! 1 = maritime --> N_c = 80 cm-3 (1-moment cloud)
! 2 = continental 1 --> N_c = 200 cm-3 " "
! 3 = continental 2 (polluted) --> N_c = 500 cm-3 " "
! 4 = land-sea-mask-dependent (TBA)
! W_omega vertical velocity [Pa s-1]
! S sigma (=p/p_sfc)
! GZ geopotential
! dblMom_(x) logical switch for double(T)-single(F)-moment for category (x)
! precipDiag_ON logical switch, .F. to suppress calc. of sfc precip types
! sedi_ON logical switch, .F. to suppress sedimentation
! warmphase_ON logical switch, .F. to suppress warm-phase (Part II)
! autoconv_ON logical switch, .F. to supppress autoconversion (cld->rn)
! icephase_ON logical switch, .F. to suppress ice-phase (Part I)
! snow_ON logical switch, .F. to suppress snow initiation
!
!- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -!
! - Input/Output -
!
! T air temperature at time (t*) [K]
! TM air temperature at time (t-dt) [K]
! Q water vapor mixing ratio at (t*) [kg kg-1]
! QM water vapor mixing ratio at (t-dt) [kg kg-1]
! PS surface pressure at time (t*) [Pa]
! PSM surface pressure at time (t-dt) [Pa]
!
! For x = (C,R,I,N,G,H): C = cloud
! R = rain
! I = ice (pristine) [except 'NY', not 'NI']
! N = snow
! G = graupel
! H = hail
!
! Q(x) mixing ratio for hydrometeor x at (t*) [kg kg-1]
! Q(x)M mixing ratio for hydrometeor x at (t-dt) [kg kg-1]
! N(x) total number concentration for hydrometeor x (t*) [m-3]
! N(x)M total number concentration for hydrometeor x (t-dt) [m-3]
!
! Note: The arrays "VM" (e.g. variables TM,QM,QCM etc.) are declared as INTENT(INOUT)
! such that their values are modified in the code [VM = 0.5*(VM + V)].
! This is to approxiate the values at time level (t), which are needed by
! this routine but are unavailable to the PHYSICS. The new values are discared
! by the calling routine ('vkuocon6.ftn'). However, care should be taken with
! interfacing with other modelling systems. For GEM/MC2, it does not matter if
! VM is modified since the calling module passes back only the tendencies
! (VTEND) to the model.
!- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -!
! - Output -
!
! Q_TEND tendency for water vapor mixing ratio [kg kg-1 s-1]
! T_TEND tendency for air temperature [K s-1]
! Q(x)TEND tendency for mixing ratio for hydrometeor x [kg kg-1 s-1]
! N(x)TEND tendency for number concentration for hydrometeor x [m-3 s-1]
! Dm_(x) mean-mass diameter for hydrometeor x [m]
! H_CB height of cloud base [m]
! h_ML1 height of first melting level from ground [m]
! h_ML2 height of first melting level from top [m]
! h_SN height of snow level [m]
! RT_rn1 precipitation rate (at sfc) of liquid rain [m+3 m-2 s-1]
! RT_rn2 precipitation rate (at sfc) of liquid drizzle [m+3 m-2 s-1]
! RT_fr1 precipitation rate (at sfc) of freezing rain [m+3 m-2 s-1]
! RT_fr2 precipitation rate (at sfc) of freezing drizzle [m+3 m-2 s-1]
! RT_sn1 precipitation rate (at sfc) of ice crystals (liq-eq) [m+3 m-2 s-1]
! RT_sn2 precipitation rate (at sfc) of snow (liq-equiv) [m+3 m-2 s-1]
! RT_sn3 precipitation rate (at sfc) of graupel (liq-equiv) [m+3 m-2 s-1]
! RT_snd precipitation rate (at sfc) of snow (frozen) [m+3 m-2 s-1]
! RT_pe1 precipitation rate (at sfc) of ice pellets (liq-eq) [m+3 m-2 s-1]
! RT_pe2 precipitation rate (at sfc) of hail (total; liq-eq) [m+3 m-2 s-1]
! RT_peL precipitation rate (at sfc) of hail (large only) [m+3 m-2 s-1]
! SSxx S/S terms (for testing purposes)
! SLW supercooled liquid water content [kg m-3]
! VIS visibility resulting from fog, rain, snow [m]
! VIS1 visibility component through liquid cloud (fog) [m]
! VIS2 visibility component through rain [m]
! VIS3 visibility component through snow [m]
! ZET total equivalent radar reflectivity [dBZ]
! ZEC composite (column-max) of ZET [dBZ]
!_______________________________________________________________________________________!
!LOCAL VARIABLES:
!Variables to count active grid points:
logical :: log1,log2,log3,log4,doneK,rainPresent,calcDiag,CB_found,ML_found, &
SN_found
logical, dimension(size(QC,dim=1),size(QC,dim=2)) :: activePoint
integer, dimension(size(QC,dim=1)) :: ktop_sedi
integer :: i,k,niter,ll,start
real :: tmp1,tmp2,tmp3,tmp4,tmp5,tmp6,tmp7,tmp8,tmp9,tmp10, &
VDmax,NNUmax,X,D,DEL,QREVP,NuDEPSOR,NuCONTA,NuCONTB,NuCONTC,iMUkin,Ecg,Erg, &
NuCONT,GG,Na,Tcc,F1,F2,Kdiff,PSIa,Kn,source,sink,sour,ratio,qvs0,Kstoke, &
DELqvs,ft,esi,Si,Simax,Vq,Vn,Vz,LAMr,No_r_DM,No_i,No_s,No_g,No_h,D_sll, &
iABi,ABw,VENTr,VENTs,VENTg,VENTi,VENTh,Cdiff,Ka,MUdyn,MUkin,DEo,Ng_tail, &
gam,ScTHRD,Tc,mi,ff,Ec,Ntr,Dho,DMrain,Ech,DMice,DMsnow,DMgrpl,DMhail, &
ssat,Swmax,dey,Esh,Eii,Eis,Ess,Eig,Eih,FRAC,JJ,Dirg,Dirh,Dsrs,Dsrg,Dsrh, &
Dgrg,Dgrh,SIGc,L,TAU,DrAUT,DrINIT,Di,Ds,Dg,Dh,qFact,nFact,Ki,Rz,NgCNgh, &
vr0,vi0,vs0,vg0,vh0,Dc,Dr,QCLcs,QCLrs,QCLis,QCLcg,QCLrg,QCLig,NhCNgh, &
QCLch,QCLrh,QCLsh,QMLir,QMLsr,QMLgr,QMLhr,QCLih,QVDvg,QVDvh,QSHhr, &
QFZci,QNUvi,QVDvi,QCNis,QCNis1,QCNis2,QCLir,QCLri,QCNsg,QCLsr,QCNgh, &
QCLgr,QHwet,QVDvs,QFZrh,QIMsi,QIMgi,NMLhr,NVDvh,NCLir,NCLri,NCLrh, &
NCLch,NCLsr,NCLirg,NCLirh,NrFZrh,NhFZrh,NCLsrs,NCLsrg,NCLsrh,NCLgrg, &
NCLgrh,NVDvg,NMLgr,NiCNis,NsCNis,NVDvs,NMLsr,NCLsh,NCLss,NNUvi,NFZci,NVDvi, &
NCLis,NCLig,NCLih,NMLir,NCLrs,NCNsg,NCLcs,NCLcg,NIMsi,NIMgi,NCLgr,NCLrg, &
NSHhr,RCAUTR,RCACCR,CCACCR,CCSCOC,CCAUTR,CRSCOR,ALFx,des_pmlt,Ecs,des,ides, &
LAMx,iLAMx,iLAMxB0,Dx,ffx,iLAMc,iNCM,iNRM,iNYM,iNNM,iNGM,iLAMs_D3, &
iLAMg,iLAMg2,iLAMgB0,iLAMgB1,iLAMgB2,iLAMh,iLAMhB0,iLAMhB1,iLAMhB2,iNHM, &
iLAMi,iLAMi2,iLAMi3,iLAMi4,iLAMi5,iLAMiB0,iLAMiB1,iLAMiB2,iLAMr6,iLAMh2, &
iLAMs,iLAMs2,iLAMsB0,iLAMsB1,iLAMsB2,iLAMr,iLAMr2,iLAMr3,iLAMr4,iLAMr5, &
iLAMc2,iLAMc3,iLAMc4,iLAMc5,iLAMc6,iQCM,iQRM,iQIM,iQNM,iQGM,iQHM,iEih,iEsh, &
N_c,N_r,N_i,N_s,N_g,N_h,fluxV_i,fluxV_g,fluxV_s,rhos_mlt,fracLiq
!Variables that only need to be calulated on the first step (and saved):
real, save :: idt,iMUc,cmr,cmi,cms,cmg,cmh,icmr,icmi,icmg,icms,icmh,idew,idei, &
ideh,ideg,GC1,imso,icexc9,cexr1,cexr2,cexr3,No_s_SM,No_r,idms,imgo,icexs2, &
cexr4,cexr5,cexr6,cexr9,icexr9,ckQr1,ckQr2,ckQr3,ckQi1,ckQi2,ckQi3,ckQi4, &
icexi9,ckQs1,ckQs2,cexs1,cexs2,ckQg1,ckQg2,ckQg4,ckQh1,ckQh2,ckQh4,GR37,dms, &
LCP,LFP,LSP,ck5,ck6,PI2,PIov4,PIov6,CHLS,iCHLF,cxr,cxi,Gzr,Gzi,Gzs,Gzg,Gzh, &
N_c_SM,iGC1,GC2,GC3,GC4,GC5,iGC5,GC6,GC7,GC8,GC11,GC12,GC13,GC14,iGR34,mso, &
GC15,GR1,GR3,GR13,GR14,GR15,GR17,GR31,iGR31,GR32,GR33,GR34,GR35,GR36,GI4, &
GI6,GI20,GI21,GI22,GI31,GI32,GI33,GI34,GI35,iGI31,GI11,GI36,GI37,GI40,iGG34, &
GS09,GS11,GS12,GS13,iGS20,GS31,iGS31,GS32,GS33,GS34,GS35,GS36,GS40,iGS40, &
GS50,GG09,GG11,GG12,GG13,GG31,iGG31,GG32,GG33,GG34,GG35,GG36,GG40,iGG99,GH09,&
GH11,GH12,GH13,GH31,GH32,GH33,GH40,GR50,GG50,iGH34,GH50,iGH99,iGH31,iGS34, &
iGS20_D3,GS40_D3,cms_D3,eds,fds,rfact_FvFm
!Size distribution parameters:
real, parameter :: MUc = 3. !shape parameter for cloud
real, parameter :: alpha_c = 1. !shape parameter for cloud
real, parameter :: alpha_r = 0. !shape parameter for rain
real, parameter :: alpha_i = 0. !shape parameter for ice
real, parameter :: alpha_s = 0. !shape parameter for snow
real, parameter :: alpha_g = 0. !shape parameter for graupel
real, parameter :: alpha_h = 0. !shape parameter for hail
real, parameter :: No_s_max = 1.e+8 !max. allowable intercept for snow [m-4]
real, parameter :: lamdas_min= 500. !min. allowable LAMDA_s [m-1]
!For single-moment:
real, parameter :: No_r_SM = 1.e+7 !intercept parameter for rain [m-4]
real, parameter :: No_g_SM = 4.e+6 !intercept parameter for graupel [m-4]
real, parameter :: No_h_SM = 1.e+5 !intercept parameter for hail [m-4]
!note: No_s = f(T), rather than a fixed value
!------------------------------------!
! Symbol convention: (dist. params.) ! MY05: Milbrandt & Yau, 2005a,b (JAS)
! MY05 F94 CP00 ! F94: Ferrier, 1994 (JAS)
! ------ -------- ------ ! CP00: Cohard & Pinty, 2000a,b (QJGR)
! ALFx ALPHAx MUx-1 !
! MUx (1) ALPHAx !
! ALFx+1 ALPHAx+1 MUx !
!------------------------------------!
! Note: The symbols for MU and ALPHA are REVERSED from that of CP2000a,b
! Explicit appearance of MUr = 1. has been removed.
! Fallspeed parameters:
real, parameter :: afr= 149.100, bfr= 0.5000 !Tripoloi and Cotton (1980)
real, parameter :: afi= 71.340, bfi= 0.6635 !Ferrier (1994)
real, parameter :: afs= 11.720, bfs= 0.4100 !Locatelli and Hobbs (1974)
real, parameter :: afg= 19.300, bfg= 0.3700 !Ferrier (1994)
real, parameter :: afh= 206.890, bfh= 0.6384 !Ferrier (1994)
!options:
!real, parameter :: afs= 8.996, bfs= 0.4200 !Ferrier (1994)
!real, parameter :: afg= 6.4800, bfg= 0.2400 !LH74 (grpl-like snow of lump type)
real, parameter :: epsQ = 1.e-14 !kg kg-1, min. allowable mixing ratio
real, parameter :: epsN = 1.e-3 !m-3, min. allowable number concentration
real, parameter :: epsQ2 = 1.e-6 !kg kg-1, mixing ratio threshold for diagnostics
real, parameter :: epsVIS= 1. !m, min. allowable visibility
real, parameter :: iLAMmin1= 1.e-6 !min. iLAMx (prevents underflow in Nox and VENTx calcs)
real, parameter :: iLAMmin2= 1.e-10 !min. iLAMx (prevents underflow in Nox and VENTx calcs)
real, parameter :: eps = 1.e-32
real, parameter :: k1 = 0.001
real, parameter :: k2 = 0.0005
real, parameter :: k3 = 2.54
real, parameter :: CPW = 4218., CPI=2093.
real, parameter :: deg = 400., mgo= 1.6e-10
real, parameter :: deh = 900.
real, parameter :: dei = 500., mio=1.e-12, Nti0=1.e3
real, parameter :: dew = 1000.
real, parameter :: desFix= 100. !used for snowSpherical = .true.
real, parameter :: desMax= 500.
real, parameter :: Dso = 125.e-6 ![m]; embryo snow diameter (mean-volume particle)
real, parameter :: dmr = 3., dmi= 3., dmg= 3., dmh= 3.
! NOTE: VxMAX below are the max.allowable mass-weighted fallspeeds for sedimentation.
! Thus, Vx corresponds to DxMAX (at sea-level) times the max. density factor, GAM.
! [GAMmax=sqrt(DEo/DEmin)=sqrt(1.25/0.4)~2.] e.g. VrMAX = 2.*8.m/s = 16.m/s
real, parameter :: DrMax= 5.e-3, VrMax= 16., epsQr_sedi= 1.e-8
real, parameter :: DiMax= 5.e-3, ViMax= 2., epsQi_sedi= 1.e-10
real, parameter :: DsMax= 5.e-3, VsMax= 2., epsQs_sedi= 1.e-8
real, parameter :: DgMax= 50.e-3, VgMax= 8., epsQg_sedi= 1.e-8
real, parameter :: DhMax= 80.e-3, VhMax= 25., epsQh_sedi= 1.e-10
real, parameter :: thrd = 1./3.
real, parameter :: sixth = 0.5*thrd
real, parameter :: Ers = 1., Eci= 1. !collection efficiencies, Exy, between categories x and y
real, parameter :: Eri = 1., Erh= 1.
real, parameter :: Xdisp = 0.25 !dispersion of the fall velocity of ice
real, parameter :: aa11 = 9.44e15, aa22= 5.78e3, Rh= 41.e-6
real, parameter :: Avx = 0.78, Bvx= 0.30 !ventilation coefficients [F94 (B.36)]
real, parameter :: Abigg = 0.66, Bbigg= 100. !parameters in probabilistic freezing
real, parameter :: fdielec = 4.464 !ratio of dielectric factor, |K|w**2/|K|i**2
real, parameter :: zfact = 1.e+18 !conversion factor for m-3 to mm2 m-6 for Ze
real, parameter :: minZET = -99. ![dBZ] min threshold for ZET
real, parameter :: maxVIS = 99.e+3 ![m] max. allowable VIS (visibility)
real, parameter :: Drshed = 0.001 ![m] mean diam. of drop shed during wet growth
real, parameter :: SIGcTHRS = 15.e-6 !threshold cld std.dev. before autoconversion
real, parameter :: KK1 = 3.03e3 !parameter in Long (1974) kernel
real, parameter :: KK2 = 2.59e15 !parameter in Long (1974) kernel
real, parameter :: Dhh = 82.e-6 ![m] diameter that rain hump first appears
real, parameter :: gzMax_sedi = 200000. !GZ value below which sedimentation is computed
real, parameter :: Dr_large = 200.e-6 ![m] size threshold to distinguish rain/drizzle for precip rates
real, parameter :: Ds_large = 200.e-6 ![m] size threshold to distinguish snow/snow-grains for precip rates
real, parameter :: Dh_large = 1.0e-2 ![m] size threshold for "large" hail precipitation rate
real, parameter :: Dh_min = 5.0e-3 ![m] size threhsold for below which hail converts to graupel
real, parameter :: Dr_3cmpThrs = 2.5e-3 ![m] size threshold for hail production from 3-comp freezing
real, parameter :: w_CNgh = 3. ![m s-1] vertical motion threshold for CNgh
! real, parameter :: r_CNgh = 0.05 !Dg/Dho ratio threshold for CNgh
real, parameter :: Ngh_crit = 0.01 ![m-3] critical graupel concentration for CNgh
real, parameter :: Tc_FZrh = -10. !temp-threshold (C) for FZrh
real, parameter :: CNsgThres = 1.0 !threshold for CLcs/VDvs ratio for CNsg
real, parameter :: capFact_i = 0.5 !capacitace factor for ice (C= 0.5*D*capFact_i)
real, parameter :: capFact_s = 0.5 !capacitace factor for snow (C= 0.5*D*capFact_s)
real, parameter :: noVal_h_XX = -1. !non-value indicator for h_CB, h_ML1, h_ML2, h_SN
real, parameter :: minSnowSize = 1.e-4 ![m] snow size threshold to compute h_SN
real, parameter :: Fv_Dsmin = 125.e-6 ![m] min snow size to compute volume flux
real, parameter :: Fv_Dsmax = 0.008 ![m] max snow size to compute volume flux
real, parameter :: Ni_max = 1.e+7 ![m-3] max ice crystal concentration
!-- For GEM:
!#include "consphy.cdk"
!#include "dintern.cdk"
!#include "fintern.cdk"
!-- For WRF:
!------------------------------------------------------------------------------!
!#include "consphy.cdk"
! real, parameter :: CPD =.100546e+4 !J K-1 kg-1; specific heat of dry air
! real, parameter :: CPV =.186946e+4 !J K-1 kg-1; specific heat of water vapour
! real, parameter :: RGASD =.28705e+3 !J K-1 kg-1; gas constant for dry air
! real, parameter :: RGASV =.46151e+3 !J K-1 kg-1; gas constant for water vapour
real, parameter :: TRPL =.27316e+3 !K; triple point of water
real, parameter :: TCDK =.27315e+3 !conversion from kelvin to celsius
real, parameter :: RAUW =.1e+4 !density of liquid H2O
! real, parameter :: EPS1 =.62194800221014 !RGASD/RGASV
real, parameter :: EPS2 =.3780199778986 !1 - EPS1
! real, parameter :: DELTA =.6077686814144 !1/EPS1 - 1
! real, parameter :: CAPPA =.28549121795 !RGASD/CPD
real, parameter :: TGL =.27316e+3 !K; ice temperature in the atmosphere
real, parameter :: CONSOL =.1367e+4 !W m-2; solar constant
! real, parameter :: GRAV =.980616e+1 !M s-2; gravitational acceleration
real, parameter :: RAYT =.637122e+7 !M; mean radius of the earth
real, parameter :: STEFAN =.566948e-7 !J m-2 s-1 K-4; Stefan-Boltzmann constant
real, parameter :: PI =.314159265359e+1 !PI constant = ACOS(-1)
real, parameter :: OMEGA =.7292e-4 !s-1; angular speed of rotation of the earth
real, parameter :: KNAMS =.514791 !conversion from knots to m/s
real, parameter :: STLO =.6628486583943e-3 !K s2 m-2; Schuman-Newell Lapse Rate
real, parameter :: KARMAN =.35 !Von Karman constant
real, parameter :: RIC =.2 !Critical Richardson number
! real, parameter :: CHLC =.2501e+7 !J kg-1; latent heat of condensation
! real, parameter :: CHLF =.334e+6 !J kg-1; latent heat of fusion
!------------------------------------------------------------------------------!
!#include "dintern.cdk"
REAL TTT, PRS, QQQ, EEE, TVI, QST, QQH
REAL T00, PR0, TF, PF,FFF , DDFF
REAL QSM , DLEMX
REAL*8 FOEW,FODLE,FOQST,FODQS,FOEFQ,FOQFE,FOTVT,FOTTV,FOHR
REAL*8 FOLV,FOLS,FOPOIT,FOPOIP,FOTTVH,FOTVHT
REAL*8 FOEWA,FODLA,FOQSA,FODQA,FOHRA
REAL*8 FESI,FDLESI,FESMX,FDLESMX,FQSMX,FDQSMX
!------------------------------------------------------------------------------!
!#include "fintern.cdk"
! DEFINITION DES FONCTIONS THERMODYNAMIQUES DE BASE
! POUR LES CONSTANTES, UTILISER LE COMMON /CONSPHY/
! NOTE: TOUTES LES FONCTIONS TRAVAILLENT AVEC LES UNITES S.I.
! I.E. TTT EN DEG K, PRS EN PA, QQQ EN KG/KG
! *** N. BRUNET - MAI 90 ***
! * REVISION 01 - MAI 94 - N. BRUNET
! NOUVELLE VERSION POUR FAIBLES PRESSIONS
! * REVISION 02 - AOUT 2000 - J-P TOVIESSI
! CALCUL EN REAL*8
! * REVISION 03 - SEPT 2000 - N. BRUNET
! AJOUT DE NOUVELLES FONCTIONS
! * REVISION 04 - JANV 2000 - J. MAILHOT
! FONCTIONS EN PHASE MIXTE
! * REVISION 05 - DEC 2001 - G. LEMAY
! DOUBLE PRECISION POUR PHASE MIXTE
! * REVISION 06 - AVR 2002 - A. PLANTE
! AJOUT DES NOUVELLES FONCTIONS FOTTVH ET FOTVHT
!
! FONCTION DE TENSION DE VAPEUR SATURANTE (TETENS) - EW OU EI SELON TT
FOEW(TTT) = 610.78D0*DEXP( DMIN1(DSIGN(17.269D0, &
DBLE(TTT)-DBLE(TRPL)),DSIGN &
(21.875D0,DBLE(TTT)-DBLE(TRPL)))*DABS(DBLE(TTT)-DBLE(TRPL))/ &
(DBLE(TTT)-35.86D0+DMAX1(0.D0,DSIGN &
(28.2D0,DBLE(TRPL)-DBLE(TTT)))))
!
! FONCTION CALCULANT LA DERIVEE SELON T DE LN EW (OU LN EI)
FODLE(TTT)=(4097.93D0+DMAX1(0.D0,DSIGN(1709.88D0, &
DBLE(TRPL)-DBLE(TTT)))) &
/((DBLE(TTT)-35.86D0+DMAX1(0.D0,DSIGN(28.2D0, &
DBLE(TRPL)-DBLE(TTT))))*(DBLE(TTT)-35.86D0+DMAX1(0.D0 &
,DSIGN(28.2D0,DBLE(TRPL)-DBLE(TTT)))))
!
! FONCTION CALCULANT L'HUMIDITE SPECIFIQUE SATURANTE (QSAT)
FOQST(TTT,PRS) = DBLE(EPS1)/(DMAX1(1.D0,DBLE(PRS)/FOEW(TTT))- &
DBLE(EPS2))
!
! FONCTION CALCULANT LA DERIVEE DE QSAT SELON T
FODQS(QST,TTT)=DBLE(QST)*(1.D0+DBLE(DELTA)*DBLE(QST))*FODLE(TTT)
! QST EST LA SORTIE DE FOQST
!
! FONCTION CALCULANT TENSION VAP (EEE) FN DE HUM SP (QQQ) ET PRS
FOEFQ(QQQ,PRS) = DMIN1(DBLE(PRS),(DBLE(QQQ)*DBLE(PRS)) / &
(DBLE(EPS1) + DBLE(EPS2)*DBLE(QQQ)))
!
! FONCTION CALCULANT HUM SP (QQQ) DE TENS. VAP (EEE) ET PRES (PRS)
FOQFE(EEE,PRS) = DMIN1(1.D0,DBLE(EPS1)*DBLE(EEE)/(DBLE(PRS)- &
DBLE(EPS2)*DBLE(EEE)))
!
! FONCTION CALCULANT TEMP VIRT. (TVI) DE TEMP (TTT) ET HUM SP (QQQ)
FOTVT(TTT,QQQ) = DBLE(TTT) * (1.0D0 + DBLE(DELTA)*DBLE(QQQ))
! FONCTION CALCULANT TEMP VIRT. (TVI) DE TEMP (TTT), HUM SP (QQQ) ET
! MASSE SP DES HYDROMETEORES.
FOTVHT(TTT,QQQ,QQH) = DBLE(TTT) * &
(1.0D0 + DBLE(DELTA)*DBLE(QQQ) - DBLE(QQH))
!
! FONCTION CALCULANT TTT DE TEMP VIRT. (TVI) ET HUM SP (QQQ)
FOTTV(TVI,QQQ) = DBLE(TVI) / (1.0D0 + DBLE(DELTA)*DBLE(QQQ))
! FONCTION CALCULANT TTT DE TEMP VIRT. (TVI), HUM SP (QQQ) ET
! MASSE SP DES HYDROMETEORES (QQH)
FOTTVH(TVI,QQQ,QQH) = DBLE(TVI) / &
(1.0D0 + DBLE(DELTA)*DBLE(QQQ) - DBLE(QQH))
!
! FONCTION CALCULANT HUM REL DE HUM SP (QQQ), TEMP (TTT) ET PRES (PRS)
! HR = E/ESAT
#if (DWORDSIZE == 8 && RWORDSIZE == 8)
FOHR(QQQ,TTT,PRS) = MIN( PRS ,FOEFQ(QQQ,PRS)) / FOEW(TTT)
#elif (DWORDSIZE == 8 && RWORDSIZE == 4)
FOHR(QQQ,TTT,PRS) = MIN(DBLE(PRS),FOEFQ(QQQ,PRS)) / FOEW(TTT)
#else
This is a temporary hack assuming double precision is 8 bytes.
#endif
!
! FONCTION CALCULANT LA CHALEUR LATENTE DE CONDENSATION
FOLV(TTT) =DBLE(CHLC) - 2317.D0*(DBLE(TTT)-DBLE(TRPL))
!
! FONCTION CALCULANT LA CHALEUR LATENTE DE SUBLIMATION
FOLS(TTT) = DBLE(CHLC)+DBLE(CHLF)+(DBLE(CPV)- &
(7.24D0*DBLE(TTT)+128.4D0))*(DBLE(TTT)-DBLE(TRPL))
!
! FONCTION RESOLVANT L'EQN. DE POISSON POUR LA TEMPERATURE
! NOTE: SI PF=1000*100, "FOPOIT" DONNE LE THETA STANDARD
FOPOIT(T00,PR0,PF)=DBLE(T00)*(DBLE(PR0)/DBLE(PF))** &
(-DBLE(CAPPA))
!
! FONCTION RESOLVANT L'EQN. DE POISSON POUR LA PRESSION
FOPOIP(T00,TF,PR0)=DBLE(PR0)*DEXP(-(DLOG(DBLE(T00)/DBLE(TF))/ &
DBLE(CAPPA)))
!
! LES 5 FONCTIONS SUIVANTES SONT VALIDES DANS LE CONTEXTE OU ON
! NE DESIRE PAS TENIR COMPTE DE LA PHASE GLACE DANS LES CALCULS
! DE SATURATION.
! FONCTION DE VAPEUR SATURANTE (TETENS)
FOEWA(TTT)=610.78D0*DEXP(17.269D0*(DBLE(TTT)-DBLE(TRPL))/ &
(DBLE(TTT)-35.86D0))
! FONCTION CALCULANT LA DERIVEE SELON T DE LN EW
FODLA(TTT)=17.269D0*(DBLE(TRPL)-35.86D0)/(DBLE(TTT)-35.86D0)**2
! FONCTION CALCULANT L'HUMIDITE SPECIFIQUE SATURANTE
FOQSA(TTT,PRS)=DBLE(EPS1)/(DMAX1(1.D0,DBLE(PRS)/FOEWA(TTT))- &
DBLE(EPS2))
! FONCTION CALCULANT LA DERIVEE DE QSAT SELON T
FODQA(QST,TTT)=DBLE(QST)*(1.D0+DBLE(DELTA)*DBLE(QST))*FODLA(TTT)
! FONCTION CALCULANT L'HUMIDITE RELATIVE
#if (DWORDSIZE == 8 && RWORDSIZE == 8)
FOHRA(QQQ,TTT,PRS)=MIN( PRS ,FOEFQ(QQQ,PRS))/FOEWA(TTT)
#elif (DWORDSIZE == 8 && RWORDSIZE == 4)
FOHRA(QQQ,TTT,PRS)=MIN(DBLE(PRS),FOEFQ(QQQ,PRS))/FOEWA(TTT)
#else
This is a temporary hack assuming double precision is 8 bytes.
#endif
!
!CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
!
! Definition of basic thermodynamic functions in mixed-phase mode
! FFF is the fraction of ice and DDFF its derivative w/r to T
! NOTE: S.I. units are used
! i.e. TTT in deg K, PRS in Pa
! *** J. Mailhot - Jan. 2000 ***
!
! Saturation calculations in presence of liquid phase only
! Function for saturation vapor pressure (TETENS)
FESI(TTT)=610.78D0*DEXP(21.875D0*(DBLE(TTT)-DBLE(TRPL))/ &
(DBLE(TTT)-7.66D0) )
FDLESI(TTT)=21.875D0*(DBLE(TRPL)-7.66D0)/(DBLE(TTT)-7.66D0)**2
FESMX(TTT,FFF) = (1.D0-DBLE(FFF))*FOEWA(TTT)+DBLE(FFF)*FESI(TTT)
FDLESMX(TTT,FFF,DDFF) = ( (1.D0-DBLE(FFF))*FOEWA(TTT)*FODLA(TTT) &
+ DBLE(FFF)*FESI(TTT)*FDLESI(TTT) &
+ DBLE(DDFF)*(FESI(TTT)-FOEWA(TTT)) )/FESMX(TTT,FFF)
FQSMX(TTT,PRS,FFF) = DBLE(EPS1)/ &
(DMAX1(1.D0,DBLE(PRS)/FESMX(TTT,FFF) ) - DBLE(EPS2) )
FDQSMX(QSM,DLEMX) = DBLE(QSM ) *(1.D0 + DBLE(DELTA)* DBLE(QSM ) ) &
* DBLE(DLEMX )
!
! ! !------------------------------------------------------------------------------!
!***** END of Replace 3 #includes (for WRF) ***
! Constants used for contact ice nucleation:
real, parameter :: LAMa0 = 6.6e-8 ![m] mean free path at T0 and p0 [W95_eqn58]
real, parameter :: T0 = 293.15 ![K] ref. temp.
real, parameter :: p0 = 101325. ![Pa] ref. pres.
real, parameter :: Ra = 1.e-6 ![m] aerosol (IN) radius [M92 p.713; W95_eqn60]
real, parameter :: kBoltz = 1.381e-23 !Boltzmann's constant
real, parameter :: KAPa = 5.39e5 !aerosol thermal conductivity
!Test switches:
logical, parameter :: iceDep_ON = .true. !.false. to suppress depositional growth of ice
logical, parameter :: grpl_ON = .true. !.false. to suppress graupel initiation
logical, parameter :: hail_ON = .true. !.false. to suppress hail initiation
logical, parameter :: rainAccr_ON = .true. ! rain accretion and self-collection ON/OFF
logical, parameter :: snowSpherical = .false. !.true.: m(D)=(pi/6)*const_des*D^3 | .false.: m(D)= 0.069*D^2
integer, parameter :: primIceNucl = 1 !1= Meyers+contact ; 2= Cooper
real, parameter :: outfreq = 60. !frequency to compute output diagnostics [s]
!Passed as physics namelist parameters:
! logical, parameter :: precipDiag_ON = .true. !.false. to suppress calc. of sfc precip types
! logical, parameter :: sedi_ON = .true. !.false. to suppress sedimentation
! logical, parameter :: warmphase_ON = .true. !.false. to suppress warm-phase (Part II)
! logical, parameter :: autoconv_ON = .true. ! autoconversion ON/OFF
! logical, parameter :: icephase_ON = .true. !.false. to suppress ice-phase (Part I)
! logical, parameter :: snow_ON = .true. !.false. to suppress snow initiation
! logical, parameter :: initN = .true. !.true. to initialize Nx of Qx>0 and Nx=0
real, dimension(size(QC,dim=1),size(QC,dim=2)) :: DE,iDE,DP,QSS,QSW,QSI,WZ,DZ,RHOQX,FLIM, &
VQQ,gamfact,gamfact_r,massFlux3D_r,massFlux3D_s
real, dimension(size(QC,dim=1)) :: fluxM_r,fluxM_i,fluxM_s,fluxM_g,fluxM_h, &
HPS,dum
integer, dimension(size(QC,dim=1)) :: activeColumn
!==================================================================================!
!----------------------------------------------------------------------------------!
! PART 1: Prelimiary Calculations !
!----------------------------------------------------------------------------------!
!-------------
!Convert N from #/kg to #/m3:
do k= 1,nk
do i= 1,ni
tmp1= S(i,k)*PSM(i)/(RGASD*TM(i,k)) !air density at time (t-1)
tmp2= S(i,k)*PS(i)/(RGASD*T(i,k)) !air density at time (*)
NCM(i,k)= NCM(i,k)*tmp1; NC(i,k)= NC(i,k)*tmp2
NRM(i,k)= NRM(i,k)*tmp1; NR(i,k)= NR(i,k)*tmp2
NYM(i,k)= NYM(i,k)*tmp1; NY(i,k)= NY(i,k)*tmp2
NNM(i,k)= NNM(i,k)*tmp1; NN(i,k)= NN(i,k)*tmp2
NGM(i,k)= NGM(i,k)*tmp1; NG(i,k)= NG(i,k)*tmp2
NHM(i,k)= NHM(i,k)*tmp1; NH(i,k)= NH(i,k)*tmp2
enddo
enddo
!=============
! The SSxx arrays are for passed to the volatile bus for output as 3-D diagnostic
! output variables, for testing purposes. For example, to output the
! instantanous value of the deposition rate, add 'SS01(i,k) = QVDvi' in the
! appropriate place. It can then be output as a 3-D physics variable by adding
! it to the sortie_p list in 'outcfgs.out'
SS01= 0.; SS02= 0.; SS03= 0.; SS04= 0.; SS05= 0.; SS06= 0.; SS07= 0.; SS08= 0.
SS09= 0.; SS10= 0.; SS11= 0.; SS12= 0.; SS13= 0.; SS14= 0.; SS15= 0.; SS16= 0.
SS17= 0.; SS18= 0.; SS19= 0.; SS20= 0.
!Determine the upper-most level in each column to which to compute sedimentation:
ktop_sedi= 0
do i=1,ni
do k=1,nk
ktop_sedi(i)= k
if (GZ(i,k)<gzMax_sedi) exit
enddo
enddo
!Compute diagnostic values only every 'outfreq' minutes:
!calcDiag= (mod(DT*float(KOUNT),outfreq)==0.)
calcDiag = .true. !compute diagnostics every step (for time-series output)
!#### These need only to be computed once per model integration:
! (note: These variables must be declared with the SAVE attribute)
! if (KOUNT==0) then
!*** For restarts, these values are not saved. Therefore, the condition statement
! must be modified to something like: IF (MOD(Step_rsti,KOUNT).eq.0) THEN
! in order that these be computed only on the first step of a given restart.
! (...to be done. For now, changing condition to IF(TRUE) to compute at each step.)
if (.TRUE.) then
PI2 = PI*2.
PIov4 = 0.25*PI
PIov6 = PI*sixth
CHLS = CHLC+CHLF !J k-1; latent heat of sublimation
LCP = CHLC/CPD
LFP = CHLF/CPD
iCHLF = 1./CHLF
LSP = LCP+LFP
ck5 = 4098.170*LCP
ck6 = 5806.485*LSP
idt = 1./dt
imgo = 1./mgo
idew = 1./dew
idei = 1./dei
ideg = 1./deg
ideh = 1./deh
!Constants based on size distribution parameters:
! Mass parameters [ m(D) = cD^d ]
cmr = PIov6*dew; icmr= 1./cmr
cmi = 440.; icmi= 1./cmi
cmg = PIov6*deg; icmg= 1./cmg
cmh = PIov6*deh; icmh= 1./cmh
cms_D3 = PIov6*desFix !used for snowSpherical = .T. or .F.
if (snowSpherical) then
cms = cms_D3
dms = 3.
else
! cms = 0.0690; dms = 2.000 !Cox, 1988 (QJRMS)
cms = 0.1597; dms = 2.078 !Brandes et al., 2007 (JAMC)
endif
icms = 1./cms
idms = 1./dms
mso = cms*Dso**dms
imso = 1./mso
!bulk density parameters: [rho(D) = eds*D^fds]
! These are implied by the mass-diameter parameters, by computing the bulk
! density of a sphere with the equaivalent mass.
! e.g. m(D) = cD^d = (pi/6)rhoD^3 and solve for rho(D)
eds = cms/PIov6
fds = dms-3.
if (fds/=-1. .and..not.snowSpherical) GS50= gamma
(1.+fds+alpha_s)
! Cloud:
iMUc = 1./MUc
GC1 = gamma
(alpha_c+1.0)
iGC1 = 1./GC1
GC2 = gamma
(alpha_c+1.+3.0*iMUc) !i.e. gamma(alf + 4)
GC3 = gamma
(alpha_c+1.+6.0*iMUc) !i.e. gamma(alf + 7)
GC4 = gamma
(alpha_c+1.+9.0*iMUc) !i.e. gamma(alf + 10)
GC11 = gamma
(1.0*iMUc+1.0+alpha_c)
GC12 = gamma
(2.0*iMUc+1.0+alpha_c)
GC5 = gamma
(1.0+alpha_c)
iGC5 = 1./GC5
GC6 = gamma
(1.0+alpha_c+1.0*iMUc)
GC7 = gamma
(1.0+alpha_c+2.0*iMUc)
GC8 = gamma
(1.0+alpha_c+3.0*iMUc)
GC13 = gamma
(3.0*iMUc+1.0+alpha_c)
GC14 = gamma
(4.0*iMUc+1.0+alpha_c)
GC15 = gamma
(5.0*iMUc+1.0+alpha_c)
icexc9 = 1./(GC2*iGC1*PIov6*dew)
!specify cloud droplet number concentration [m-3] based on 'CCNtype' (1-moment):
if (CCNtype==1) then
N_c_SM = 0.8e+8 !maritime
elseif (CCNtype==2) then
N_c_SM = 2.0e+8 !continental 1
elseif (CCNtype==3) then
N_c_SM = 5.0e+8 !continental 2 (polluted)
else
N_c_SM = 2.0e+8 !default (cont1), if 'CCNtype' specified incorrectly
endif
! Rain:
cexr1 = 1.+alpha_r+dmr+bfr
cexr2 = 1.+alpha_r+dmr
GR17 = gamma
(2.5+alpha_r+0.5*bfr)
GR31 = gamma
(1.+alpha_r)
iGR31 = 1./GR31
GR32 = gamma
(2.+alpha_r)
GR33 = gamma
(3.+alpha_r)
GR34 = gamma
(4.+alpha_r)
iGR34 = 1./GR34
GR35 = gamma
(5.+alpha_r)
GR36 = gamma
(6.+alpha_r)
GR37 = gamma
(7.+alpha_r)
GR50 = (No_r_SM*GR31)**0.75 !for 1-moment or Nr-initialization
cexr5 = 2.+alpha_r
cexr6 = 2.5+alpha_r+0.5*bfr
cexr9 = cmr*GR34*iGR31; icexr9= 1./cexr9
cexr3 = 1.+bfr+alpha_r
cexr4 = 1.+alpha_r
ckQr1 = afr*gamma(1.+alpha_r+dmr+bfr)/gamma(1.+alpha_r+dmr)
ckQr2 = afr*gamma(1.+alpha_r+bfr)*GR31
ckQr3 = afr*gamma(7.+alpha_r+bfr)/GR37
if (.not.dblMom_r) then
No_r = No_r_SM
endif
! Ice:
GI4 = gamma
(alpha_i+dmi+bfi)
GI6 = gamma
(2.5+bfi*0.5+alpha_i)
GI11 = gamma
(1.+bfi+alpha_i)
GI20 = gamma
(0.+bfi+1.+alpha_i)
GI21 = gamma
(1.+bfi+1.+alpha_i)
GI22 = gamma
(2.+bfi+1.+alpha_i)
GI31 = gamma
(1.+alpha_i)
iGI31 = 1./GI31
GI32 = gamma
(2.+alpha_i)
GI33 = gamma
(3.+alpha_i)
GI34 = gamma
(4.+alpha_i)
GI35 = gamma
(5.+alpha_i)
GI36 = gamma
(6.+alpha_i)
GI40 = gamma
(1.+alpha_i+dmi)
icexi9 = 1./(cmi*gamma(1.+alpha_i+dmi)*iGI31)
ckQi1 = afi*gamma(1.+alpha_i+dmi+bfi)/GI40
ckQi2 = afi*GI11*iGI31
ckQi4 = 1./(cmi*GI40*iGI31)
! Snow:
cexs1 = 2.5+0.5*bfs+alpha_s
cexs2 = 1.+alpha_s+dms
icexs2 = 1./cexs2
GS09 = gamma
(2.5+bfs*0.5+alpha_s)
GS11 = gamma
(1.+bfs+alpha_s)
GS12 = gamma
(2.+bfs+alpha_s)
GS13 = gamma
(3.+bfs+alpha_s)
GS31 = gamma
(1.+alpha_s)
iGS31 = 1./GS31
GS32 = gamma
(2.+alpha_s)
GS33 = gamma
(3.+alpha_s)
GS34 = gamma
(4.+alpha_s)
iGS34 = 1./GS34
GS35 = gamma
(5.+alpha_s)
GS36 = gamma
(6.+alpha_s)
GS40 = gamma
(1.+alpha_s+dms)
iGS40 = 1./GS40
iGS20 = 1./(GS40*iGS31*cms)
ckQs1 = afs*gamma(1.+alpha_s+dms+bfs)*iGS40
ckQs2 = afs*GS11*iGS31
GS40_D3 = gamma
(1.+alpha_s+3.)
iGS20_D3= 1./(GS40_D3*iGS31*cms_D3)
rfact_FvFm= PIov6*icms*gamma(4.+bfs+alpha_s)/gamma(1.+dms+bfs+alpha_s)
! Graupel:
GG09 = gamma
(2.5+0.5*bfg+alpha_g)
GG11 = gamma
(1.+bfg+alpha_g)
GG12 = gamma
(2.+bfg+alpha_g)
GG13 = gamma
(3.+bfg+alpha_g)
GG31 = gamma
(1.+alpha_g)
iGG31 = 1./GG31
GG32 = gamma
(2.+alpha_g)
GG33 = gamma
(3.+alpha_g)
GG34 = gamma
(4.+alpha_g)
iGG34 = 1./GG34
GG35 = gamma
(5.+alpha_g)
GG36 = gamma
(6.+alpha_g)
GG40 = gamma
(1.+alpha_g+dmg)
iGG99 = 1./(GG40*iGG31*cmg)
GG50 = (No_g_SM*GG31)**0.75 !for 1-moment only
ckQg1 = afg*gamma(1.+alpha_g+dmg+bfg)/GG40
ckQg2 = afg*GG11*iGG31
ckQg4 = 1./(cmg*GG40*iGG31)
! Hail:
GH09 = gamma
(2.5+bfh*0.5+alpha_h)
GH11 = gamma
(1.+bfh+alpha_h)
GH12 = gamma
(2.+bfh+alpha_h)
GH13 = gamma
(3.+bfh+alpha_h)
GH31 = gamma
(1.+alpha_h)
iGH31 = 1./GH31
GH32 = gamma
(2.+alpha_h)
GH33 = gamma
(3.+alpha_h)
iGH34 = 1./gamma(4.+alpha_h)
GH40 = gamma
(1.+alpha_h+dmh)
iGH99 = 1./(GH40*iGH31*cmh)
GH50 = (No_h_SM*GH31)**0.75 !for 1-moment only
ckQh1 = afh*gamma(1.+alpha_h+dmh+bfh)/GH40
ckQh2 = afh*GH11*iGH31
ckQh4 = 1./(cmh*GH40*iGH31)
endif !if (KOUNT=0)
!####
!=======================================================================================!
!Compute thickness of layers for sedimentation calcuation:
! (note; 'GZ' passed in is geopotential, not geopotential height)
tmp1= 1./GRAV
do k=2,nk
DZ(:,k)= (GZ(:,k-1)-GZ(:,k))*tmp1
enddo
DZ(:,1)= DZ(:,2)
! Temporarily store arrays at time (t*) in order to compute (at the end of subroutine)
! the final VXTEND as VXTEND = ( VX{t+1} - VX{t*} )/dt :
T_TEND = T ; Q_TEND = Q
QCTEND = QC; QRTEND = QR; QITEND = QI; QNTEND = QN; QGTEND = QG; QHTEND = QH
NCTEND = NC; NRTEND = NR; NYTEND = NY; NNTEND = NN; NGTEND = NG; NHTEND = NH
!- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -!
! Initialize Nx if Qx>0 and Nx=0: (for nesting from 1-moment to 2-moment):
IF (initN) THEN
do k= 1,nk
do i= 1,ni
tmp1= S(i,k)*PSM(i)/(RGASD*TM(i,k)) !air density at time (t-1)
tmp2= S(i,k)*PS(i)/(RGASD*T(i,k)) !air density at time (*)
!cloud:
if (QCM(i,k)>epsQ .and. NCM(i,k)<epsN) &
NCM(i,k)= N_c_SM
if (QC(i,k)>epsQ .and. NC(i,k)<epsN) &
NC(i,k) = N_c_SM
!rain
if (QRM(i,k)>epsQ .and. NRM(i,k)<epsN) &
NRM(i,k)= (No_r_SM*GR31)**(3./(4.+alpha_r))*(GR31*iGR34*tmp1*QRM(i,k)* &
icmr)**((1.+alpha_r)/(4.+alpha_r))
if (QR(i,k)>epsQ .and. NR(i,k)<epsN) &
NR(i,k)= (No_r_SM*GR31)**(3./(4.+alpha_r))*(GR31*iGR34*tmp2*QR(i,k)* &
icmr)**((1.+alpha_r)/(4.+alpha_r))
!ice:
if (QIM(i,k)>epsQ .and. NYM(i,k)<epsN) &
NYM(i,k)= N_Cooper
(TRPL,TM(i,k))
if (QI(i,k)>epsQ .and. NY(i,k)<epsN) &
NY(i,k)= N_Cooper
(TRPL,T(i,k))
!snow:
if (QNM(i,k)>epsQ .and. NNM(i,k)<epsN) then
No_s= Nos_Thompson
(TRPL,TM(i,k))
NNM(i,k)= (No_s*GS31)**(dms*icexs2)*(GS31*iGS40*icms*tmp1*QNM(i,k))** &
((1.+alpha_s)*icexs2)
endif
if (QN(i,k)>epsQ .and. NN(i,k)<epsN) then
No_s= Nos_Thompson
(TRPL,T(i,k))
NN(i,k)= (No_s*GS31)**(dms*icexs2)*(GS31*iGS40*icms*tmp2*QN(i,k))** &
((1.+alpha_s)*icexs2)
endif
!grpl:
if (QGM(i,k)>epsQ .and. NGM(i,k)<epsN) &
NGM(i,k)= (No_g_SM*GG31)**(3./(4.+alpha_g))*(GG31*iGG34*tmp1*QGM(i,k)* &
icmg)**((1.+alpha_g)/(4.+alpha_g))
if (QG(i,k)>epsQ .and. NG(i,k)<epsN) &
NG(i,k)= (No_g_SM*GG31)**(3./(4.+alpha_g))*(GG31*iGG34*tmp2*QG(i,k)* &
icmg)**((1.+alpha_g)/(4.+alpha_g))
!hail:
if (QHM(i,k)>epsQ .and. NHM(i,k)<epsN) &
NHM(i,k)= (No_h_SM*GH31)**(3./(4.+alpha_h))*(GH31*iGH34*tmp1*QHM(i,k)* &
icmh)**((1.+alpha_h)/(4.+alpha_h))
if (QH(i,k)>epsQ .and. NH(i,k)<epsN) &
NH(i,k)= (No_h_SM*GH31)**(3./(4.+alpha_h))*(GH31*iGH34*tmp2*QH(i,k)* &
icmh)**((1.+alpha_h)/(4.+alpha_h))
enddo !i-loop
enddo !k-loop
ENDIF !N-initialization
!- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -!
! Clip all moments to zero if one or more corresponding category moments are less than
! the minimum allowable value:
! (Note: Clipped mass is added back to water vapor field to conserve total mass)
do k= 1,nk
do i= 1,ni
IF (dblMom_c) THEN
if(QC(i,k)<epsQ .or. NC(i,k)<epsN) then
Q(i,k) = Q(i,k) + QC(i,k)
QC(i,k)= 0.; NC(i,k)= 0.
endif
if(QCM(i,k)<epsQ .or. NCM(i,k)<epsN) then
QM(i,k) = QM(i,k) + QCM(i,k)
QCM(i,k)= 0.; NCM(i,k)= 0.
endif
ELSE
if(QC(i,k)<epsQ) then
Q(i,k) = Q(i,k) + QC(i,k)
QC(i,k)= 0.
endif
if(QCM(i,k)<epsQ) then
QM(i,k) = QM(i,k) + QCM(i,k)
QCM(i,k)= 0.
endif
ENDIF
IF (dblMom_r) THEN
if (QR(i,k)<epsQ .or. NR(i,k)<epsN) then
Q(i,k) = Q(i,k) + QR(i,k)
QR(i,k)= 0.; NR(i,k)= 0.
endif
if (QRM(i,k)<epsQ .or. NRM(i,k)<epsN) then
QM(i,k) = QM(i,k) + QRM(i,k)
QRM(i,k)= 0.; NRM(i,k)= 0.
endif
ELSE
if (QR(i,k)<epsQ) then
Q(i,k) = Q(i,k) + QR(i,k)
QR(i,k)= 0.
endif
if (QRM(i,k)<epsQ) then
QM(i,k) = QM(i,k) + QRM(i,k)
QRM(i,k)= 0.
endif
ENDIF
IF (dblMom_i) THEN
if (QI(i,k)<epsQ .or. NY(i,k)<epsN) then
Q(i,k) = Q(i,k) + QI(i,k)
QI(i,k)= 0.; NY(i,k)= 0.
endif
if (QIM(i,k)<epsQ .or. NYM(i,k)<epsN) then
QM(i,k) = QM(i,k) + QIM(i,k)
QIM(i,k)= 0.; NYM(i,k)= 0.
endif
ELSE
if (QI(i,k)<epsQ) then
Q(i,k) = Q(i,k) + QI(i,k)
QI(i,k)= 0.
endif
if (QIM(i,k)<epsQ) then
QM(i,k) = QM(i,k) + QIM(i,k)
QIM(i,k)= 0.
endif
ENDIF
IF (dblMom_s) THEN
if (QN(i,k)<epsQ .or. NN(i,k)<epsN) then
Q(i,k) = Q(i,k) + QN(i,k)
QN(i,k)= 0.; NN(i,k)= 0.
endif
if (QNM(i,k)<epsQ .or. NNM(i,k)<epsN) then
QM(i,k) = QM(i,k) + QNM(i,k)
QNM(i,k)= 0.; NNM(i,k)= 0.
endif
ELSE
if (QN(i,k)<epsQ) then
Q(i,k) = Q(i,k) + QN(i,k)
QN(i,k)= 0.
endif
if (QNM(i,k)<epsQ) then
QM(i,k) = QM(i,k) + QNM(i,k)
QNM(i,k)= 0.
endif
ENDIF
IF (dblMom_g) THEN
if (QG(i,k)<epsQ .or. NG(i,k)<epsN) then
Q(i,k) = Q(i,k) + QG(i,k)
QG(i,k)= 0.; NG(i,k)= 0.
endif
if (QGM(i,k)<epsQ .or. NGM(i,k)<epsN) then
QM(i,k) = QM(i,k) + QGM(i,k)
QGM(i,k)= 0.; NGM(i,k)= 0.
endif
ELSE
if (QG(i,k)<epsQ) then
Q(i,k) = Q(i,k) + QG(i,k)
QG(i,k)= 0.
endif
if (QGM(i,k)<epsQ) then
QM(i,k) = QM(i,k) + QGM(i,k)
QGM(i,k)= 0.
endif
ENDIF
IF (dblMom_h) THEN
if (QH(i,k)<epsQ .or. NH(i,k)<epsN) then
Q(i,k) = Q(i,k) + QH(i,k)
QH(i,k)= 0.; NH(i,k)= 0.
endif
if (QHM(i,k)<epsQ .or. NHM(i,k)<epsN) then
QM(i,k) = QM(i,k) + QHM(i,k)
QHM(i,k)= 0.; NHM(i,k)= 0.
endif
ELSE
if (QH(i,k)<epsQ) then
Q(i,k) = Q(i,k) + QH(i,k)
QH(i,k)= 0.
endif
if (QHM(i,k)<epsQ) then
QM(i,k) = QM(i,k) + QHM(i,k)
QHM(i,k)= 0.
endif
ENDIF
enddo !i-loop
enddo !k-loop; (clipping)
QM = max(QM,0.)
Q = max(Q ,0.)
!- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -!
! Approximate values at time {t}:
! [ ave. of values at {*} (advected, but no physics tendency added) and {t-dt} ]:
HPS= 0.5*(PSM+PS); TM = 0.5*(TM + T); QM = 0.5*(QM + Q)
QCM= 0.5*(QCM+QC); QRM= 0.5*(QRM+QR); QIM= 0.5*(QIM+QI)
QNM= 0.5*(QNM+QN); QGM= 0.5*(QGM+QG); QHM= 0.5*(QHM+QH)
if (dblMom_c) NCM= 0.5*(NCM+NC)
if (dblMom_r) NRM= 0.5*(NRM+NR)
if (dblMom_i) NYM= 0.5*(NYM+NY)
if (dblMom_s) NNM= 0.5*(NNM+NN)
if (dblMom_g) NGM= 0.5*(NGM+NG)
if (dblMom_h) NHM= 0.5*(NHM+NH)
do k=1,nk
do i=1,ni
!WRF:
#if (DWORDSIZE == 8 && RWORDSIZE == 8)
QSW(i,k)= FOQSA(TM(i,k),HPS(i)*S(i,k)) !wrt. liquid water at (t)
QSS(i,k)= FOQST( T(i,k), PS(i)*S(i,k)) !wrt. ice surface at (*)
QSI(i,k)= FOQST(TM(i,k),HPS(i)*S(i,k)) !wrt. ice surface at (t)
#elif (DWORDSIZE == 8 && RWORDSIZE == 4)
QSW(i,k)= sngl(FOQSA(TM(i,k),HPS(i)*S(i,k))) !wrt. liquid water at (t)
QSS(i,k)= sngl(FOQST( T(i,k), PS(i)*S(i,k))) !wrt. ice surface at (*)
QSI(i,k)= sngl(FOQST(TM(i,k),HPS(i)*S(i,k))) !wrt. ice surface at (t)
#else
!! This is a temporary hack assuming double precision is 8 bytes.
#endif
!Air density at time (t)
DE(i,k) = S(i,k)*HPS(i)/(RGASD*TM(i,k)) !air density at time (t)
iDE(i,k)= 1./DE(i,k)
enddo
enddo
do i= 1,ni
!Air-density factor: (for fall velocity computations)
DEo = DE(i,nk)
gamfact(i,:) = sqrt(DEo/(DE(i,:)))
gamfact_r(i,:)= sqrt( 1./(DE(i,:)))
!Convert 'W_omega' (on thermodynamic levels) to 'w' (on momentum):
do k= 2,nk-1
WZ(i,k)= -0.5/(DE(i,k)*GRAV)*(W_omega(i,k-1)+W_omega(i,k+1))
enddo
WZ(i,1) = -0.5/(DE(i,1) *GRAV)*W_omega(i,1)
WZ(i,nk)= -0.5/(DE(i,nk)*GRAV)*W_omega(i,nk)
enddo
!----------------------------------------------------------------------------------!
! End of Preliminary Calculation section (Part 1) !
!----------------------------------------------------------------------------------!
!----------------------------------------------------------------------------------!
! PART 2: Cold Microphysics Processes !
!----------------------------------------------------------------------------------!
! Determine the active grid points (i.e. those which scheme should treat):
activePoint = .false.
DO k=2,nk
DO i=1,ni
log1= ((QIM(i,k)+QGM(i,k)+QNM(i,k)+QHM(i,k))<epsQ) !no solid (i,g,s,h)
log2= ((QCM(i,k)+QRM(i,k)) <epsQ) !no liquid (c,r)
log3= ((TM(i,k)>TRPL) .and. log1) !T>0C & no i,g,s,h
log4= log1.and.log2.and.(QM(i,k)<QSI(i,k)) !no sol. or liq.; subsat(i)
if (.not.( log3 .or. log4 ) .and. icephase_ON) then
activePoint(i,k)= .true.
endif
ENDDO
ENDDO
! Size distribution parameters:
! Note: + 'thrd' should actually be '1/dmx'(but dmx=3 for all categories x)
! + If Qx=0, LAMx etc. are never be used in any calculations
! (If Qc=0, CLcy etc. will never be calculated. iLAMx is set to 0
! to avoid possible problems due to bugs.)
DO k= 2,nk !Main loop for Part 2
DO i= 1,ni
IF (activePoint(i,k)) THEN
Tc= TM(i,k)-TRPL
if (Tc<-120. .or. Tc>50.) &
print*, '***WARNING*** -- In MICROPHYSICS -- Ambient Temp.(C):',Tc
Cdiff = (2.2157e-5+0.0155e-5*Tc)*1.e5/(S(i,k)*HPS(i))
MUdyn = 1.72e-5*(393./(TM(i,k)+120.))*(TM(i,k)/TRPL)**1.5 !RYp.102
MUkin = MUdyn*iDE(i,k)
iMUkin= 1./MUkin
ScTHRD= (MUkin/Cdiff)**thrd ! i.e. Sc^(1/3)
Ka = 2.3971e-2 + 0.0078e-2*Tc !therm.cond.(air)
Kdiff = (9.1018e-11*TM(i,k)*TM(i,k)+8.8197e-8*TM(i,k)-(1.0654e-5)) !therm.diff.(air)
gam = gamfact(i,k)
!Collection efficiencies:
Eis = min(0.05*exp(0.1*Tc),1.) !Ferrier, 1995 (Table 1)
Eig = min(0.01*exp(0.1*Tc),1.) !dry (Eig=1.0 for wet growth)
Eii = 0.1*Eis
Ess = Eis; Eih = Eig; Esh = Eig
iEih = 1./Eih
iEsh = 1./Esh
!note: Eri=Ers=Erh=1. (constant parameters)
! - Ecs is computed in CLcs section
! - Ech is computed in CLch section
! - Ecg is computed in CLcg section
! - Erg is computed in CLrg section
!WRF:
#if (DWORDSIZE == 8 && RWORDSIZE == 8)
qvs0 = FOQSA(TRPL,HPS(i)*S(i,k)) !sat.mix.ratio at 0C
#elif (DWORDSIZE == 8 && RWORDSIZE == 4)
qvs0 = sngl(FOQSA(TRPL,HPS(i)*S(i,k))) !sat.mix.ratio at 0C
#else
!! This is a temporary hack assuming double precision is 8 bytes.
#endif
DELqvs= qvs0-(QM(i,k))
! Cloud:
if (QCM(i,k)>epsQ) then
if (.not. dblMom_c) NCM(i,k)= N_c_SM
iQCM = 1./QCM(i,k)
iNCM = 1./NCM(i,k)
Dc = Dm_x
(DE(i,k),QCM(i,k),iNCM,icmr,thrd)
iLAMc = iLAMDA_x
(DE(i,k),QCM(i,k),iNCM,icexc9,thrd)
iLAMc2 = iLAMc *iLAMc
iLAMc3 = iLAMc2*iLAMc
iLAMc4 = iLAMc2*iLAMc2
iLAMc5 = iLAMc3*iLAMc2
else
Dc = 0.; iLAMc3= 0.
iLAMc = 0.; iLAMc4= 0.
iLAMc2 = 0.; iLAMc5= 0.
endif
! Rain:
if (QRM(i,k)>epsQ) then
if (.not. dblMom_r) NRM(i,k)= GR50*sqrt(sqrt(GR31*iGR34*DE(i,k)*QRM(i,k)*icmr))
iQRM = 1./QRM(i,k)
iNRM = 1./NRM(i,k)
Dr = Dm_x
(DE(i,k),QRM(i,k),iNRM,icmr,thrd)
iLAMr = max( iLAMmin1, iLAMDA_x(DE(i,k),QRM(i,k),iNRM,icexr9,thrd) )
tmp1 = 1./iLAMr
iLAMr2 = iLAMr *iLAMr
iLAMr3 = iLAMr2*iLAMr
iLAMr4 = iLAMr2*iLAMr2
iLAMr5 = iLAMr3*iLAMr2
if (Dr>40.e-6) then
vr0 = gamfact_r(i,k)*ckQr1*iLAMr**bfr
else
vr0 = 0.
endif
else
iLAMr = 0.; Dr = 0.; vr0 = 0.
iLAMr2 = 0.; iLAMr3= 0.; iLAMr4= 0.; iLAMr5 = 0.
endif
! Ice:
if (QIM(i,k)>epsQ) then
if (.not. dblMom_i) NYM(i,k)= N_Cooper
(TRPL,TM(i,k))
iQIM = 1./QIM(i,k)
iNYM = 1./NYM(i,k)
iLAMi = max( iLAMmin2, iLAMDA_x(DE(i,k),QIM(i,k),iNYM,icexi9,thrd) )
iLAMi2 = iLAMi *iLAMi
iLAMi3 = iLAMi2*iLAMi
iLAMi4 = iLAMi2*iLAMi2
iLAMi5 = iLAMi3*iLAMi2
iLAMiB0= iLAMi**(bfi)
iLAMiB1= iLAMi**(bfi+1.)
iLAMiB2= iLAMi**(bfi+2.)
vi0 = gamfact(i,k)*ckQi1*iLAMiB0
Di = Dm_x
(DE(i,k),QIM(i,k),iNYM,icmi,thrd)
else
iLAMi = 0.; vi0 = 0.; Di = 0.
iLAMi2 = 0.; iLAMi3 = 0.; iLAMi4 = 0.; iLAMi5= 0.
iLAMiB0= 0.; iLAMiB1= 0.; iLAMiB2= 0.
endif
! Snow:
if (QNM(i,k)>epsQ) then
if (.not.dblMom_s) then
No_s_SM = Nos_Thompson
(TRPL,TM(i,k))
NNM(i,k)= (No_s*GS31)**(dms*icexs2)*(GS31*iGS40*icms*DE(i,k)*QNM(i,k))** &
((1.+alpha_s)*icexs2)
endif
iQNM = 1./QNM(i,k)
iNNM = 1./NNM(i,k)
iLAMs = max( iLAMmin2, iLAMDA_x(DE(i,k),QNM(i,k),iNNM,iGS20,idms) )
iLAMs_D3= max(iLAMmin2, iLAMDA_x(DE(i,k),QNM(i,k),iNNM,iGS20_D3,thrd) )
iLAMs2 = iLAMs*iLAMs
iLAMsB0= iLAMs**(bfs)
iLAMsB1= iLAMs**(bfs+1.)
iLAMsB2= iLAMs**(bfs+2.)
vs0 = gamfact(i,k)*ckQs1*iLAMsB0
Ds = min(DsMax, Dm_x(DE(i,k),QNM(i,k),iNNM,icms,idms))
if (snowSpherical) then
des = desFix
else
des = des_OF_Ds
(Ds,desMax,eds,fds)
endif
!!-- generalized equations (any alpha_s):
! No_s = (NNM(i,k))*iGS31/iLAMs**(1.+alpha_s)
! VENTs = Avx*GS32*iLAMs**(2.+alpha_s)+Bvx*ScTHRD*sqrt(gam*afs*iMUkin)* &
!!-- GS09*iLAMs**(2.5+0.5*bfs+alpha_s)
!The following equations for No_s and VENTs is based on m(D)=(pi/6)*100.*D**3 for snow.
! Strict application of m(D)=c*D**2 would require re-derivation using implied
! definition of D as the MAXIMUM DIMENSION of an ellipsoid, rather than a sphere.
! For simplicity, the m-D^3 relation is applied -- used for VDvs and MLsr only.
if (dblMom_s) then
!No_s= NNM(i,k)*iGS31/iLAMs !optimized for alpha_s=0
No_s= NNM(i,k)*iGS31/iLAMs_D3 !based on m-D^3 (consistent with VENTs, below)
else
No_s= No_s_SM
endif
VENTs= Avx*GS32*iLAMs_D3**2. + Bvx*ScTHRD*sqrt(gamfact(i,k)*afs*iMUkin)*GS09* &
iLAMs_D3**cexs1
else
iLAMs = 0.; vs0 = 0.; Ds = 0.; iLAMs2= 0.
iLAMsB0= 0.; iLAMsB1= 0.; iLAMsB1= 0.
des = desFix !used for 3-component freezing if QNM=0 (even for snowSpherical=.F.)
endif
ides = 1./des
! Graupel:
if (QGM(i,k)>epsQ) then
if (.not.dblMom_g) NGM(i,k)= GG50*sqrt(sqrt(GG31*GG34*DE(i,k)*QGM(i,k)*icmg))
iQGM = 1./QGM(i,k)
iNGM = 1./NGM(i,k)
iLAMg = max( iLAMmin1, iLAMDA_x(DE(i,k),QGM(i,k),iNGM,iGG99,thrd) )
iLAMg2 = iLAMg *iLAMg
iLAMgB0= iLAMg**(bfg)
iLAMgB1= iLAMg**(bfg+1.)
iLAMgB2= iLAMg**(bfg+2.)
if (dblMom_g) then
!No_g = (NGM(i,k))*iGG31/iLAMg**(1.+alpha_g)
No_g= NGM(i,k)*iGG31/iLAMg !optimized for alpha_g=0
else
No_g= No_g_SM
endif
vg0 = gamfact(i,k)*ckQg1*iLAMgB0
Dg = Dm_x
(DE(i,k),QGM(i,k),iNGM,icmg,thrd)
else
iLAMg = 0.; vg0 = 0.; Dg = 0.; No_g = 0.
iLAMg2 = 0.; iLAMgB0= 0.; iLAMgB1= 0.; iLAMgB1= 0.
endif
! Hail:
if (QHM(i,k)>epsQ) then
if (.not.dblMom_h) NHM(i,k)= GH50*sqrt(sqrt(GH31*iGH34*DE(i,k)*QHM(i,k)*icmh))
iQHM = 1./QHM(i,k)
iNHM = 1./NHM(i,k)
iLAMh = max( iLAMmin1, iLAMDA_x(DE(i,k),QHM(i,k),iNHM,iGH99,thrd) )
iLAMh2 = iLAMh*iLAMh
iLAMhB0= iLAMh**(bfh)
iLAMhB1= iLAMh**(bfh+1.)
iLAMhB2= iLAMh**(bfh+2.)
if (dblMom_h) then
No_h= NHM(i,k)*iGH31/iLAMh**(1.+alpha_h)
else
No_h= No_h_SM
endif
vh0 = gamfact(i,k)*ckQh1*iLAMhB0
Dh = Dm_x
(DE(i,k),QHM(i,k),iNHM,icmh,thrd)
else
iLAMh = 0.; vh0 = 0.; Dh = 0.; No_h= 0.
iLAMhB0= 0.; iLAMhB1= 0.; iLAMhB1= 0.
endif
!------
!Calculating ice-phase source/sink terms:
! Initialize all source terms to zero:
QNUvi=0.; QVDvi=0.; QVDvs=0.; QVDvg=0.; QVDvh=0.
QCLcs=0.; QCLcg=0.; QCLch=0.; QFZci=0.; QCLri=0.; QMLsr=0.
QCLrs=0.; QCLrg=0.; QMLgr=0.; QCLrh=0.; QMLhr=0.; QFZrh=0.
QMLir=0.; QCLsr=0.; QCLsh=0.; QCLgr=0.; QCNgh=0.
QCNis=0.; QCLir=0.; QCLis=0.; QCLih=0.
QIMsi=0.; QIMgi=0.; QCNsg=0.; QHwet=0.
NCLcs= 0.; NCLcg=0.; NCLch=0.; NFZci=0.; NMLhr=0.; NhCNgh=0.
NCLri= 0.; NCLrs=0.; NCLrg=0.; NCLrh=0.; NMLsr=0.; NMLgr=0.
NMLir= 0.; NSHhr=0.; NNUvi=0.; NVDvi=0.; NVDvh=0.; QCLig=0.
NCLir= 0.; NCLis=0.; NCLig=0.; NCLih=0.; NIMsi=0.; NIMgi=0.
NiCNis=0.; NsCNis=0.; NVDvs=0.; NCNsg=0.; NCLgr=0.; NCLsrh=0.
NCLss= 0.; NCLsr=0.; NCLsh=0.; NCLsrs=0.; NCLgrg=0.; NgCNgh=0.
NVDvg= 0.; NCLirg=0.; NCLsrg=0.; NCLgrh=0.; NrFZrh=0.; NhFZrh=0.
NCLirh=0.
Dirg=0.; Dirh=0.; Dsrs= 0.; Dsrg= 0.; Dsrh= 0.; Dgrg=0.; Dgrh=0.
!-------------------------------------------------------------------------------------------!
! COLLECTION by snow, graupel, hail:
! (i.e. wet or dry ice-categories [=> excludes ice crystals])
! Collection by SNOW:
if (QNM(i,k)>epsQ) then
! cloud:
if (QCM(i,k)>epsQ) then
!Approximation of Ecs based on Pruppacher & Klett (1997) Fig. 14-11
Ecs= min(Dc,30.e-6)*3.333e+4*sqrt(min(Ds,1.e-3)*1.e+3)
QCLcs= dt*gam*afs*cmr*Ecs*PIov4*iDE(i,k)*(NCM(i,k)*NNM(i,k))*iGC5*iGS31* &
(GC13*GS13*iLAMc3*iLAMsB2+2.*GC14*GS12*iLAMc4*iLAMsB1+GC15*GS11* &
iLAMc5*iLAMsB0)
NCLcs= dt*gam*afs*PIov4*Ecs*(NCM(i,k)*NNM(i,k))*iGC5*iGS31*(GC5*GS13* &
iLAMsB2+2.*GC11*GS12*iLAMc*iLAMsB1+GC12*GS11*iLAMc2*iLAMsB0)
!continuous collection: (alternative; gives values ~0.95 of SCE [above])
!QCLcs= dt*gam*Ecs*PIov4*afs*QCM(i,k)*NNM(i,k)*iLAMs**(2.+bfs)*GS13*iGS31
!NCLcs= QCLcs*NCM(i,k)/QCM(i,k)
!Correction factor for non-spherical snow [D = maximum dimension] which
!changes projected area: [assumption: A=0.50*D**2 (vs. A=(PI/4)*D**2)]
! note: Strictly speaking, this correction should only be applied to
! continuous growth approximation for cloud. [factor = 0.50/(pi/4)]
if (.not. snowSpherical) then
tmp1 = 0.6366 !factor = 0.50/(pi/4)
QCLcs= tmp1*QCLcs
NCLcs= tmp1*NCLcs
endif
QCLcs= min(QCLcs, QCM(i,k))
NCLcs= min(NCLcs, NCM(i,k))
else
QCLcs= 0.; NCLcs= 0.
endif
! ice:
if (QIM(i,k)>epsQ) then
tmp1= vs0-vi0
tmp3= sqrt(tmp1*tmp1+0.04*vs0*vi0)
QCLis= dt*cmi*iDE(i,k)*PI*6.*Eis*(NYM(i,k)*NNM(i,k))*tmp3*iGI31*iGS31*(0.5* &
iLAMs2*iLAMi3+2.*iLAMs*iLAMi4+5.*iLAMi5)
NCLis= dt*PIov4*Eis*(NYM(i,k)*NNM(i,k))*GI31*GS31*tmp3*(GI33*GS31*iLAMi2+ &
2.*GI32*GS32*iLAMi*iLAMs+GI31*GS33*iLAMs2)
QCLis= min(QCLis, (QIM(i,k)))
NCLis= min(QCLis*(NYM(i,k)*iQIM), NCLis)
else
QCLis= 0.; NCLis= 0.
endif
if (dblMom_s) then
!snow: (i.e. self-collection [aggregation])
NCLss= dt*0.93952*Ess*(DE(i,k)*(QNM(i,k)))**((2.+bfs)*thrd)*(NNM(i,k))** &
((4.-bfs)*thrd)
!Note: 0.91226 = I(bfs)*afs*PI^((1-bfs)/3)*des^((-2-bfs)/3); I(bfs=0.41)=1138
! 0.93952 = I(bfs)*afs*PI^((1-bfs)/3)*des^((-2-bfs)/3); I(bfs=0.42)=1172
! [interpolated from 3rd-order polynomial approx. of values given in RRB98;
! see eqn(A.35)]
NCLss= min(NCLss, 0.5*(NNM(i,k)))
endif
else
QCLcs= 0.; NCLcs= 0.; QCLis= 0.; NCLis= 0.; NCLss= 0.
endif
! Collection by GRAUPEL:
if (QGM(i,k)>epsQ) then
! cloud:
if (QCM(i,k)>epsQ) then
!(parameterization of Ecg based on Cober and List, 1993 [JAS])
Kstoke = dew*vg0*Dc*Dc/(9.*MUdyn*Dg)
Kstoke = max(1.5,min(10.,Kstoke))
Ecg = 0.55*log10(2.51*Kstoke)
QCLcg= dt*gam*afg*cmr*Ecg*PIov4*iDE(i,k)*(NCM(i,k)*NGM(i,k))*iGC5*iGG31* &
(GC13*GG13*iLAMc3*iLAMgB2+ 2.*GC14*GG12*iLAMc4*iLAMgB1+GC15*GG11* &
iLAMc5*iLAMgB0)
NCLcg= dt*gam*afg*PIov4*Ecg*(NCM(i,k)*NGM(i,k))*iGC5*iGG31*(GC5*GG13* &
iLAMgB2+2.*GC11*GG12*iLAMc*iLAMgB1+GC12*GG11*iLAMc2*iLAMgB0)
QCLcg= min(QCLcg, (QCM(i,k)))
NCLcg= min(NCLcg, (NCM(i,k)))
else
QCLcg= 0.; NCLcg= 0.
endif
! ice:
if (QIM(i,k)>epsQ) then
tmp1= vg0-vi0
tmp3= sqrt(tmp1*tmp1+0.04*vg0*vi0)
QCLig= dt*cmi*iDE(i,k)*PI*6.*Eig*(NYM(i,k)*NGM(i,k))*tmp3*iGI31*iGG31*(0.5* &
iLAMg2*iLAMi3+2.*iLAMg*iLAMi4+5.*iLAMi5)
NCLig= dt*PIov4*Eig*(NYM(i,k)*NGM(i,k))*GI31*GG31*tmp3*(GI33*GG31*iLAMi2+ &
2.*GI32*GG32*iLAMi*iLAMg+GI31*GG33*iLAMg2)
QCLig= min(QCLig, (QIM(i,k)))
NCLig= min(QCLig*(NYM(i,k)*iQIM), NCLig)
else
QCLig= 0.; NCLig= 0.
endif
else
QCLcg= 0.; QCLrg= 0.; QCLig= 0.
NCLcg= 0.; NCLrg= 0.; NCLig= 0.
endif
! Collection by HAIL:
if (QHM(i,k)>epsQ) then
! cloud:
if (QCM(i,k)>epsQ) then
Ech = exp(-8.68e-7*Dc**(-1.6)*Dh) !Ziegler (1985) A24
QCLch= dt*gam*afh*cmr*Ech*PIov4*iDE(i,k)*(NCM(i,k)*NHM(i,k))*iGC5*iGH31* &
(GC13*GH13*iLAMc3*iLAMhB2+2.*GC14*GH12*iLAMc4*iLAMhB1+GC15*GH11* &
iLAMc5*iLAMhB0)
NCLch= dt*gam*afh*PIov4*Ech*(NCM(i,k)*NHM(i,k))*iGC5*iGH31*(GC5*GH13* &
iLAMhB2+2.*GC11*GH12*iLAMc*iLAMhB1+GC12*GH11*iLAMc2*iLAMhB0)
QCLch= min(QCLch, QCM(i,k))
NCLch= min(NCLch, NCM(i,k))
else
QCLch= 0.; NCLch= 0.
endif
! rain:
if (QRM(i,k)>epsQ) then
tmp1= vh0-vr0
tmp3= sqrt(tmp1*tmp1+0.04*vh0*vr0)
QCLrh= dt*cmr*Erh*PIov4*iDE(i,k)*(NHM(i,k)*NRM(i,k))*iGR31*iGH31*tmp3* &
(GR36*GH31*iLAMr5+2.*GR35*GH32*iLAMr4*iLAMh+GR34*GH33*iLAMr3*iLAMh2)
NCLrh= dt*PIov4*Erh*(NHM(i,k)*NRM(i,k))*iGR31*iGH31*tmp3*(GR33*GH31* &
iLAMr2+2.*GR32*GH32*iLAMr*iLAMh+GR31*GH33*iLAMh2)
QCLrh= min(QCLrh, QRM(i,k))
NCLrh= min(NCLrh, QCLrh*(NRM(i,k)*iQRM))
else
QCLrh= 0.; NCLrh= 0.
endif
! ice:
if (QIM(i,k)>epsQ) then
tmp1 = vh0-vi0
tmp3 = sqrt(tmp1*tmp1+0.04*vh0*vi0)
QCLih= dt*cmi*iDE(i,k)*PI*6.*Eih*(NYM(i,k)*NHM(i,k))*tmp3*iGI31*iGH31*(0.5* &
iLAMh2*iLAMi3+2.*iLAMh*iLAMi4+5.*iLAMi5)
NCLih= dt*PIov4*Eih*(NYM(i,k)*NHM(i,k))*GI31*GH31*tmp3*(GI33*GH31*iLAMi2+ &
2.*GI32*GH32*iLAMi*iLAMh+GI31*GH33*iLAMh2)
QCLih= min(QCLih, QIM(i,k))
NCLih= min(QCLih*(NYM(i,k)*iQIM), NCLih)
else
QCLih= 0.; NCLih= 0.
endif
! snow:
if (QNM(i,k)>epsQ) then
tmp1 = vh0-vs0
tmp3 = sqrt(tmp1*tmp1+0.04*vh0*vs0)
tmp4 = iLAMs2*iLAMs2
if (snowSpherical) then
!hardcoded for dms=3:
QCLsh= dt*cms*iDE(i,k)*PI*6.*Esh*(NNM(i,k)*NHM(i,k))*tmp3*iGS31*iGH31* &
(0.5*iLAMh2*iLAMs2*iLAMs+2.*iLAMh*tmp4+5.*tmp4*iLAMs)
else
!hardcoded for dms=2:
QCLsh= dt*cms*iDE(i,k)*PI*0.25*Esh*tmp3*NNM(i,k)*NHM(i,k)*iGS31*iGH31* &
(GH33*GS33*iLAMh**2.*iLAMs**2. + 2.*GH32*GS34*iLAMh*iLAMs**3. + &
GH31*GS35*iLAMs**4.)
endif
NCLsh= dt*PIov4*Esh*(NNM(i,k)*NHM(i,k))*GS31*GH31*tmp3*(GS33*GH31*iLAMs2+ &
2.*GS32*GH32*iLAMs*iLAMh+GS31*GH33*iLAMh2)
QCLsh= min(QCLsh, (QNM(i,k)))
NCLsh= min((NNM(i,k)*iQNM)*QCLsh, NCLsh, (NNM(i,k)))
else
QCLsh= 0.; NCLsh= 0.
endif
!wet growth:
VENTh= Avx*GH32*iLAMh**(2.+alpha_h) + Bvx*ScTHRD*sqrt(gam*afh*iMUkin)*GH09* &
iLAMh**(2.5+0.5*bfh+alpha_h)
QHwet= max(0., dt*PI2*(DE(i,k)*CHLC*Cdiff*DELqvs-Ka*Tc)*No_h*iDE(i,k)/(CHLF+ &
CPW*Tc)*VENTh+(QCLih*iEih+QCLsh*iEsh)*(1.-CPI*Tc/(CHLF+CPW*Tc)) )
else
QCLch= 0.; QCLrh= 0.; QCLih= 0.; QCLsh= 0.; QHwet= 0.
NCLch= 0.; NCLrh= 0.; NCLsh= 0.; NCLih= 0.
endif
IF (TM(i,k)>TRPL .and. warmphase_ON) THEN
!**********!
! T > To !
!**********!
! MELTING of frozen particles:
! ICE:
QMLir = QIM(i,k) !all pristine ice melts in one time step
QIM(i,k)= 0.
NMLir = NYM(i,k)
! SNOW:
if (QNM(i,k)>epsQ) then
QMLsr= dt*(PI2*iDE(i,k)*iCHLF*No_s*VENTs*(Ka*Tc-CHLC*Cdiff*DELqvs) + CPW* &
iCHLF*Tc*(QCLcs+QCLrs)*idt)
QMLsr= min(max(QMLsr,0.), QNM(i,k))
NMLsr= NNM(i,k)*iQNM*QMLsr
else
QMLsr= 0.; NMLsr= 0.
endif
! GRAUPEL:
if (QGM(i,k)>epsQ) then
VENTg= Avx*GG32*iLAMg*iLAMg+Bvx*ScTHRD*sqrt(gam*afg*iMUkin)*GG09*iLAMg** &
(2.5+0.5*bfg+alpha_g)
QMLgr= dt*(PI2*iDE(i,k)*iCHLF*No_g*VENTg*(Ka*Tc-CHLC*Cdiff*DELqvs) + CPW* &
iCHLF*Tc*(QCLcg+QCLrg)*idt)
QMLgr= min(max(QMLgr,0.), QGM(i,k))
NMLgr= NGM(i,k)*iQGM*QMLgr
else
QMLgr= 0.; NMLgr= 0.
endif
! HAIL:
if (QHM(i,k)>epsQ.and.Tc>5.) then
VENTh= Avx*GH32*iLAMh**(2.+alpha_h) + Bvx*ScTHRD*sqrt(gam*afh*iMUkin)*GH09* &
iLAMh**(2.5+0.5*bfh+alpha_h)
QMLhr= dt*(PI2*iDE(i,k)*iCHLF*No_h*VENTh*(Ka*Tc-CHLC*Cdiff*DELqvs) + CPW/ &
CHLF*Tc*(QCLch+QCLrh)*idt)
QMLhr= min(max(QMLhr,0.), QHM(i,k))
NMLhr= NHM(i,k)*iQHM*QMLhr
if(QCLrh>0.) NMLhr= NMLhr*0.1 !Prevents problems when hail is ML & CL
else
QMLhr= 0.; NMLhr= 0.
endif
! Cold (sub-zero) source/sink terms:
QNUvi= 0.; QFZci= 0.; QVDvi= 0.; QVDvs= 0.; QVDvg= 0.
QCLis= 0.; QCNis1=0.; QCNis2=0.
QCNgh= 0.; QIMsi= 0.; QIMgi= 0.; QCLir= 0.; QCLri= 0.
QCLrs= 0.; QCLgr= 0.; QCLrg= 0.; QCNis= 0.; QVDvh= 0.
QCNsg= 0.; QCLsr= 0.
NNUvi= 0.; NFZci= 0.; NCLgr= 0.; NCLrg= 0.; NgCNgh= 0.
NCLis= 0.; NVDvi= 0.; NVDvs= 0.; NVDvg= 0.; NVDvh= 0.
NCNsg= 0.; NhCNgh= 0.; NiCNis=0.; NsCNis=0.; NCLrs= 0.
NIMsi= 0.; NIMgi= 0.; NCLir= 0.; NCLri= 0.; NCLsr= 0.
ELSE
!----------!
! T < To !
!----------!
tmp1 = 1./QSI(i,k)
Si = QM(i,k) *tmp1
tmp2 = TM(i,k)*TM(i,k)
iABi = 1./( CHLS*CHLS/(Ka*RGASV*tmp2) + 1./(DE(i,k)*(QSI(i,k))*Cdiff) )
! Warm-air-only source/sink terms:
QMLir= 0.; QMLsr= 0.; QMLgr= 0.; QMLhr= 0.
NMLir= 0.; NMLsr= 0.; NMLgr= 0.; NMLhr= 0.
!Probabilistic freezing (Bigg) of rain:
if (Tc<Tc_FZrh .and. QRM(i,k)>epsQ .and. hail_ON) then
!note: - (Tc<-10.C) condition is based on Pruppacher-Klett (1997) Fig. 9-41
! - Small raindrops will freeze to hail. However, if after all S/S terms
! are added Dh<Dh_min, then hail will be converted to graupel. Thus,
! probabilistic freezing of small rain is effectively a source of graupel.
NrFZrh= -dt*Bbigg*(exp(Abigg*Tc)-1.)*DE(i,k)*QRM(i,k)*idew
Rz= 1. !N and Z (and Q) are conserved for FZrh with triple-moment
! The Rz factor serves to conserve reflectivity when a rain distribution
! converts to an distribution with a different shape parameter, alpha.
! (e.g. when rain freezes to hail) The factor Rz non-conserves N while
! acting to conserve Z for double-moment. See Ferrier, 1994 App. D)
! Rz= (gamma(7.d0+alpha_h)*GH31*GR34*GR34)/(GR36(i,k)*GR31* &
! gamma(4.d0+alpha_h)*gamma(4.d0+alpha_h))
NhFZrh= Rz*NrFZrh
QFZrh = NrFZrh*(QRM(i,k)*iNRM)
else
QFZrh= 0.; NrFZrh= 0.; NhFZrh= 0.
endif
!--------!
! ICE: !
!--------!
! Homogeneous freezing of cloud to ice:
if (dblMom_c) then
if (QCM(i,k)>epsQ) then
tmp2 = Tc*Tc; tmp3= tmp2*Tc; tmp4= tmp2*tmp2
JJ = (10.**max(-20.,(-606.3952-52.6611*Tc-1.7439*tmp2-0.0265*tmp3- &
1.536e-4*tmp4)))
tmp1 = 1.e6*(DE(i,k)*(QCM(i,k)*iNCM)*icmr) !i.e. Dc[cm]**3
FRAC = 1.-exp(-JJ*PIov6*tmp1*dt)
if (Tc>-30.) FRAC= 0.
if (Tc<-50.) FRAC= 1.
QFZci= FRAC*QCM(i,k)
NFZci= FRAC*NCM(i,k)
else
QFZci= 0.; NFZci= 0.
endif
else
!Homogeneous freezing of cloud to ice: (simplified)
if (QCM(i,k)>epsQ .and. Tc<-35.) then
FRAC= 1. !if T<-35
QFZci= FRAC*QCM(i,k)
NFZci= FRAC*N_c_SM
else
QFZci= 0.; NFZci= 0.
endif
endif
if (dblMom_i) then
!Primary ice nucleation:
NNUvi= 0.; QNUvi= 0.
if (primIceNucl==1) then
NuDEPSOR= 0.; NuCONT= 0.
Simax = min(Si, SxFNC(WZ(i,k),Tc,HPS(i)*S(i,k),QSW(i,k),QSI(i,k),CCNtype, &
2))
tmp1 = T(i,k)-7.66
NNUmax = max(0., DE(i,k)/mio*(Q(i,k)-QSS(i,k))/(1.+ck6*(QSS(i,k)/(tmp1* &
tmp1))))
!Deposition/sorption nucleation:
if (Tc<-5. .and. Si>1.) then
NuDEPSOR= max(0., 1.e3*exp(12.96*(Simax-1.)-0.639)-(NYM(i,k))) !Meyers(1992)
endif
!Contact nucleation:
if (QCM(i,k)>epsQ .and. Tc<-2.) then
GG = 1.*idew/(RGASV*(TM(i,k))/((QSW(i,k)*HPS(i)*S(i,k))/EPS1)/ &
Cdiff+CHLC/Ka/(TM(i,k))*(CHLC/RGASV/(TM(i,k))-1.)) !CP00a
Swmax = SxFNC
(WZ(i,k),Tc,HPS(i)*S(i,k),QSW(i,k),QSI(i,k),CCNtype,1)
ssat = min((QM(i,k)/QSW(i,k)), Swmax) -1.
Tcc = Tc + GG*ssat*CHLC/Kdiff !C86_eqn64
Na = exp(4.11-0.262*Tcc) !W95_eqn60/M92_2.6
Kn = LAMa0*(TM(i,k))*p0/(T0*(HPS(i)*S(i,k))*Ra) !W95_eqn59
PSIa = -kBoltz*Tcc/(6.*pi*Ra*MUdyn)*(1.+Kn) !W95_eqn58
ft = 0.4*(1.+1.45*Kn+0.4*Kn*exp(-1./Kn))*(Ka+2.5*Kn*KAPa)/ &
(1.+3.*Kn)/(2.*Ka+5.*KAPa*Kn+KAPa) !W95_eqn57
Dc = (DE(i,k)*(QCM(i,k)*iNCM)*icmr)**thrd
F1 = PI2*Dc*Na*(NCM(i,k)) !W95_eqn55
F2 = Ka/(HPS(i)*S(i,k))*(Tc-Tcc) !W95_eqn56
NuCONTA= -F1*F2*RGASV*(TM(i,k))/CHLC*iDE(i,k) !diffusiophoresis
NuCONTB= F1*F2*ft*iDE(i,k) !thermeophoresis
NuCONTC= F1*PSIa !Brownian diffusion
NuCONT = max(0.,(NuCONTA+NuCONTB+NuCONTC)*dt)
endif
!Total primary ice nucleation:
if (icephase_ON) then
NNUvi= min(NNUmax, NuDEPSOR + NuCONT )
QNUvi= mio*iDE(i,k)*NNUvi
QNUvi= min(QNUvi,(Q(i,k)))
endif
elseif (primIceNucl==2) then
if (Tc<-5. .and. Si>1.08) then !following Thompson etal (2006)
NNUvi= max(N_Cooper(TRPL,T(i,k))-NYM(i,k),0.)
QNUvi= min(mio*iDE(i,k)*NNUvi, Q(i,k))
endif
!elseif (primIceNucl==3) then
!! (for alternative [future] ice nucleation parameterizations)
! NNUvi=...
! QNUvi=...
endif !if (primIceNucl==1)
else !dblMom_i
!Ice initiation (single-moment):
if (QIM(i,k)<=epsQ .and. Tc<-5. .and. Si>1.08) then !following Thompson etal (2006)
NNUvi = N_Cooper
(TRPL,T(i,k))
QNUvi= mio*iDE(i,k)*NNUvi
QNUvi= min(QNUvi,Q(i,k))
endif
endif !dblMom_i
IF (QIM(i,k)>epsQ) THEN
!Deposition/sublimation:
! No_i = NYM(i,k)*iGI31/iLAMi**(1.+alpha_i)
! VENTi= Avx*GI32*iLAMi**(2.+alpha_i)+Bvx*ScTHRD*sqrt(gam*afi*iMUkin)*GI6* &
! iLAMi**(2.5+0.5*bfi+alpha_i)
No_i = NYM(i,k)*iGI31/iLAMi !optimized for alpha_i=0
VENTi= Avx*GI32*iLAMi*iLAMi+Bvx*ScTHRD*sqrt(gam*afi*iMUkin)*GI6*iLAMi** &
(2.5+0.5*bfi+alpha_i)
!Note: ice crystal capacitance is implicitly C = 0.5*D*capFact_i
QVDvi= dt*capFact_i*iABi*(PI2*(Si-1.)*No_i*VENTi)
! Prevent overdepletion of vapor:
tmp1 = T(i,k)-7.66
VDmax = (Q(i,k)-QSS(i,k))/(1.+ck6*(QSS(i,k))/(tmp1*tmp1))
if(Si>=1.) then
QVDvi= min(max(QVDvi,0.),VDmax)
else
if (VDmax<0.) QVDvi= max(QVDvi,VDmax)
!IF prevents subl.(QVDvi<0 at t) changing to dep.(VDmax>0 at t*) 2005-06-28
endif
if (.not. iceDep_ON) QVDvi= 0. !suppresses depositional growth
NVDvi= min(0., (NYM(i,k)*iQIM)*QVDvi) !dNi/dt=0 for deposition
! Conversion to snow:
! +depostion of ice:
mi= DE(i,k)*(QIM(i,k)*iNYM)
if (mi<=0.5*mso.and.abs(0.5*mso-mi)>1.e-20) then
QCNis1= (mi/(mso-mi))*QVDvi
else
QCNis1= QVDvi + (1.-0.5*mso/mi)*QIM(i,k)
endif
QCNis1= max(0., QCNis1)
! +aggregation of ice:
if(Di<0.5*Dso) then
Ki = PIov6*Di*Di*vi0*Eii*Xdisp
tmp1 = log(Di/Dso)
tmp2 = tmp1*tmp1*tmp1
QCNis2= -dt*0.5*(QIM(i,k)*NYM(i,k))*Ki/tmp2
else
Ki= 0.; QCNis2= 0.
endif
! +total conversion rate:
QCNis = QCNis1 + QCNis2
NsCNis= DE(i,k)*imso*QCNis !source for snow (Ns)
NiCNis= (DE(i,k)*imso*QCNis1 + 0.5*Ki*NYM(i,k)*NYM(i,k)) !sink for ice (Ni)
NiCNis= min(NiCNis, NYM(i,k)*0.1) !Prevents overdepl. of NY when final QI>0
if (.not.(snow_ON)) then
QCNis= 0.; NiCNis= 0.; NsCNis= 0. !Suppress SNOW initiation
endif
! 3-component freezing (collisions with rain):
if (QRM(i,k)>epsQ .and. QIM(i,k)>epsQ) then
tmp1 = vr0-vi0
tmp3 = sqrt(tmp1*tmp1+0.04*vr0*vi0)
QCLir= dt*cmi*Eri*PIov4*iDE(i,k)*(NRM(i,k)*NYM(i,k))*iGI31*iGR31*tmp3* &
(GI36*GR31*iLAMi5+2.*GI35*GR32*iLAMi4*iLAMr+GI34*GR33*iLAMi3* &
iLAMr2)
NCLri= dt*PIov4*Eri*(NRM(i,k)*NYM(i,k))*iGI31*iGR31*tmp3*(GI33*GR31* &
iLAMi2+2.*GI32*GR32*iLAMi*iLAMr+GI31*GR33*iLAMr2)
QCLri= dt*cmr*Eri*PIov4*iDE(i,k)*(NYM(i,k)*NRM(i,k))*iGR31*iGI31*tmp3* &
(GR36*GI31 *iLAMr5+2.*GR35*GI32*iLAMr4*iLAMi+GR34*GI33*iLAMr3* &
iLAMi2)
!note: For explicit eqns, both NCLri and NCLir are mathematically identical)
NCLir= min(QCLir*(NYM(i,k)*iQIM), NCLri)
QCLri= min(QCLri, (QRM(i,k))); QCLir= min(QCLir, (QIM(i,k)))
NCLri= min(NCLri, (NRM(i,k))); NCLir= min(NCLir, (NYM(i,k)))
!Determine destination of 3-comp.freezing:
tmp1= max(Di,Dr)
dey= (dei*Di*Di*Di+dew*Dr*Dr*Dr)/(tmp1*tmp1*tmp1)
if (dey>0.5*(deg+deh) .and. Dr>Dr_3cmpThrs .and. hail_ON) then
Dirg= 0.; Dirh= 1.
else
Dirg= 1.; Dirh= 0.
endif
if (.not. grpl_ON) Dirg= 0.
else
QCLir= 0.; NCLir= 0.; QCLri= 0.
NCLri= 0.; Dirh = 0.; Dirg= 0.
endif
! Rime-splintering (ice multiplication):
ff= 0.
if(Tc>=-8..and.Tc<=-5.) ff= 3.5e8*(Tc +8.)*thrd
if(Tc> -5..and.Tc< -3.) ff= 3.5e8*(-3.-Tc)*0.5
NIMsi= DE(i,k)*ff*QCLcs
NIMgi= DE(i,k)*ff*QCLcg
QIMsi= mio*iDE(i,k)*NIMsi
QIMgi= mio*iDE(i,k)*NIMgi
ELSE
QVDvi= 0.; QCNis= 0.
QIMsi= 0.; QIMgi= 0.; QCLri= 0.; QCLir= 0.
NVDvi= 0.; NCLir= 0.; NIMsi= 0.
NiCNis=0.; NsCNis=0.; NIMgi= 0.; NCLri= 0.
ENDIF
!---------!
! SNOW: !
!---------!
IF (QNM(i,k)>epsQ) THEN
!Deposition/sublimation:
!note: - snow crystal capacitance is implicitly C = 0.5*D*capFact_s
! - No_s and VENTs are computed above
QVDvs = dt*capFact_s*iABi*(PI2*(Si-1.)*No_s*VENTs - CHLS*CHLF/(Ka*RGASV* &
TM(i,k)*TM(i,k))*QCLcs*idt)
! Prevent overdepletion of vapor:
tmp1 = T(i,k)-7.66
VDmax = (Q(i,k)-QSS(i,k))/(1.+ck6*(QSS(i,k))/(tmp1*tmp1)) !KY97_A.33
if(Si>=1.) then
QVDvs= min(max(QVDvs,0.),VDmax)
else
if (VDmax<0.) QVDvs= max(QVDvs,VDmax)
!IF prevents subl.(QVDvs<0 at t) changing to dep.(VDmax>0 at t*)
endif
NVDvs= -min(0.,(NNM(i,k)*iQNM)*QVDvs) !pos. quantity
! Conversion to graupel:
if (QCLcs>CNsgThres*QVDvs .and. 0.99*deg>des) then
!note: The (deg>des) condition equates to (Ds>330microns) for m(D)=0.069D^2
! relation for snow, which implies a variable bulk density. The physical
! assumption in the QCNsg equation is that snow converts to graupel due
! to densification from riming.
! The 0.99 is to prevent overflow if des~deg
QCNsg= (deg/(deg-des))*QCLcs
else
QCNsg= 0.
endif
if (.not. grpl_ON) QCNsg= 0.
NCNsg= DE(i,k)*imgo*QCNsg
NCNsg= min(NCNsg, (0.5*NNM(i,k)*iQNM)*QCNsg) !Prevents incorrect Ns-depletion
! 3-component freezing (collisions with rain):
if (QRM(i,k)>epsQ .and. QNM(i,k)>epsQ .and. Tc<-5.) then
tmp1 = vs0-vr0
tmp2 = sqrt(tmp1*tmp1+0.04*vs0*vr0)
tmp6 = iLAMs2*iLAMs2*iLAMs
QCLrs= dt*cmr*Ers*PIov4*iDE(i,k)*NNM(i,k)*NRM(i,k)*iGR31*iGS31*tmp2* &
(GR36*GS31*iLAMr5+2.*GR35*GS32*iLAMr4*iLAMs+GR34*GS33*iLAMr3* &
iLAMs2)
NCLrs= dt*0.25e0*PI*Ers*(NNM(i,k)*NRM(i,k))*iGR31*iGS31*tmp2*(GR33* &
GS31*iLAMr2+2.*GR32*GS32*iLAMr*iLAMs+GR31*GS33*iLAMs2)
if (snowSpherical) then
!hardcoded for dms=3:
QCLsr= dt*cms*Ers*PIov4*iDE(i,k)*(NRM(i,k)*NNM(i,k))*iGS31*iGR31* &
tmp2*(GS36*GR31*tmp6+2.*GS35*GR32*iLAMs2*iLAMs2*iLAMr+GS34* &
GR33*iLAMs2*iLAMs*iLAMr2)
else
!hardcoded for dms=2:
QCLsr= dt*cms*iDE(i,k)*PI*0.25*ERS*tmp2*NNM(i,k)*NRM(i,k)*iGS31* &
iGR31*(GR33*GS33*iLAMr**2.*iLAMs**2. + 2.*GR32*GS34*iLAMr* &
iLAMs**3. +GR31*GS35*iLAMs**4.)
endif
!note: For explicit eqns, NCLsr = NCLrs
NCLsr= min(QCLsr*(NNM(i,k)*iQNM), NCLrs)
QCLrs= min(QCLrs, QRM(i,k)); QCLsr= min(QCLsr, QNM(i,k))
NCLrs= min(NCLrs, NRM(i,k)); NCLsr= min(NCLsr, NNM(i,k))
! Determine destination of 3-comp.freezing:
Dsrs= 0.; Dsrg= 0.; Dsrh= 0.
tmp1= max(Ds,Dr)
tmp2= tmp1*tmp1*tmp1
dey = (des*Ds*Ds*Ds + dew*Dr*Dr*Dr)/tmp2
if (dey<=0.5*(des+deg) ) Dsrs= 1. !snow
if (dey >0.5*(des+deg) .and. dey<0.5*(deg+deh)) Dsrg= 1. !graupel
if (dey>=0.5*(deg+deh)) then
Dsrh= 1. !hail
if (.not.hail_ON .or. Dr<Dr_3cmpThrs) then
Dsrg= 1.; Dsrh= 0. !graupel
endif
endif
if (.not. grpl_ON) Dsrg=0.
else
QCLrs= 0.; QCLsr= 0.; NCLrs= 0.; NCLsr= 0.
endif
ELSE
QVDvs= 0.; QCLcs= 0.; QCNsg= 0.; QCLsr= 0.; QCLrs= 0.
NVDvs= 0.; NCLcs= 0.; NCLsr= 0.; NCLrs= 0.; NCNsg= 0.
ENDIF
!------------!
! GRAUPEL: !
!------------!
IF (QGM(i,k)>epsQ) THEN
!Conversion to hail: (D_sll given by S-L limit)
if (WZ(i,k)>w_CNgh .and. hail_ON) then
D_sll = 0.01*(exp(min(20.,-Tc/(1.1e4*DE(i,k)*(QCM(i,k)+QRM(i,k))-1.3e3* &
DE(i,k)*(QIM(i,k))+1.)))-1.)
!Add correction factor: [to account error in equation of Ziegler (1985), as per Young (1993)]
D_sll = 2.0*D_sll
D_sll = min(1., max(0.0001,D_sll)) !smallest D_sll=0.1mm; largest=1m
!Old approach: (pre-my-2.15.0)
! ratio= Dg/D_sll
! if (ratio>r_CNgh) then
! QCNgh= (0.5*ratio)*(QCLcg+QCLrg+QCLig)
! QCNgh= min(QCNgh,(QGM(i,k))+QCLcg+QCLrg+QCLig)
! NCNgh= DE(i,k)*QCNgh*icmh/(D_sll*D_sll*D_sll)
! else
! QCNgh= 0.
! NCNgh= 0.
! endif
!New approach:
tmp1 = exp(-D_sll/iLAMg)
Ng_tail = No_g*iLAMg*tmp1 !integral(Dsll,inf) of N(D)dD
if (Ng_tail > Ngh_crit) then
QCNgh = idt*cmg*No_g*tmp1*(D_sll**3.*iLAMg + 3.*D_sll**2.*iLAMg**2. &
+ 6.*D_sll*iLAMg**3. + 6.*iLAMg**4.)
NgCNgh= idt*No_g*iLAMg*tmp1
Rz= 1.
!---
! The Rz factor (<>1) serves to conserve reflectivity when graupel
! converts to hail with a a different shape parameter, alpha.
! The factor Rz non-conserves N while acting to conserve Z for
! double-moment. See Ferrier, 1994 App. D). However, Rz=1 is
! used since it is deemed more important to conserve concentration
! than reflectivity (see Milbrandt and McTaggart-Cowan, 2010 JAS).
!---
! Code to conserve total reflectivity:
! if (QHM(i,k)>epsQ) then
! Rz= (gamma(7.+alpha_h)*GH31*GG34**2.)/(GG36*GG31*GH34**2.)
! else
! Rz= 1.
! endif
!---
NhCNgh= Rz*NgCNgh
else
QCNgh = 0.; NgCNgh = 0.; NhCNgh = 0.
endif
endif
!3-component freezing (collisions with rain):
if (QRM(i,k)>epsQ) then
tmp1 = vg0-vr0
tmp2 = sqrt(tmp1*tmp1 + 0.04*vg0*vr0)
tmp8 = iLAMg2*iLAMg ! iLAMg**3
tmp9 = tmp8*iLAMg ! iLAMg**4
tmp10= tmp9*iLAMg ! iLAMg**5
!(parameterization of Erg based on Cober and List, 1993 [JAS])
Kstoke = dew*abs(vg0-vr0)*Dr*Dr/(9.*MUdyn*Dg)
Kstoke = max(1.5,min(10.,Kstoke))
Erg = 0.55*log10(2.51*Kstoke)
QCLrg= dt*cmr*Erg*PIov4*iDE(i,k)*(NGM(i,k)*NRM(i,k))*iGR31*iGG31*tmp2* &
(GR36*GG31*iLAMr5+2.*GR35*GG32*iLAMr4*iLAMg+GR34*GG33*iLAMr3* &
iLAMg2)
NCLrg= dt*PIov4*Erg*(NGM(i,k)*NRM(i,k))*iGR31*iGG31*tmp2*(GR33*GG31* &
iLAMr2+2.*GR32*GG32*iLAMr*iLAMg+GR31*GG33*iLAMg2)
QCLgr= dt*cmg*Erg*PIov4*iDE(i,k)*(NRM(i,k)*NGM(i,k))*iGG31*iGR31*tmp2* &
(GG36*GR31*tmp10+2.*GG35*GR32*tmp9*iLAMr+GG34*GR33*tmp8*iLAMr2)
!(note: For explicit eqns, NCLgr= NCLrg)
NCLgr= min(NCLrg, QCLgr*(NGM(i,k)*iQGM))
QCLrg= min(QCLrg, QRM(i,k)); QCLgr= min(QCLgr, QGM(i,k))
NCLrg= min(NCLrg, NRM(i,k)); NCLgr= min(NCLgr, NGM(i,k))
! Determine destination of 3-comp.freezing:
tmp1= max(Dg,Dr)
tmp2= tmp1*tmp1*tmp1
dey = (deg*Dg*Dg*Dg + dew*Dr*Dr*Dr)/tmp2
if (dey>0.5*(deg+deh) .and. Dr>Dr_3cmpThrs .and. hail_ON) then
Dgrg= 0.; Dgrh= 1.
else
Dgrg= 1.; Dgrh= 0.
endif
else
QCLgr= 0.; QCLrg= 0.; NCLgr= 0.; NCLrg= 0.
endif
ELSE
QVDvg= 0.; QCNgh= 0.; QCLgr= 0.; QCLrg= 0.; NgCNgh= 0.
NVDvg= 0.; NhCNgh= 0.; NCLgr= 0.; NCLrg= 0.
ENDIF
!---------!
! HAIL: !
!---------!
IF (QHM(i,k)>epsQ) THEN
!Wet growth:
if (QHwet<(QCLch+QCLrh+QCLih+QCLsh) .and. Tc>-40.) then
QCLih= min(QCLih*iEih, QIM(i,k)) !change Eih to 1. in CLih
NCLih= min(NCLih*iEih, NYM(i,k)) ! " "
QCLsh= min(QCLsh*iEsh, QNM(i,k)) !change Esh to 1. in CLsh
NCLsh= min(NCLsh*iEsh, NNM(i,k)) ! " "
tmp3 = QCLrh
QCLrh= QHwet-(QCLch+QCLih+QCLsh) !actual QCLrh minus QSHhr
QSHhr= tmp3-QCLrh !QSHhr used here only
NSHhr= DE(i,k)*QSHhr/(cmr*Drshed*Drshed*Drshed)
else
NSHhr= 0.
endif
ELSE
QVDvh= 0.; NVDvh= 0.; NSHhr= 0.
ENDIF
ENDIF ! ( if Tc<0C Block )
!------------ End of source/sink term calculation -------------!
!-- Adjustment of source/sink terms to prevent overdepletion: --!
do niter= 1,2
! (1) Vapor:
source= Q(i,k) +dim(-QVDvi,0.)+dim(-QVDvs,0.)+dim(-QVDvg,0.)+dim(-QVDvh,0.)
sink = QNUvi+dim(QVDvi,0.)+dim(QVDvs,0.)
sour = max(source,0.)
if(sink>sour) then
ratio= sour/sink
QNUvi= ratio*QNUvi; NNUvi= ratio*NNUvi
if(QVDvi>0.) then
QVDvi= ratio*QVDvi; NVDvi= ratio*NVDvi
endif
if(QVDvs>0.) then
QVDvs=ratio*QVDvs; NVDvs=ratio*NVDvs
endif
QVDvg= ratio*QVDvg; NVDvg= ratio*NVDvg
QVDvh= ratio*QVDvh; NVDvh= ratio*NVDvh
endif
! (2) Cloud:
source= QC(i,k)
sink = QCLcs+QCLcg+QCLch+QFZci
sour = max(source,0.)
if(sink>sour) then
ratio= sour/sink
QFZci= ratio*QFZci; NFZci= ratio*NFZci
QCLcs= ratio*QCLcs; NCLcs= ratio*NCLcs
QCLcg= ratio*QCLcg; NCLcg= ratio*NCLcg
QCLch= ratio*QCLch; NCLch= ratio*NCLch
endif
! (3) Rain:
source= QR(i,k)+QMLsr+QMLgr+QMLhr+QMLir
sink = QCLri+QCLrs+QCLrg+QCLrh+QFZrh
sour = max(source,0.)
if(sink>sour) then
ratio= sour/sink
QCLrg= ratio*QCLrg; QCLri= ratio*QCLri; NCLri= ratio*NCLri
QCLrs= ratio*QCLrs; NCLrs= ratio*NCLrs; QCLrg= ratio*QCLrg
NCLrg= ratio*NCLrg; QCLrh= ratio*QCLrh; NCLrh= ratio*NCLrh
QFZrh= ratio*QFZrh; NrFZrh=ratio*NrFZrh; NhFZrh=ratio*NhFZrh
if (ratio==0.) then
Dirg= 0.; Dirh= 0.; Dgrg= 0.; Dgrh= 0.
Dsrs= 0.; Dsrg= 0.; Dsrh= 0.
endif
endif
! (4) Ice:
source= QI(i,k)+QNUvi+dim(QVDvi,0.)+QFZci
sink = QCNis+QCLir+dim(-QVDvi,0.)+QCLis+QCLig+QCLih+QMLir
sour = max(source,0.)
if(sink>sour) then
ratio= sour/sink
QMLir= ratio*QMLir; NMLir= ratio*NMLir
if (QVDvi<0.) then
QVDvi= ratio*QVDvi; NVDvi= ratio*NVDvi
endif
QCNis= ratio*QCNis; NiCNis= ratio*NiCNis; NsCNis= ratio*NsCNis
QCLir= ratio*QCLir; NCLir= ratio*NCLir; QCLig= ratio*QCLig
QCLis= ratio*QCLis; NCLis= ratio*NCLis
QCLih= ratio*QCLih; NCLih= ratio*NCLih
if (ratio==0.) then
Dirg= 0.; Dirh= 0.
endif
endif
! (5) Snow:
source= QN(i,k)+QCNis+dim(QVDvs,0.)+QCLis+Dsrs*(QCLrs+QCLsr)+QCLcs
sink = dim(-QVDvs,0.)+QCNsg+QMLsr+QCLsr+QCLsh
sour = max(source,0.)
if(sink>sour) then
ratio= sour/sink
if(QVDvs<=0.) then
QVDvs= ratio*QVDvs; NVDvs= ratio*NVDvs
endif
QCNsg= ratio*QCNsg; NCNsg= ratio*NCNsg; QMLsr= ratio*QMLsr
NMLsr= ratio*NMLsr; QCLsr= ratio*QCLsr; NCLsr= ratio*NCLsr
QCLsh= ratio*QCLsh; NCLsh= ratio*NCLsh
if (ratio==0.) then
Dsrs= 0.; Dsrg= 0.; Dsrh= 0.
endif
endif
! (6) Graupel:
source= QG(i,k)+QCNsg+dim(QVDvg,0.)+Dirg*(QCLri+QCLir)+Dgrg*(QCLrg+QCLgr)+ &
QCLcg+Dsrg*(QCLrs+QCLsr)+QCLig
sink = dim(-QVDvg,0.)+QMLgr+QCNgh+QCLgr
sour = max(source,0.)
if(sink>sour) then
ratio= sour/sink
QVDvg= ratio*QVDvg; NVDvg= ratio*NVDvg; QMLgr = ratio*QMLgr
NMLgr= ratio*NMLgr; QCNgh= ratio*QCNgh; NgCNgh= ratio*NgCNgh
QCLgr= ratio*QCLgr; NCLgr= ratio*NCLgr; NhCNgh= ratio*NhCNgh
if (ratio==0.) then
Dgrg= 0.; Dgrh= 0.
endif
endif
! (7) Hail:
source= QH(i,k)+dim(QVDvh,0.)+QCLch+QCLrh+Dirh*(QCLri+QCLir)+QCLih+QCLsh+ &
Dsrh*(QCLrs+QCLsr)+QCNgh+Dgrh*(QCLrg+QCLgr)+QFZrh
sink = dim(-QVDvh,0.)+QMLhr
sour = max(source,0.)
if(sink>sour) then
ratio= sour/sink
QVDvh= ratio*QVDvh; NVDvh= ratio*NVDvh
QMLhr= ratio*QMLhr; NMLhr= ratio*NMLhr
endif
enddo
!--------------- End of source/sink term adjustment ------------------!
!Compute N-tendencies for destination categories of 3-comp.freezing:
NCLirg= 0.; NCLirh= 0.; NCLsrs= 0.; NCLsrg= 0.
NCLsrh= 0.; NCLgrg= 0.; NCLgrh= 0.
if (QCLir+QCLri>0.) then
tmp1 = max(Dr,Di)
tmp2 = tmp1*tmp1*tmp1*PIov6
NCLirg= Dirg*DE(i,k)*(QCLir+QCLri)/(deg*tmp2)
NCLirh= Dirh*DE(i,k)*(QCLir+QCLri)/(deh*tmp2)
endif
if (QCLsr+QCLrs>0.) then
tmp1 = max(Dr,Ds)
tmp2 = tmp1*tmp1*tmp1*PIov6
NCLsrs= Dsrs*DE(i,k)*(QCLsr+QCLrs)/(des*tmp2)
NCLsrg= Dsrg*DE(i,k)*(QCLsr+QCLrs)/(deg*tmp2)
NCLsrh= Dsrh*DE(i,k)*(QCLsr+QCLrs)/(deh*tmp2)
endif
if (QCLgr+QCLrg>0.) then
tmp1 = max(Dr,Dg)
tmp2 = tmp1*tmp1*tmp1*PIov6
NCLgrg= Dgrg*DE(i,k)*(QCLgr+QCLrg)/(deg*tmp2)
NCLgrh= Dgrh*DE(i,k)*(QCLgr+QCLrg)/(deh*tmp2)
endif
!========================================================================!
! Add all source/sink terms to all predicted moments: !
!========================================================================!
!Diagnostic S/S terms: (to facilitate output of 3D variables for diagnostics)
!SS01(i,k)= QVDvs*idt (e.g., for depositional growth rate of snow, kg kg-1 s-1)
! Q-Source/Sink Terms:
Q(i,k) = Q(i,k) -QNUvi -QVDvi -QVDvs -QVDvg -QVDvh
QC(i,k)= QC(i,k) -QCLcs -QCLcg -QCLch -QFZci
QR(i,k)= QR(i,k) -QCLri +QMLsr -QCLrs -QCLrg +QMLgr -QCLrh +QMLhr -QFZrh +QMLir
QI(i,k)= QI(i,k) +QNUvi +QVDvi +QFZci -QCNis -QCLir -QCLis -QCLig &
-QMLir -QCLih +QIMsi +QIMgi
QG(i,k)= QG(i,k) +QCNsg +QVDvg +QCLcg -QCLgr-QMLgr -QCNgh -QIMgi +QCLig &
+Dirg*(QCLri+QCLir) +Dgrg*(QCLrg+QCLgr) +Dsrg*(QCLrs+QCLsr)
QN(i,k)= QN(i,k) +QCNis +QVDvs +QCLcs -QCNsg -QMLsr -QIMsi -QCLsr +QCLis -QCLsh &
+Dsrs*(QCLrs+QCLsr)
QH(i,k)= QH(i,k) +Dirh*(QCLri+QCLir) -QMLhr +QVDvh +QCLch +Dsrh*(QCLrs+QCLsr) &
+QCLih +QCLsh +QFZrh +QCLrh +QCNgh +Dgrh*(QCLrg+QCLgr)
! N-Source/Sink Terms:
if (dblMom_c) NC(i,k)= NC(i,k) -NCLcs -NCLcg -NCLch -NFZci
if (dblMom_r) NR(i,k)= NR(i,k) -NCLri -NCLrs -NCLrg -NCLrh +NMLsr +NMLgr +NMLhr &
-NrFZrh +NMLir +NSHhr
if (dblMom_i) NY(i,k)= NY(i,k) +NNUvi +NVDvi +NFZci -NCLir -NCLis -NCLig -NCLih &
-NMLir +NIMsi +NIMgi -NiCNis
if (dblMom_s) NN(i,k)= NN(i,k) +NsCNis -NVDvs -NCNsg -NMLsr -NCLss -NCLsr -NCLsh &
+NCLsrs
if (dblMom_g) NG(i,k)= NG(i,k) +NCNsg -NCLgr -NVDvg -NMLgr +NCLirg +NCLsrg &
+NCLgrg -NgCNgh
if (dblMom_h) NH(i,k)= NH(i,k) +NhFZrh +NhCNgh -NMLhr -NVDvh +NCLirh +NCLsrh &
+NCLgrh
T(i,k)= T(i,k) +LFP*(QCLri+QCLcs+QCLrs+QFZci-QMLsr+QCLcg+QCLrg-QMLir-QMLgr &
-QMLhr+QCLch+QCLrh+QFZrh) +LSP*(QNUvi+QVDvi+QVDvs+QVDvg+QVDvh)
!Prevent overdepletion:
IF (dblMom_c) THEN
if(QC(i,k)<epsQ .or. NC(i,k)<epsN) then
Q(i,k) = Q(i,k) + QC(i,k)
T(i,k) = T(i,k) - LCP*QC(i,k)
QC(i,k)= 0.; NC(i,k)= 0.
endif
ELSE
if(QC(i,k)<epsQ) then
Q(i,k) = Q(i,k) + QC(i,k)
T(i,k) = T(i,k) - LCP*QC(i,k)
QC(i,k)= 0.
endif
ENDIF
IF (dblMom_r) THEN
if (QR(i,k)<epsQ .or. NR(i,k)<epsN) then
Q(i,k) = Q(i,k) + QR(i,k)
T(i,k) = T(i,k) - LCP*QR(i,k)
QR(i,k)= 0.; NR(i,k)= 0.
endif
ELSE
if (QR(i,k)<epsQ) then
Q(i,k) = Q(i,k) + QR(i,k)
T(i,k) = T(i,k) - LCP*QR(i,k)
QR(i,k)= 0.
endif
ENDIF
IF (dblMom_i) THEN
if (QI(i,k)<epsQ .or. NY(i,k)<epsN) then
Q(i,k) = Q(i,k) + QI(i,k)
T(i,k) = T(i,k) - LSP*QI(i,k)
QI(i,k)= 0.; NY(i,k)= 0.
endif
ELSE
if (QI(i,k)<epsQ) then
Q(i,k) = Q(i,k) + QI(i,k)
T(i,k) = T(i,k) - LSP*QI(i,k)
QI(i,k)= 0.
endif
ENDIF
IF (dblMom_s) THEN
if (QN(i,k)<epsQ .or. NN(i,k)<epsN) then
Q(i,k) = Q(i,k) + QN(i,k)
T(i,k) = T(i,k) - LSP*QN(i,k)
QN(i,k)= 0.; NN(i,k)= 0.
endif
ELSE
if (QN(i,k)<epsQ) then
Q(i,k) = Q(i,k) + QN(i,k)
T(i,k) = T(i,k) - LSP*QN(i,k)
QN(i,k)= 0.
endif
ENDIF
IF (dblMom_g) THEN
if (QG(i,k)<epsQ .or. NG(i,k)<epsN) then
Q(i,k) = Q(i,k) + QG(i,k)
T(i,k) = T(i,k) - LSP*QG(i,k)
QG(i,k)= 0.; NG(i,k)= 0.
endif
ELSE
if (QG(i,k)<epsQ) then
Q(i,k) = Q(i,k) + QG(i,k)
T(i,k) = T(i,k) - LSP*QG(i,k)
QG(i,k)= 0.
endif
ENDIF
IF (dblMom_h) THEN
if (QH(i,k)<epsQ .or. NH(i,k)<epsN) then
Q(i,k) = Q(i,k) + QH(i,k)
T(i,k) = T(i,k) - LSP*QH(i,k)
QH(i,k)= 0.; NH(i,k)= 0.
else if (QH(i,k)>epsQ .and. NH(i,k)>epsN) then
!Conversion to graupel of hail is small:
Dh= (DE(i,k)*QH(i,k)/NH(i,k)*icmh)**thrd
if (Dh<Dh_min) then
QG(i,k)= QG(i,k) + QH(i,k)
NG(i,k)= NG(i,k) + NH(i,k)
QH(i,k)= 0.; NH(i,k)= 0.
endif
endif
ELSE
if (QH(i,k)<epsQ) then
Q(i,k) = Q(i,k) + QH(i,k)
T(i,k) = T(i,k) - LSP*QH(i,k)
QH(i,k)= 0.
endif
ENDIF
Q(i,k)= max(Q(i,k),0.)
NY(i,k)= min(NY(i,k), Ni_max)
ENDIF !if (activePoint)
ENDDO
ENDDO
!----------------------------------------------------------------------------------!
! End of ice phase microphysics (Part 2) !
!----------------------------------------------------------------------------------!
!----------------------------------------------------------------------------------!
! PART 3: Warm Microphysics Processes !
! !
! Equations for warm-rain coalescence based on Cohard and Pinty (2000a,b; QJRMS) !
! Condensation/evaportaion equations based on Kong and Yau (1997; Atmos-Ocean) !
! Equations for rain reflectivity (ZR) based on Milbrandt and Yau (2005b; JAS) !
!----------------------------------------------------------------------------------!
! Part 3a - Warm-rain Coallescence:
IF (warmphase_ON) THEN
DO k= 2,nk
DO i= 1,ni
RCAUTR= 0.; CCACCR= 0.; Dc= 0.; iLAMc= 0.; L = 0.
RCACCR= 0.; CCSCOC= 0.; Dr= 0.; iLAMr= 0.; TAU= 0.
CCAUTR= 0.; CRSCOR= 0.; SIGc= 0.; DrINIT= 0.
iLAMc3= 0.; iLAMc6= 0.; iLAMr3= 0.; iLAMr6= 0.
if (dblMom_r) then
rainPresent= (QRM(i,k)>epsQ .and. NRM(i,k)>epsN)
else
rainPresent= (QRM(i,k)>epsQ)
endif
if (.not. dblMom_c) NCM(i,k)= N_c_SM
if (QCM(i,k)>epsQ .and. NCM(i,k)>epsN) then
iLAMc = iLAMDA_x
(DE(i,k),QCM(i,k),1./NCM(i,k),icexc9,thrd)
iLAMc3= iLAMc*iLAMc*iLAMc
iLAMc6= iLAMc3*iLAMc3
Dc = iLAMc*(GC2*iGC1)**thrd
SIGc = iLAMc*( GC3*iGC1- (GC2*iGC1)*(GC2*iGC1) )**sixth
L = 0.027*DE(i,k)*QCM(i,k)*(6.25e18*SIGc*SIGc*SIGc*Dc-0.4)
if (SIGc>SIGcTHRS) TAU= 3.7/(DE(i,k)*(QCM(i,k))*(0.5e6*SIGc-7.5))
endif
if (rainPresent) then
if (dblMom_r) then
Dr = Dm_x
(DE(i,k),QRM(i,k),1./NRM(i,k),icmr,thrd)
!Drop-size limiter [prevents initially large drops from melted hail]
if (Dr>3.e-3) then
tmp1 = (Dr-3.e-3); tmp2= (Dr/DrMAX); tmp3= tmp2*tmp2*tmp2
NRM(i,k)= NRM(i,k)*max((1.+2.e4*tmp1*tmp1),tmp3)
tmp1 = DE(i,k)*QRM(i,k)*icmr
Dr = (tmp1/NRM(i,k))**thrd
endif
else
NRM(i,k)= GR50*sqrt(sqrt(GR31*iGR34*DE(i,k)*QRM(i,k)*icmr))
Dr = Dm_x
(DE(i,k),QRM(i,k),1./NRM(i,k),icmr,thrd)
endif
iLAMr = iLAMDA_x
(DE(i,k),QRM(i,k),1./NRM(i,k),icexr9,thrd)
iLAMr3= iLAMr*iLAMr*iLAMr
iLAMr6= iLAMr3*iLAMr3
endif
! Autoconversion:
if (QCM(i,k)>epsQ .and. SIGc>SIGcTHRS .and. autoconv_ON) then
RCAUTR= min( max(L/TAU,0.), QCM(i,k)*idt )
DrINIT= max(83.e-6, 12.6e-4/(0.5e6*SIGc-3.5)) !initiation regime Dr
DrAUT = max(DrINIT, Dr) !init. or feeding DrAUT
CCAUTR= RCAUTR*DE(i,k)/(cmr*DrAUT*DrAUT*DrAUT)
! ---------------------------------------------------------------------------- !
! NOTE: The formulation for CCAUTR here (dNr/dt|initiation) does NOT follow
! eqn (18) in CP2000a, but rather it comes from the F90 code provided
! by J-P Pinty (subroutine: 'rain_c2r2.f90').
! (See notes: 2001-10-17; 2001-10-22)
!
! Similarly, the condition for the activation of accretion and self-
! collection depends on whether or not autoconversion is in the feeding
! regime (see notes 2002-01-07). This is apparent in the F90 code, but
! NOT in CP2000a.
! ---------------------------------------------------------------------------- !
! cloud self-collection: (dNc/dt_autoconversion) {CP eqn(25)}
if (dblMom_c) CCSCOC= min(KK2*NCM(i,k)*NCM(i,k)*GC3*iGC1*iLAMc6, NCM(i,k)* &
idt) !{CP00a eqn(25)}
endif
! Accretion, rain self-collection, and collisional breakup:
if (((QRM(i,k))>1.2*max(L,0.)*iDE(i,k).or.Dr>max(5.e-6,DrINIT)).and.rainAccr_ON &
.and. rainPresent) then
! Accretion: !{CP00a eqn(22)}
if (QCM(i,k)>epsQ.and.L>0.) then
if (Dr.ge.100.e-6) then
CCACCR = KK1*(NCM(i,k)*NRM(i,k))*(GC2*iGC1*iLAMc3+GR34*iGR31*iLAMr3)
RCACCR = cmr*iDE(i,k)*KK1*(NCM(i,k)*NRM(i,k))*iLAMc3*(GC3*iGC1*iLAMc3+ &
GC2*iGC1*GR34*iGR31*iLAMr3)
else
CCACCR = KK2*(NCM(i,k)*NRM(i,k))*(GC3*iGC1*iLAMc6+GR37*iGR31*iLAMr6)
! RCACCR= cmr*iDE(i,k)*KK2*(NCM(i,k)*NRM(i,k))*iLAMc3* &
! (GC4*iGR31*iLAMc6+GC2*iGC1*GR37*iGR31*iLAMr6)
!++ The following calculation of RCACCR avoids overflow:
tmp1 = cmr*iDE(i,k)
tmp2 = KK2*(NCM(i,k)*NRM(i,k))*iLAMc3
RCACCR = tmp1 * tmp2
tmp1 = GC4*iGR31
tmp1 = (tmp1)*iLAMc6
tmp2 = GC2*iGC1
tmp2 = tmp2*GR37*iGR31
tmp2 = (tmp2)*iLAMr6
RCACCR = RCACCR * (tmp1 + tmp2)
!++
endif
CCACCR = min(CCACCR,(NC(i,k))*idt)
RCACCR = min(RCACCR,(QC(i,k))*idt)
endif
if (dblMom_r) then
!Rain self-collection:
tmp1= NRM(i,k)*NRM(i,k)
if (Dr.ge.100.e-6) then
CRSCOR= KK1*tmp1*GR34*iGR31*iLAMr3 !{CP00a eqn(24)}
else
CRSCOR= KK2*tmp1*GR37*iGR31*iLAMr6 !{CP00a eqn(25)}
endif
!Raindrop breakup: !{CP00a eqn(26)}
Ec= 1.
if (Dr >= 600.e-6) Ec= exp(-2.5e3*(Dr-6.e-4))
if (Dr >= 2000.e-6) Ec= 0.
CRSCOR= min(Ec*CRSCOR,(0.5*NR(i,k))*idt) !0.5 prevents depletion of NR
endif
endif !accretion/self-collection/breakup
! Prevent overdepletion of cloud:
source= QC(i,k)
sink = (RCAUTR+RCACCR)*dt
if (sink>source) then
ratio = source/sink
RCAUTR= ratio*RCAUTR
RCACCR= ratio*RCACCR
CCACCR= ratio*CCACCR
endif
! Apply tendencies:
QC(i,k)= max(0., QC(i,k)+(-RCAUTR-RCACCR)*dt )
QR(i,k)= max(0., QR(i,k)+( RCAUTR+RCACCR)*dt )
if (dblMom_c) NC(i,k)= max(0., NC(i,k)+(-CCACCR-CCSCOC)*dt )
if (dblMom_r) NR(i,k)= max(0., NR(i,k)+( CCAUTR-CRSCOR)*dt )
if (dblMom_r) then
if (QR(i,k)>epsQ .and. NR(i,k)>epsN) then
Dr = Dm_x
(DE(i,k),QR(i,k),1./NR(i,k),icmr,thrd)
if (Dr>3.e-3) then
tmp1= (Dr-3.e-3); tmp2= tmp1*tmp1
tmp3= (Dr/DrMAX); tmp4= tmp3*tmp3*tmp3
NR(i,k)= NR(i,k)*(max((1.+2.e4*tmp2),tmp4))
elseif (Dr<Dhh) then
!Convert small raindrops to cloud:
QC(i,k)= QC(i,k) + QR(i,k)
NC(i,k)= NC(i,k) + NR(i,k)
QR(i,k)= 0.; NR(i,k)= 0.
endif
else
QR(i,k)= 0.; NR(i,k)= 0.
endif !(Qr,Nr>eps)
endif
ENDDO
ENDDO
! Part 3b - Condensation/Evaporation:
DO k=1,nk
DO i=1,ni
DEo = DE(i,nk)
gam = sqrt(DEo*iDE(i,k))
#if (DWORDSIZE == 8 && RWORDSIZE == 8)
QSS(i,k)= FOQSA(T(i,k), PS(i)*S(i,k)) ! Re-calculates QS with new T (w.r.t. liquid)
#elif (DWORDSIZE == 8 && RWORDSIZE == 4)
QSS(i,k)= sngl(FOQSA(T(i,k), PS(i)*S(i,k))) ! Re-calculates QS with new T (w.r.t. liquid)
#else
This is a temporary hack assuming double precision is 8 bytes.
#endif
ssat = Q(i,k)/QSS(i,k)-1.
Tc = T(i,k)-TRPL
Cdiff = max(1.62e-5, (2.2157e-5 + 0.0155e-5*Tc)) *1.e5/(S(i,k)*PS(i))
MUdyn = max(1.51e-5, (1.7153e-5 + 0.0050e-5*Tc))
MUkin = MUdyn*iDE(i,k)
iMUkin = 1./MUkin
Ka = max(2.07e-2, (2.3971e-2 + 0.0078e-2*Tc))
ScTHRD = (MUkin/Cdiff)**thrd ! i.e. Sc^(1/3)
!Condensation/evaporation:
! Capacity of evap/cond in one time step is determined by saturation
! adjustment technique [Kong and Yau, 1997 App.A]. Equation for rain evaporation rate
! comes from Cohard and Pinty, 2000a. Explicit condensation rate is not considered
! (as it is in Ziegler, 1985), but rather complete removal of supersaturation is assumed.
X= Q(i,k)-QSS(i,k)
if (dblMom_r) then
rainPresent= (QR(i,k)>epsQ .and. NR(i,k)>epsN)
else
rainPresent= (QR(i,k)>epsQ)
endif
IF(X>0. .or. QC(i,k)>epsQ .or. rainPresent) THEN
tmp1 = T(i,k)-35.86
X = X/(1.+ck5*QSS(i,k)/(tmp1*tmp1))
if (X<(-QC(i,k))) then
D= 0.
if(rainPresent) then
if(QM(i,k)<QSW(i,k)) then
MUkin = (1.715e-5+5.e-8*Tc)*iDE(i,k)
iMUkin= 1./MUkin
if (dblMom_r) then
Dr = Dm_x
(DE(i,k),QR(i,k),1./NR(i,k),icmr,thrd)
iLAMr= iLAMDA_x
(DE(i,k),QR(i,k),1./NR(i,k),icexr9,thrd)
LAMr = 1./iLAMr
!note: The following coding of 'No_r=...' prevents overflow:
!No_r_DM= NR(i,k)*LAMr**(1.+alpha_r))*iGR31
No_r_DM= sngl(dble(NR(i,k))*dble(LAMr)**dble(1.+alpha_r))*iGR31
No_r = No_r_DM
else
iLAMr = sqrt(sqrt( (QR(i,k)*DE(i,k))/(GR34*cmr*No_r) ))
!note: No_r= No_r_SM is already done (in Part 1)
endif
!note: There is an error in MY05a_eq(8) for VENTx (corrected in code)
VENTr= Avx*GR32*iLAMr**cexr5 + Bvx*ScTHRD*sqrt(gam*afr*iMUkin)*GR17* &
iLAMr**cexr6
ABw = CHLC*CHLC/(Ka*RGASV*T(i,k)*T(i,k))+1./(DE(i,k)*(QSS(i,k))* &
Cdiff)
QREVP= -dt*(PI2*ssat*No_r*VENTr/ABw)
!! QREVP= 0. !to suppress evaporation of rain
if ((QR(i,k))>QREVP) then !Note: QREVP is [(dQ/dt)*dt]
DEL= -QREVP
else
DEL= -QR(i,k)
endif
D= max(X+QC(i,k), DEL)
endif !QM< QSM
endif !QR<eps & NR<eps
X= D - QC(i,k)
QR(i,k)= QR(i,k) + D
if (QR(i,k)>0. .and. dblMom_r) &
NR(i,k)= max(0.,NR(i,k)+D*NR(i,k)/QR(i,k)) !(dNr/dt)|evap
! The above expression of (dNr/dt)|evap is from Ferrier, 1994.
! In CP2000a, Nr is not affected by evap. (except if Qr goes to zero).
QC(i,k)= 0.; NC(i,k)= 0.
T(i,k) = T(i,k) + LCP*X
Q(i,k) = Q(i,k) - X
else ![if(X >= -QC)]
! Nucleation of cloud droplets:
if (ssat>0. .and. WZ(i,k)>0. .and. dblMom_c) &
NC(i,k)= max(NC(i,k),NccnFNC(WZ(i,k),TM(i,k),HPS(i)*S(i,k),CCNtype))
! All supersaturation is removed (condensed onto cloud field).
T(i,k) = T(i,k) + LCP*X
Q(i,k) = Q(i,k) - X
QC(i,k) = QC(i,k) + X
if (dblMom_c) then
if (X<0.) then
if (QC(i,k)>0.) then
NC(i,k)= max(0., NC(i,k) + X*NC(i,k)/QC(i,k) ) !(dNc/dt)|evap
else
NC(i,k)= 0.
endif
endif
if (QC(i,k)>0..and.NC(i,k)==0.) NC(i,k)= 1.e7 !prevents non-zero_Q & zero_N
endif
endif
ENDIF
!Protect against negative values due to overdepletion:
if (dblMom_r) then
if (QR(i,k)<epsQ.or.NR(i,k)<epsN) then
Q(i,k) = Q(i,k) + QR(i,k)
T(i,k) = T(i,k) - QR(i,k)*LCP
QR(i,k)= 0.; NR(i,k)= 0.
endif
else
if (QR(i,k)<epsQ) then
Q(i,k) = Q(i,k) + QR(i,k)
T(i,k) = T(i,k) - QR(i,k)*LCP
QR(i,k)= 0.
endif
endif
ENDDO
ENDDO !cond/evap [k-loop]
ENDIF !if warmphase_ON
!----------------------------------------------------------------------------------!
! End of warm-phase microphysics (Part 3) !
!----------------------------------------------------------------------------------!
!----------------------------------------------------------------------------------!
! PART 4: Sedimentation !
!----------------------------------------------------------------------------------!
!----------------------------------------------------------------------------------!
! Sedimentation is computed using a modified version of the box-Lagrangian !
! scheme. Sedimentation is only computed for columns containing non-zero !
! hydrometeor quantities (at at least one level). !
!----------------------------------------------------------------------------------!
IF (sedi_ON) THEN
fluxM_r= 0.; fluxM_i= 0.; fluxM_s= 0.; fluxM_g= 0.; fluxM_h= 0.
RT_rn1 = 0.; RT_rn2 = 0.; RT_fr1 = 0.; RT_fr2 = 0.; RT_sn1 = 0.
RT_sn2 = 0.; RT_sn3 = 0.; RT_pe1 = 0.; RT_pe2 = 0.; RT_peL = 0.
!-- RAIN sedimentation:
if (DblMom_r) then
call SEDI_main_2
(QR,NR,1,Q,T,DE,iDE,gamfact_r,epsQr_sedi,epsN,afr,bfr,cmr,dmr, &
ckQr1,ckQr2,icexr9,LCP,ni,nk,VrMax,DrMax,dt,DZ,fluxM_r,ktop_sedi, &
GRAV,massFlux3D=massFlux3D_r)
else !if DblMom_r
call SEDI_main_1b
(QR,1,T,DE,iDE,gamfact_r,epsQr_sedi,afr,bfr,icmr,dmr,ckQr1, &
icexr9,ni,nk,VrMax,DrMax,dt,DZ,fluxM_r,No_r_SM,ktop_sedi,GRAV, &
massFlux3D=massFlux3D_r)
endif !if DblMom_r
!-- ICE sedimentation:
if (DblMom_i) then
call SEDI_main_2
(QI,NY,2,Q,T,DE,iDE,gamfact,epsQi_sedi,epsN,afi,bfi,cmi,dmi,ckQi1, &
ckQi2,ckQi4,LSP,ni,nk,ViMax,DiMax,dt,DZ,fluxM_i,ktop_sedi,GRAV)
else
call SEDI_main_1b
(QI,2,T,DE,iDE,gamfact,epsQi_sedi,afi,bfi,icmi,dmi,ckQi1,ckQi4, &
ni,nk,ViMax,DiMax,dt,DZ,fluxM_i,-99.,ktop_sedi,GRAV)
endif
!-- SNOW sedimentation:
if (DblMom_s) then
call SEDI_main_2
(QN,NN,3,Q,T,DE,iDE,gamfact,epsQs_sedi,epsN,afs,bfs,cms,dms,ckQs1, &
ckQs2,iGS20,LSP,ni,nk,VsMax,DsMax,dt,DZ,fluxM_s,ktop_sedi,GRAV, &
massFlux3D=massFlux3D_s)
else
call SEDI_main_1b
(QN,3,T,DE,iDE,gamfact,epsQs_sedi,afs,bfs,icms,dms,ckQs1,iGS20, &
ni,nk,VsMax,DsMax,dt,DZ,fluxM_s,-99.,ktop_sedi,GRAV,massFlux3D= &
massFlux3D_s)
endif
!-- GRAUPEL sedimentation:
if (DblMom_g) then
call SEDI_main_2
(QG,NG,4,Q,T,DE,iDE,gamfact,epsQg_sedi,epsN,afg,bfg,cmg,dmg,ckQg1, &
ckQg2,ckQg4,LSP,ni,nk,VgMax,DgMax,dt,DZ,fluxM_g,ktop_sedi,GRAV)
else
call SEDI_main_1b
(QG,4,T,DE,iDE,gamfact,epsQg_sedi,afg,bfg,icmg,dmg,ckQg1,ckQg4, &
ni,nk,VgMax,DgMax,dt,DZ,fluxM_g,No_g_SM,ktop_sedi,GRAV)
endif
!-- HAIL sedimentation:
if (DblMom_h) then
call SEDI_main_2
(QH,NH,5,Q,T,DE,iDE,gamfact,epsQh_sedi,epsN,afh,bfh,cmh,dmh,ckQh1, &
ckQh2,ckQh4,LSP,ni,nk,VhMax,DhMax,dt,DZ,fluxM_h,ktop_sedi,GRAV)
else
call SEDI_main_1b
(QH,5,T,DE,iDE,gamfact,epsQh_sedi,afh,bfh,icmh,dmh,ckQh1,ckQh4, &
ni,nk,VhMax,DhMax,dt,DZ,fluxM_h,No_h_SM,ktop_sedi,GRAV)
endif
!======= End of sedimentation for each category ========!
!--- Impose constraints on size distribution parameters ---!
do k= 1,nk
do i= 1,ni
!snow:
if (QN(i,k)>epsQ .and. NN(i,k)>epsN) then
!Impose No_s max for snow: (assumes alpha_s=0.)
iLAMs = max( iLAMmin2, iLAMDA_x(DE(i,k),QN(i,k), 1./NN(i,k),iGS20,idms) )
tmp1 = min(NN(i,k)/iLAMs,No_s_max) !min. No_s
NN(i,k)= tmp1**(dms/(1.+dms))*(iGS20*DE(i,k)*QN(i,k))**(1./(1.+dms)) !impose Nos_max
!Impose LAMDAs_min (by increasing LAMDAs if it is below LAMDAs_min2 [2xLAMDAs_min])
iLAMs = max( iLAMmin2, iLAMDA_x(DE(i,k),QN(i,k),1./NN(i,k),iGS20,idms) )
tmp2 = 1./iLAMs !LAMs before adjustment
!adjust value of lamdas_min to be applied:
! This adjusts for multiple corrections (each time step). The factor 0.6 was obtained by
! trial-and-error to ultimately give reasonable LAMs profiles, smooth and with min LAMs~lamdas_min
tmp4 = 0.6*lamdas_min
tmp5 = 2.*tmp4
tmp3 = tmp2 + tmp4*(max(0.,tmp5-tmp2)/tmp5)**2. !LAMs after adjustment
tmp3 = max(tmp3, lamdas_min) !final correction
NN(i,k)= NN(i,k)*(tmp3*iLAMs)**dms !re-compute NN after LAMs adjustment
endif
enddo !i-loop
enddo !k-loop
!===
!Compute melted (liquid-equivalent) volume fluxes [m3 (liquid) m-2 (sfc area) s-1]:
! (note: For other precipitation schemes in RPN-CMC physics, this is computed in 'vkuocon6.ftn')
RT_rn1 = fluxM_r *idew
RT_sn1 = fluxM_i *idew
RT_sn2 = fluxM_s *idew
RT_sn3 = fluxM_g *idew
RT_pe1 = fluxM_h *idew
!----
!Compute sum of solid (unmelted) volume fluxes [m3 (bulk hydrometeor) m-2 (sfc area) s-1]:
!(this is the precipitation rate for UNmelted total snow [i+s+g])
! Note: In 'calcdiagn.ftn', the total solid precipitation (excluding hail) SN is computed
! from the sum of the liq-eq.vol fluxes, tss_sn1 + tss_sn2 + tss_sn3. With the
! accumulation of SND (in 'calcdiag.ftn'), the solid-to-liquid ratio for the total
! accumulated "snow" (i+s+g) can be compute as SND/SN. Likewise, the instantaneous
! solid-to-liquid ratio of solid precipitation is computed (in 'calcdiag.ftn') as
! RS2L = RSND/RSN.
do i= 1,ni
fluxV_i= fluxM_i(i)*idei
fluxV_g= fluxM_g(i)*ideg
!Compute unmelted volume flux for snow:
! note: This is based on the strict calculation of the volume flux, where vol=(pi/6)D^3,
! and remains in the integral calculation Fv = int[V(D)*vol(D)*N(D)*dD].
! For a constant density (ice and graupel), vol(D) = m(D)/dex, dex comes out of
! integral and Fv_x=Fm_x/dex
! Optimized for alpha_s = 0.
if (QN(i,nk)>epsQ .and. NN(i,nk)>epsN .and. fluxM_s(i)>0.) then
tmp1= 1./iLAMDA_x(DE(i,nk),QN(i,nk),1./NN(i,nk),iGS20,idms) !LAMDA_s
fluxV_s= fluxM_s(i)*rfact_FvFm*tmp1**(dms-3.)
else
fluxV_s=0.
endif
!total solid unmelted volume flux, before accounting for partial melting:
tmp1= fluxV_i + fluxV_g + fluxV_s
!liquid-fraction of partially-melted solid precipitation:
! The physical premise is that if QR>0, QN+QI+QG>0, and T>0, then QR
! originates from melting and can be used to estimate the liquid portion
! of the partially-melted solid hydrometeor.
tmp2= QR(i,nk) + QI(i,nk) + QN(i,nk) + QG(i,nk)
if (T(i,nk)>TRPL .and. tmp2>epsQ) then
fracLiq= QR(i,nk)/tmp2
else
fracLiq= 0.
endif
!Tend total volume flux towards the liquid-equivalent as the liquid-fraction increases to 1:
tmp3= RT_sn1(i) + RT_sn2(i) + RT_sn3(i) !total liquid-equivalent volume flux (RSN, Fv_sol)
RT_snd(i)= (1.-fracLiq)*tmp1 + fracLiq*tmp3 !total volume flux with partial melting (RSND, Fvsle_sol)
!Note: Calculation of instantaneous solid-to-liquid ratio [RS2L = RSND/RSN]
! is based on the above quantities and is done on 'calcdiag.ftn'.
enddo !i-loop
!====
!++++
! Diagnose surface precipitation types:
!
! The following involves diagnostic conditions to determine surface precipitation rates
! for various precipitation elements defined in Canadian Meteorological Operational Internship
! Program module 3.1 (plus one for large hail) based on the sedimentation rates of the five
! sedimenting hydrometeor categories.
!
! With the diagnostics shut off (precipDiag_ON=.false.), 5 rates are just the 5 category
! rates, with the other 6 rates just 0. The model output variables will have:
!
! total liquid = RT_rn1 [RAIN]
! total solid = RT_sn1 [ICE] + RT_sn2 [SNOW] + RT_sn3 [GRAUPEL] + RT_pe1 [HAIL]
!
! With the diagnostics on, the 5 sedimentation rates are partitioned into 9 rates,
! with the following model output variable:
!
! total liquid = RT_rn1 [liquid rain] + RT_rn2 [liquid drizzle]
! total solid = RT_fr1 [freezing rain] + RT_fr2 [freezing drizzle] + RT_sn1 [ice crystals] +
! RT_sn2 [snow] + RT_sn3 [graupel] + RT_pe1 [ice pellets] + RT_pe2 [hail]
!
! NOTE: - The above total liquid/solid rates are computed in 'calcdiag.ftn' (as R2/R4).
! - RT_peL [large hail] is a sub-set of RT_pe2 [hail] and is thus not added to the total
! solid precipitation.
! call tmg_start0(98,'mmCalcDIAG')
IF (precipDiag_ON) THEN
DO i= 1,ni
DE(i,nk)= S(i,nk)*PS(i)/(RGASD*T(i,nk))
!rain vs. drizzle:
if (DblMom_r) then
N_r= NR(i,nk)
else
N_r= (No_r*GR31)**(3./(4.+alpha_r))*(GR31*iGR34*DE(i,nk)*QR(i,nk)*icmr)** &
((1.+alpha_r)/(4.+alpha_r)) !i.e. NR = f(No_r,QR)
endif
if (QR(i,nk)>epsQ .and. N_r>epsN) then
Dm_r(i,nk)= (DE(i,nk)*icmr*QR(i,nk)/N_r)**thrd
if (Dm_r(i,nk)>Dr_large) then !Dr_large is rain/drizzle size threshold
RT_rn2(i)= RT_rn1(i); RT_rn1(i)= 0.
endif
endif
!liquid vs. freezing rain or drizzle:
if (T(i,nk)<TRPL) then
RT_fr1(i)= RT_rn1(i); RT_rn1(i)= 0.
RT_fr2(i)= RT_rn2(i); RT_rn2(i)= 0.
endif
!ice pellets vs. hail:
if (T(i,nk)>(TRPL+5.0)) then
!note: The condition (T_sfc<5C) for ice pellets is a simply proxy for the presence
! of a warm layer aloft, though which falling snow or graupel will melt to rain,
! over a sub-freezinglayer, where the rain will freeze into the 'hail' category
RT_pe2(i)= RT_pe1(i); RT_pe1(i)= 0.
endif
!large hail:
if (QH(i,nk)>epsQ) then
if (DblMom_h) then
N_h= NH(i,nk)
else
N_h= (No_h_SM*GH31)**(3./(4.+alpha_h))*(GH31*iGH34*DE(i,nk)*QH(i,nk)* &
icmh)**((1.+alpha_h)/(4.+alpha_h)) !i.e. Nh = f(No_h,Qh)
endif
Dm_h(i,nk)= Dm_x
(DE(i,nk),QH(i,nk),1./N_h,icmh,thrd)
if (DM_h(i,nk)>Dh_large) RT_peL(i)= RT_pe2(i)
!note: large hail (RT_peL) is a subset of the total hail (RT_pe2)
endif
ENDDO
ENDIF !if (precipDiag_ON)
!
!++++
ELSE
massFlux3D_r= 0.
massFlux3D_s= 0.
ENDIF ! if (sedi_ON)
where (Q<0.) Q= 0.
!-----------------------------------------------------------------------------------!
! End of sedimentation calculations (Part 4) !
!-----------------------------------------------------------------------------------!
!===================================================================================!
! End of microphysics scheme !
!===================================================================================!
!-----------------------------------------------------------------------------------!
! Calculation of diagnostic output variables: !
IF (calcDiag) THEN
!For reflectivity calculations:
ZEC= minZET
cxr= icmr*icmr !for rain
cxi= 1./fdielec*icmr*icmr !for all frozen categories
Gzr= (6.+alpha_r)*(5.+alpha_r)*(4.+alpha_r)/((3.+alpha_r)*(2.+alpha_r)*(1.+alpha_r))
Gzi= (6.+alpha_i)*(5.+alpha_i)*(4.+alpha_i)/((3.+alpha_i)*(2.+alpha_i)*(1.+alpha_i))
if (snowSpherical) then !dms=3
Gzs= (6.+alpha_s)*(5.+alpha_s)*(4.+alpha_s)/((3.+alpha_s)*(2.+alpha_s)* &
(1.+alpha_s))
else !dms=2
Gzs= (4.+alpha_s)*(3.+alpha_s)/((2.+alpha_s)*(1.+alpha_s))
endif
Gzg= (6.+alpha_g)*(5.+alpha_g)*(4.+alpha_g)/((3.+alpha_g)*(2.+alpha_g)*(1.+alpha_g))
Gzh= (6.+alpha_h)*(5.+alpha_h)*(4.+alpha_h)/((3.+alpha_h)*(2.+alpha_h)*(1.+alpha_h))
do k= 1,nk
do i= 1,ni
DE(i,k)= S(i,k)*PS(i)/(RGASD*T(i,k))
tmp9= DE(i,k)*DE(i,k)
!Compute N_x for single-moment categories:
if (DblMom_c) then
N_c= NC(i,k)
else
N_c= N_c_SM
endif
if (DblMom_r) then
N_r= NR(i,k)
else
N_r= (No_r_SM*GR31)**(3./(4.+alpha_r))*(GR31*iGR34*DE(i,k)*QR(i,k)*icmr)** &
((1.+alpha_r)/(4.+alpha_r)) !i.e. NR = f(No_r,QR)
endif
if (DblMom_i) then
N_i= NY(i,k)
else
N_i= N_Cooper
(TRPL,T(i,k))
endif
if (DblMom_s) then
N_s= NN(i,k)
else
No_s= Nos_Thompson
(TRPL,T(i,k))
N_s = (No_s*GS31)**(dms/(1.+dms+alpha_s))*(GS31*iGS34*DE(i,k)*QN(i,k)* &
icms)**((1.+alpha_s)/(1.+dms+alpha_s))
endif
if (DblMom_g) then
N_g= NG(i,k)
else
N_g= (No_g_SM*GG31)**(3./(4.+alpha_g))*(GG31*GG34*DE(i,k)*QG(i,k)*icmg)** &
((1.+alpha_g)/(4.+alpha_g)) !i.e. NX = f(No_x,QX)
endif
if (DblMom_h) then
N_h= NH(i,k)
else
N_h= (No_h_SM*GH31)**(3./(4.+alpha_h))*(GH31*iGH34*DE(i,k)*QH(i,k)*icmh)** &
((1.+alpha_h)/(4.+alpha_h)) !i.e. NX = f(No_x,QX)
endif
!Total equivalent reflectivity: (units of [dBZ])
tmp1= 0.; tmp2= 0.; tmp3= 0.; tmp4= 0.; tmp5= 0.
if (QR(i,k)>epsQ .and. N_r>epsN) tmp1 = cxr*Gzr*tmp9*QR(i,k)*QR(i,k)/N_r
if (QI(i,k)>epsQ .and. N_i>epsN) tmp2 = cxi*Gzi*tmp9*QI(i,k)*QI(i,k)/N_i
if (QN(i,k)>epsQ .and. N_s>epsN) tmp3 = cxi*Gzs*tmp9*QN(i,k)*QN(i,k)/N_s
if (QG(i,k)>epsQ .and. N_g>epsN) tmp4 = cxi*Gzg*tmp9*QG(i,k)*QG(i,k)/N_g
if (QH(i,k)>epsQ .and. N_h>epsN) tmp5 = cxi*Gzh*tmp9*QH(i,k)*QH(i,k)/N_h
!Modifiy dielectric constant for melting ice-phase categories:
if ( T(i,k)>TRPL) then
tmp2= tmp2*fdielec
tmp3= tmp3*fdielec
tmp4= tmp4*fdielec
tmp5= tmp5*fdielec
endif
ZET(i,k) = tmp1 + tmp2 + tmp3 + tmp4 + tmp5 != Zr+Zi+Zs+Zg+Zh
if (ZET(i,k)>0.) then
ZET(i,k)= 10.*log10((ZET(i,k)*Zfact)) !convert to dBZ
else
ZET(i,k)= minZET
endif
ZET(i,k)= max(ZET(i,k),minZET)
ZEC(i)= max(ZEC(i),ZET(i,k)) !composite (max in column) of ZET
!Mean-mass diameters: (units of [m])
Dm_c(i,k)= 0.; Dm_r(i,k)= 0.; Dm_i(i,k)= 0.
Dm_s(i,k)= 0.; Dm_g(i,k)= 0.; Dm_h(i,k)= 0.
if(QC(i,k)>epsQ.and.N_c>epsN) Dm_c(i,k)=Dm_x
(DE(i,k),QC(i,k),1./N_c,icmr,thrd)
if(QR(i,k)>epsQ.and.N_r>epsN) Dm_r(i,k)=Dm_x
(DE(i,k),QR(i,k),1./N_r,icmr,thrd)
if(QI(i,k)>epsQ.and.N_i>epsN) Dm_i(i,k)=Dm_x
(DE(i,k),QI(i,k),1./N_i,icmi,thrd)
if(QN(i,k)>epsQ.and.N_s>epsN) Dm_s(i,k)=Dm_x
(DE(i,k),QN(i,k),1./N_s,icms,idms)
if(QG(i,k)>epsQ.and.N_g>epsN) Dm_g(i,k)=Dm_x
(DE(i,k),QG(i,k),1./N_g,icmg,thrd)
if(QH(i,k)>epsQ.and.N_h>epsN) Dm_h(i,k)=Dm_x
(DE(i,k),QH(i,k),1./N_h,icmh,thrd)
!Supercooled liquid water:
SLW(i,k)= 0.
if (T(i,k)<TRPL) SLW(i,k)= DE(i,k)*(QC(i,k)+QR(i,k)) !(units of [kg/m3])
!Visibility:
!VIS1: component through liquid cloud (fog) [m]
! (following parameterization of Gultepe and Milbrandt, 2007)
tmp1= QC(i,k)*DE(i,k)*1.e+3 !LWC [g m-3]
tmp2= N_c*1.e-6 !Nc [cm-3]
if (tmp1>0.005 .and. tmp2>1.) then
VIS1(i,k)= max(epsVIS,1000.*(1.13*(tmp1*tmp2)**(-0.51))) !based on FRAM [GM2007, eqn (4)
!VIS1(i,k)= max(epsVIS,min(maxVIS, (tmp1*tmp2)**(-0.65))) !based on RACE [GM2007, eqn (3)
else
VIS1(i,k)= 3.*maxVIS !gets set to maxVIS after calc. of VIS
endif
!VIS2: component through rain !based on Gultepe and Milbrandt, 2008, Table 2 eqn (1)
tmp1= massFlux3D_r(i,k)*idew*3.6e+6 !rain rate [mm h-1]
if (tmp1>0.01) then
VIS2(i,k)= max(epsVIS,1000.*(-4.12*tmp1**0.176+9.01)) ![m]
else
VIS2(i,k)= 3.*maxVIS
endif
!VIS3: component through snow !based on Gultepe and Milbrandt, 2008, Table 2 eqn (6)
tmp1= massFlux3D_s(i,k)*idew*3.6e+6 !snow rate, liq-eq [mm h-1]
if (tmp1>0.01) then
VIS3(i,k)= max(epsVIS,1000.*(1.10*tmp1**(-0.701))) ![m]
else
VIS3(i,k)= 3.*maxVIS
endif
!VIS: visibility due to reduction from all components 1, 2, and 3
! (based on sum of extinction coefficients and Koschmieders's Law)
VIS(i,k) = min(maxVIS, 1./(1./VIS1(i,k) + 1./VIS2(i,k) + 1./VIS3(i,k)))
VIS1(i,k)= min(maxVIS, VIS1(i,k))
VIS2(i,k)= min(maxVIS, VIS2(i,k))
VIS3(i,k)= min(maxVIS, VIS3(i,k))
enddo !i-loop
enddo !k-loop
!Diagnostic levels:
h_CB = noVal_h_XX !height (AGL) of cloud base
h_SN = noVal_h_XX !height (AGL) of snow level [conventional snow (not just QN>0.)]
h_ML1= noVal_h_XX !height (AGL) of melting level [first 0C isotherm from ground]
h_ML2= noVal_h_XX !height (AGL) of melting level [first 0C isotherm from top]
! note: h_ML2 = h_ML1 implies only 1 melting level
tmp1= 1./GRAV
do i= 1,ni
CB_found= .false.; SN_found= .false.; ML_found= .false.
do k= nk,2,-1
!cloud base:
if ((QC(i,k)>epsQ2.or.QI(i,k)>epsQ2) .and. .not.CB_found) then
h_CB(i) = GZ(i,k)*tmp1
CB_found= .true.
endif
!snow level:
if ( ((QN(i,k)>epsQ2 .and. Dm_s(i,k)>minSnowSize) .or. &
(QG(i,k)>epsQ2 .and. Dm_g(i,k)>minSnowSize)) .and. .not.SN_found) then
h_SN(i) = GZ(i,k)*tmp1
SN_found= .true.
endif
!melting level: (height of lowest 0C isotherm)
if (T(i,k)>TRPL .and. T(i,k-1)<TRPL .and. .not.ML_found) then
h_ML1(i) = GZ(i,k)*tmp1
ML_found= .true.
endif
enddo
enddo
do i= 1,ni
ML_found= .false. !from top
do k= 2,nk
!melting level: (height of highest 0C isotherm)
if (T(i,k)>TRPL .and. T(i,k-1)<TRPL .and. .not.ML_found) then
h_ML2(i) = GZ(i,k)*tmp1
ML_found= .true.
endif
enddo
enddo
ENDIF
! !
!-------------
!Convert N from #/m3 to #/kg:
! note: - at this point, NX is updated NX (at t+1); NXTEND is NX before S/S (at t*)
! - NXM is no longer used (it does not need a unit conversion)
do k= 1,nk
DE(:,k) = S(:,k)*PS(:)/(RGASD*T(:,k)) !air density at time (t)
iDE(:,k)= 1./DE(:,k)
enddo
NC= NC*iDE; NCTEND= NCTEND*iDE
NR= NR*iDE; NRTEND= NRTEND*iDE
NY= NY*iDE; NYTEND= NYTEND*iDE
NN= NN*iDE; NNTEND= NNTEND*iDE
NG= NG*iDE; NGTEND= NGTEND*iDE
NH= NH*iDE; NHTEND= NHTEND*iDE
!=============
!-----------------------------------------------------------------------------------!
! Compute the tendencies of T, Q, QC, etc. (to be passed back to model dynamics) !
! and reset the fields to their initial (saved) values at time {*}: !
do k= 1,nk
do i= 1,ni
tmp1=T_TEND(i,k); T_TEND(i,k)=(T(i,k) -T_TEND(i,k))*iDT; T(i,k) = tmp1
tmp1=Q_TEND(i,k); Q_TEND(i,k)=(Q(i,k) -Q_TEND(i,k))*iDT; Q(i,k) = tmp1
tmp1=QCTEND(i,k); QCTEND(i,k)=(QC(i,k)-QCTEND(i,k))*iDT; QC(i,k)= tmp1
tmp1=QRTEND(i,k); QRTEND(i,k)=(QR(i,k)-QRTEND(i,k))*iDT; QR(i,k)= tmp1
tmp1=QITEND(i,k); QITEND(i,k)=(QI(i,k)-QITEND(i,k))*iDT; QI(i,k)= tmp1
tmp1=QNTEND(i,k); QNTEND(i,k)=(QN(i,k)-QNTEND(i,k))*iDT; QN(i,k)= tmp1
tmp1=QGTEND(i,k); QGTEND(i,k)=(QG(i,k)-QGTEND(i,k))*iDT; QG(i,k)= tmp1
tmp1=QHTEND(i,k); QHTEND(i,k)=(QH(i,k)-QHTEND(i,k))*iDT; QH(i,k)= tmp1
if (DblMom_c) then
tmp1=NCTEND(i,k); NCTEND(i,k)=(NC(i,k)-NCTEND(i,k))*iDT; NC(i,k)= tmp1
endif
if (DblMom_r) then
tmp1=NRTEND(i,k); NRTEND(i,k)=(NR(i,k)-NRTEND(i,k))*iDT; NR(i,k)= tmp1
endif
if (DblMom_i) then
tmp1=NYTEND(i,k); NYTEND(i,k)=(NY(i,k)-NYTEND(i,k))*iDT; NY(i,k)= tmp1
endif
if (DblMom_s) then
tmp1=NNTEND(i,k); NNTEND(i,k)=(NN(i,k)-NNTEND(i,k))*iDT; NN(i,k)= tmp1
endif
if (DblMom_g) then
tmp1=NGTEND(i,k); NGTEND(i,k)=(NG(i,k)-NGTEND(i,k))*iDT; NG(i,k)= tmp1
endif
if (DblMom_h) then
tmp1=NHTEND(i,k); NHTEND(i,k)=(NH(i,k)-NHTEND(i,k))*iDT; NH(i,k)= tmp1
endif
enddo
enddo
! !
!-----------------------------------------------------------------------------------!
END SUBROUTINE mp_milbrandt2mom_main
!___________________________________________________________________________________!
real function des_OF_Ds(Ds_local,desMax_local,eds_local,fds_local) 1
!Computes density of equivalent-volume snow particle based on (pi/6*des)*Ds^3 = cms*Ds^dms
real :: Ds_local,desMax_local,eds_local,fds_local
! des_OF_Ds= min(desMax_local, eds_local*Ds_local**fds_local)
des_OF_Ds= min(desMax_local, eds_local*exp(fds_local*log(Ds_local))) !IBM optimization
end function des_OF_Ds
real function Dm_x(DE_local,QX_local,iNX_local,icmx_local,idmx_local) 16
!Computes mean-mass diameter
real :: DE_local,QX_local,iNX_local,icmx_local,idmx_local
!Dm_x = (DE_local*QX_local*iNX_local*icmx_local)**idmx_local
Dm_x = exp(idmx_local*log(DE_local*QX_local*iNX_local*icmx_local)) !IBM optimization
end function Dm_x
real function iLAMDA_x(DE_local,QX_local,iNX_local,icex_local,idmx_local) 4
!Computes 1/LAMDA ("slope" parameter):
real :: DE_local,QX_local,iNX_local,icex_local,idmx_local
!iLAMDA_x = (DE_local*QX_local*iNX_local*icex_local)**idmx_local
iLAMDA_x = exp(idmx_local*log(DE_local*QX_local*iNX_local*icex_local)) !IBM optimization
end function
real function N_Cooper(TRPL_local,T_local) 5
!Computes total number concentration of ice as a function of temperature
!according to parameterization of Cooper (1986):
real :: TRPL_local,T_local
N_Cooper= 5.*exp(0.304*(TRPL_local-max(233.,T_local)))
end function N_Cooper
real function Nos_Thompson(TRPL_local,T_local) 4,2
!Computes the snow intercept, No_s, as a function of temperature
!according to the parameterization of Thompson et al. (2004):
real :: TRPL_local,T_local
Nos_Thompson= min(2.e+8, 2.e+6*exp(-0.12*min(-0.001,T_local-TRPL_local)))
end function Nos_Thompson
!===================================================================================================!
END MODULE my_dmom_mod
!________________________________________________________________________________________!
MODULE module_mp_milbrandt2mom 2
use module_wrf_error
use my_dmom_mod
implicit none
! To be done later. Currently, parameters are initialized in the main routine
! (at every time step).
CONTAINS
!----------------------------------------------------------------------------------------!
SUBROUTINE milbrandt2mom_init 1
! To be done later. Currently, parameters are initialized in the main routine (at every time step).
END SUBROUTINE milbrandt2mom_init
!----------------------------------------------------------------------------------------!
!+---------------------------------------------------------------------+
! This is a wrapper routine designed to transfer values from 3D to 2D. !
!+---------------------------------------------------------------------+
SUBROUTINE mp_milbrandt2mom_driver(qv, qc, qr, qi, qs, qg, qh, nc, nr, ni, ns, ng, & 1,1
nh, th, pii, p, w, dz, dt_in, itimestep, &
RAINNC, RAINNCV, SNOWNC, SNOWNCV, GRPLNC, GRPLNCV, &
! HAILNC, HAILNCV, SR, Zet, ccntype, &
HAILNC, HAILNCV, SR, Zet, &
ids,ide, jds,jde, kds,kde, & ! domain dims
ims,ime, jms,jme, kms,kme, & ! memory dims
its,ite, jts,jte, kts,kte) ! tile dims
implicit none
!Subroutine arguments:
integer, intent(in):: ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte
real, dimension(ims:ime, kms:kme, jms:jme), intent(inout):: &
qv,qc,qr,qi,qs,qg,qh,nc,nr,ni,ns,ng,nh,th,Zet
real, dimension(ims:ime, kms:kme, jms:jme), intent(in):: &
pii,p,w,dz
real, dimension(ims:ime, jms:jme), intent(inout):: &
RAINNC,RAINNCV,SNOWNC,SNOWNCV,GRPLNC,GRPLNCV,HAILNC,HAILNCV, &
SR
real, intent(in):: dt_in
integer, intent(in):: itimestep !, ccntype
!Local variables:
real, dimension(1:ite-its+1,1:kte-kts+1) :: t2d,qv2d,qc2d,qr2d,qi2d,qs2d,qg2d,qh2d,&
nc2d,nr2d,ni2d,ns2d,ng2d,nh2d,p2d,dz2d,rho,irho,omega2d,t2d_m,qv2d_m,qc2d_m, &
qr2d_m,qi2d_m,qs2d_m,qg2d_m,qh2d_m,nc2d_m,nr2d_m,ni2d_m,ns2d_m,ng2d_m,nh2d_m,&
sigma2d,tmp01,tmp02,tmp03,tmp04,tmp05,tmp06,tmp07,tmp08,tmp09,tmp10,tmp11, &
tmp12,tmp13,tmp14,tmp15,tmp16,tmp17,tmp18,gz2d,zet2d
!tentatively local; to be passed out as output variables later
real, dimension(1:ite-its+1,1:kte-kts+1) :: Dm_c,Dm_r,Dm_i,Dm_s,Dm_g,Dm_h, &
SLW,VIS,VIS1,VIS2,VIS3,SS01,SS02,SS03,SS04,SS05,SS06,SS07,SS08,SS09,SS10, &
SS11,SS12,SS13,SS14,SS15,SS16,SS17,SS18,SS19,SS20,T_tend,Q_tend,QCtend, &
QRtend,QItend,QStend,QGtend,QHtend,NCtend,NRtend,NItend,NStend,NGtend,NHtend
real, dimension(1:ite-its+1) :: rt_rn1,rt_rn2,rt_fr1,rt_fr2,rt_sn1,rt_sn2,rt_sn3, &
rt_pe1,rt_pe2,rt_peL,rt_snd,ZEC,h_CB,h_ML1,h_ML2,h_SN,p_src
real :: dt,ms2mmstp
real :: qc_max,qr_max,qs_max,qi_max,qg_max,qh_max,nc_max,nr_max,ns_max,ni_max, &
ng_max,nh_max
integer :: i,j,k,i2d,j2d,k2d,i2d_max,k2d_max
integer :: imax_qc, imax_qr, imax_qi, imax_qs, imax_qg, imax_qh
integer :: imax_nc, imax_nr, imax_ni, imax_ns, imax_ng, imax_nh
integer :: jmax_qc, jmax_qr, jmax_qi, jmax_qs, jmax_qg, jmax_qh
integer :: jmax_nc, jmax_nr, jmax_ni, jmax_ns, jmax_ng, jmax_nh
integer :: kmax_qc, kmax_qr, kmax_qi, kmax_qs, kmax_qg, kmax_qh
integer :: kmax_nc, kmax_nr, kmax_ni, kmax_ns, kmax_ng, kmax_nh
integer :: i_start, j_start, i_end, j_end, CCNtype
logical :: precipDiag_ON,sedi_ON,warmphase_ON,autoconv_ON,icephase_ON,snow_ON, &
initN,dblMom_c,dblMom_r,dblMom_i,dblMom_s,dblMom_g,dblMom_h
real, parameter :: ms2mmh = 3.6e+6 !conversion factor for precipitation rates
real, parameter :: R_d = 287.04 !gas constant for dry air
character*512 :: mp_debug
!+---+
i2d_max = ite-its+1
k2d_max = kte-kts+1
dt = dt_in
ms2mmstp = 1.e+3*dt !conversion factor: m/2 to mm/step
!--- temporary initialization (until variables are put as namelist options:
! CCNtype = 1. !maritime --> N_c = 80 cm-3 for dblMom_c = .F.
CCNtype = 2. !continental --> N_c = 200 cm-3 for dblMom_c = .F.
precipDiag_ON = .true.; dblMom_c = .true.
sedi_ON = .true.; dblMom_r = .true.
warmphase_ON = .true.; dblMom_i = .true.
autoconv_ON = .true.; dblMom_s = .true.
icephase_ON = .true.; dblMom_g = .true.
snow_ON = .true.; dblMom_h = .true.
initN = .true.
!---
qc_max = 0.; nc_max = 0.
qr_max = 0.; nr_max = 0.
qi_max = 0.; ni_max = 0.
qs_max = 0.; ns_max = 0.
qg_max = 0.; ng_max = 0.
qh_max = 0.; nh_max = 0.
imax_qc = 0; imax_nc = 0; jmax_qc = 0; jmax_nc = 0; kmax_qc = 0; kmax_nc = 0
imax_qr = 0; imax_nr = 0; jmax_qr = 0; jmax_nr = 0; kmax_qr = 0; kmax_nr = 0
imax_qi = 0; imax_ni = 0; jmax_qi = 0; jmax_ni = 0; kmax_qi = 0; kmax_ni = 0
imax_qs = 0; imax_ns = 0; jmax_qs = 0; jmax_ns = 0; kmax_qs = 0; kmax_ns = 0
imax_qg = 0; imax_ng = 0; jmax_qg = 0; jmax_ng = 0; kmax_qg = 0; kmax_ng = 0
imax_qh = 0; imax_nh = 0; jmax_qh = 0; jmax_nh = 0; kmax_qh = 0; kmax_nh = 0
RAINNCV(its:ite,jts:jte) = 0.
SNOWNCV(its:ite,jts:jte) = 0.
GRPLNCV(its:ite,jts:jte) = 0.
HAILNCV(its:ite,jts:jte) = 0.
SR(its:ite,jts:jte) = 0.
do i = 1, 512
mp_debug(i:i) = char(0)
enddo
j_loop1: do j = jts, jte
j2d = j-jts+1 !index value for 2D arrays, to be passed to main micro scheme
i_loop1: do i = its, ite
i2d = i-its+1 !index value for 2D arrays, to be passed to main micro scheme
!Approximate geopotential:
! (assumes lowest model level is at sea-level; acceptable for purposes of scheme)
gz2d(i2d,kts)= 0.
do k = kts+1, kte
gz2d(i2d,k)= gz2d(i2d,k-1) + dz(i,k,j)*9.81
enddo
k_loop1: do k = kts, kte
k2d = k-kts+1 !index value for 2D arrays, to be passed to main micro scheme
!Note: The 3D number concentration variables (seen by WRF dynamics) are in units of 1/kg.
! However, the 2D variables must be converted to units of 1/m3 (by multiplying by air
! density) before being passed to the main subroutine mp_milbrandtsmom. They are then
! converted back after the call, upon putting them back from 2D to 3D variables.
!Convert 3D to 2D arrays (etc.):
t2d(i2d,k2d) = th(i,k,j)*pii(i,k,j)
p2d(i2d,k2d) = p(i,k,j)
dz2d(i2d,k2d) = dz(i,k,j)
qv2d(i2d,k2d) = qv(i,k,j)
!chen rho(i2d,k2d) = p2d(i2d,k2d)/(R_d*t2d(i2d,k2d))
!chen omega2d(i2d,k2d)= -w(i,k,j)*p2d(i2d,k2d)*9.81
rho(i2d,k2d) = p2d(i2d,k)/(R_d*t2d(i2d,k))
omega2d(i2d,k2d)= -w(i,k,j)*rho(i2d,k2d)*9.81
qc2d(i2d,k2d) = qc(i,k,j); nc2d(i2d,k2d) = nc(i,k,j)
qi2d(i2d,k2d) = qi(i,k,j); ni2d(i2d,k2d) = ni(i,k,j)
qr2d(i2d,k2d) = qr(i,k,j); nr2d(i2d,k2d) = nr(i,k,j)
qs2d(i2d,k2d) = qs(i,k,j); ns2d(i2d,k2d) = ns(i,k,j)
qg2d(i2d,k2d) = qg(i,k,j); ng2d(i2d,k2d) = ng(i,k,j)
qh2d(i2d,k2d) = qh(i,k,j); nh2d(i2d,k2d) = nh(i,k,j)
!sigma2d(i2d,k2d)= p2d(i2d,k2d)/p2d(i2d,kte-kts+1)
enddo k_loop1
K_loop9: do k= kts, kte
k2d = k-kts+1 !index value for 2D arrays, to be passed to main micro scheme
sigma2d(i2d,k2d)= p2d(i2d,k2d)/p2d(i2d,kte-kts+1)
enddo K_loop9
enddo i_loop1
p_src(:)= p2d(:,k2d_max)
!Flip arrays: (to conform to vertical leveling in GEM)
! Note: This step (and the flipping back) could be avoided by changing the indexing
! in the sedimentation subroutine. It is done this way to allow for directly
! pasting the GEM code directly into this subdriver without having to change
! the code.
tmp01= omega2d; tmp02= t2d; tmp03= qv2d; tmp04= qc2d; tmp05=qr2d; tmp06=qi2d
tmp07= qs2d; tmp08= qg2d; tmp09= qh2d; tmp10= nc2d; tmp11=nr2d; tmp12=ni2d
tmp13= ns2d; tmp14= ng2d; tmp15= nh2d; tmp16= sigma2d; tmp17=dz2d; tmp18=gz2d
do k = kts-1,kte-1
k2d = k-kts+1
omega2d(:,k2d+1)= tmp01(:,k2d_max-k2d)
t2d(:,k2d+1) = tmp02(:,k2d_max-k2d)
qv2d(:,k2d+1) = tmp03(:,k2d_max-k2d)
qc2d(:,k2d+1) = tmp04(:,k2d_max-k2d)
qr2d(:,k2d+1) = tmp05(:,k2d_max-k2d)
qi2d(:,k2d+1) = tmp06(:,k2d_max-k2d)
qs2d(:,k2d+1) = tmp07(:,k2d_max-k2d)
qg2d(:,k2d+1) = tmp08(:,k2d_max-k2d)
qh2d(:,k2d+1) = tmp09(:,k2d_max-k2d)
nc2d(:,k2d+1) = tmp10(:,k2d_max-k2d)
nr2d(:,k2d+1) = tmp11(:,k2d_max-k2d)
ni2d(:,k2d+1) = tmp12(:,k2d_max-k2d)
ns2d(:,k2d+1) = tmp13(:,k2d_max-k2d)
ng2d(:,k2d+1) = tmp14(:,k2d_max-k2d)
nh2d(:,k2d+1) = tmp15(:,k2d_max-k2d)
sigma2d(:,k2d+1)= tmp16(:,k2d_max-k2d)
dz2d(:,k2d+1) = tmp17(:,k2d_max-k2d)
gz2d(:,k2d+1) = tmp18(:,k2d_max-k2d)
enddo
!Copy 2d arrays xx2d to xx2d_m: (to facilitate inclusion of main milbrandt2mom
! subroutine which uses arrays at two different time levels, for GEM model)
t2d_m = t2d; qv2d_m = qv2d
qc2d_m = qc2d; nc2d_m = nc2d
qr2d_m = qr2d; nr2d_m = nr2d
qi2d_m = qi2d; ni2d_m = ni2d
qs2d_m = qs2d; ns2d_m = ns2d
qg2d_m = qg2d; ng2d_m = ng2d
qh2d_m = qh2d; nh2d_m = nh2d
call mp_milbrandt2mom_main
(omega2d,t2d,qv2d,qc2d,qr2d,qi2d,qs2d,qg2d,qh2d,nc2d, &
nr2d,ni2d,ns2d,ng2d,nh2d,p_src,t2d_m,qv2d_m,qc2d_m,qr2d_m,qi2d_m,qs2d_m, &
qg2d_m,qh2d_m,nc2d_m,nr2d_m,ni2d_m,ns2d_m,ng2d_m,nh2d_m,p_src,sigma2d, &
rt_rn1,rt_rn2,rt_fr1,rt_fr2,rt_sn1,rt_sn2,rt_sn3,rt_pe1,rt_pe2,rt_peL,rt_snd,&
gz2d,T_tend,Q_tend,QCtend,QRtend,QItend,QStend,QGtend,QHtend,NCtend,NRtend, &
NItend,NStend,NGtend,NHtend,dt,i2d_max,1,k2d_max,j,itimestep,CCNtype,precipDiag_ON,&
sedi_ON,warmphase_ON,autoconv_ON,icephase_ON,snow_ON,initN,dblMom_c,dblMom_r,&
dblMom_i,dblMom_s,dblMom_g,dblMom_h,Dm_c,Dm_r,Dm_i,Dm_s,Dm_g,Dm_h,Zet2d,ZEC, &
SLW,VIS,VIS1,VIS2,VIS3,h_CB,h_ML1,h_ML2,h_SN,SS01,SS02,SS03,SS04,SS05,SS06, &
SS07,SS08,SS09,SS10,SS11,SS12,SS13,SS14,SS15,SS16,SS17,SS18,SS19,SS20)
!Add tendencies:
t2d(:,:) = t2d(:,:) + T_tend(:,:)*dt
qv2d(:,:)= qv2d(:,:) + Q_tend(:,:)*dt
qc2d(:,:)= qc2d(:,:) + QCtend(:,:)*dt; nc2d(:,:)= nc2d(:,:) + NCtend(:,:)*dt
qr2d(:,:)= qr2d(:,:) + QRtend(:,:)*dt; nr2d(:,:)= nr2d(:,:) + NRtend(:,:)*dt
qi2d(:,:)= qi2d(:,:) + QItend(:,:)*dt; ni2d(:,:)= ni2d(:,:) + NItend(:,:)*dt
qs2d(:,:)= qs2d(:,:) + QStend(:,:)*dt; ns2d(:,:)= ns2d(:,:) + NStend(:,:)*dt
qg2d(:,:)= qg2d(:,:) + QGtend(:,:)*dt; ng2d(:,:)= ng2d(:,:) + NGtend(:,:)*dt
qh2d(:,:)= qh2d(:,:) + QHtend(:,:)*dt; nh2d(:,:)= nh2d(:,:) + NHtend(:,:)*dt
!Flip arrays back : (to conform to vertical leveling in WRF)
tmp02= t2d; tmp03= qv2d; tmp04= qc2d; tmp05=qr2d; tmp06=qi2d
tmp07= qs2d; tmp08= qg2d; tmp09= qh2d; tmp10= nc2d; tmp11=nr2d; tmp12=ni2d
tmp13= ns2d; tmp14= ng2d; tmp15= nh2d; tmp16= Zet2d; tmp17=ss01; tmp18=ss02
do k = kts-1,kte-1
k2d = k-kts+1
t2d(:,k2d+1) = tmp02(:,k2d_max-k2d)
qv2d(:,k2d+1) = tmp03(:,k2d_max-k2d)
qc2d(:,k2d+1) = tmp04(:,k2d_max-k2d)
qr2d(:,k2d+1) = tmp05(:,k2d_max-k2d)
qi2d(:,k2d+1) = tmp06(:,k2d_max-k2d)
qs2d(:,k2d+1) = tmp07(:,k2d_max-k2d)
qg2d(:,k2d+1) = tmp08(:,k2d_max-k2d)
qh2d(:,k2d+1) = tmp09(:,k2d_max-k2d)
nc2d(:,k2d+1) = tmp10(:,k2d_max-k2d)
nr2d(:,k2d+1) = tmp11(:,k2d_max-k2d)
ni2d(:,k2d+1) = tmp12(:,k2d_max-k2d)
ns2d(:,k2d+1) = tmp13(:,k2d_max-k2d)
ng2d(:,k2d+1) = tmp14(:,k2d_max-k2d)
nh2d(:,k2d+1) = tmp15(:,k2d_max-k2d)
Zet2d(:,k2d+1) = tmp16(:,k2d_max-k2d)
enddo
i_loop2: do i = its, ite
i2d = i-its+1
!Convert individual precipitation rates (in m/s) to WRF precipitation fields:
! note: RAINNC is not actually "rain"; it is the total precipitation.
! The liquid precipitation is the total multiplied by the liquid fraction,
! --> rain = RAINNC*(1-SR) (done elsewhere in WRF)
RAINNCV(i,j) = (rt_rn1(i2d)+rt_rn2(i2d)+rt_fr1(i2d)+rt_fr2(i2d)+rt_sn1(i2d)+ &
rt_sn2(i2d)+rt_sn3(i2d)+rt_pe1(i2d)+rt_pe2(i2d))*ms2mmstp
SNOWNCV(i,j) = (rt_sn1(i2d) + rt_sn2(i2d))*ms2mmstp
HAILNCV(i,j) = (rt_pe1(i2d) + rt_pe2(i2d))*ms2mmstp
GRPLNCV(i,j) = rt_sn3(i2d) *ms2mmstp
RAINNC(i,j) = RAINNC(i,j) + RAINNCV(i,j)
SNOWNC(i,j) = SNOWNC(i,j) + SNOWNCV(i,j)
HAILNC(i,j) = HAILNC(i,j) + HAILNCV(i,j)
GRPLNC(i,j) = GRPLNC(i,j) + GRPLNCV(i,j)
SR(i,j) = (SNOWNCV(i,j)+HAILNCV(i,j)+GRPLNCV(i,j))/(RAINNCV(i,j)+1.e-12)
k_loop2: do k = kts, kte
k2d = k-kts+1
if(.not.(t2d(i2d,k2d)>=173.) .or. (t2d(i2d,k2d)>1000.)) then
write(6,*)
write(6,*) '*** Stopping in mp_milbrandt2mom_driver due to unrealistic temperature ***'
write(6,*) ' step: ',itimestep
write(6,'(a5,5i5,8e15.5)') 'i,k: ',i,j,k,i2d,k2d,t2d(i2d,k2d),qv2d(i2d,k2d),qc2d(i2d,k2d),qr2d(i2d,k2d), &
qi2d(i2d,k2d),qs2d(i2d,k2d),qg2d(i2d,k2d),qh2d(i2d,k2d)
write(6,*)
stop
endif
!Convert back to 3D arrays (and change units of number concentrations back to kg-1):
th(i,k,j) = t2d(i2d,k2d)/pii(i,k,j)
qv(i,k,j) = qv2d(i2d,k2d)
! irho(i,k) = R_d*t2d(i2d,k2d)/p2d(i2d,k2d)
qc(i,k,j) = qc2d(i2d,k2d); nc(i,k,j) = nc2d(i2d,k2d)
qi(i,k,j) = qi2d(i2d,k2d); ni(i,k,j) = ni2d(i2d,k2d)
qr(i,k,j) = qr2d(i2d,k2d); nr(i,k,j) = nr2d(i2d,k2d)
qs(i,k,j) = qs2d(i2d,k2d); ns(i,k,j) = ns2d(i2d,k2d)
qg(i,k,j) = qg2d(i2d,k2d); ng(i,k,j) = ng2d(i2d,k2d)
qh(i,k,j) = qh2d(i2d,k2d); nh(i,k,j) = nh2d(i2d,k2d)
Zet(i,k,j)= Zet2d(i2d,k2d)
enddo k_loop2
enddo i_loop2
enddo j_loop1
do i = 1, 256
mp_debug(i:i) = char(0)
enddo
END SUBROUTINE mp_milbrandt2mom_driver
!+---+-----------------------------------------------------------------+
!________________________________________________________________________________________!
END MODULE module_mp_milbrandt2mom