MODULE module_ra_cam_support 2 use module_cam_support, only: endrun implicit none integer, parameter :: r8 = 8 real(r8), parameter:: inf = 1.e20 ! CAM sets this differently in infnan.F90 integer, parameter:: bigint = O'17777777777' ! largest possible 32-bit integer integer :: ixcldliq integer :: ixcldice ! integer :: levsiz ! size of level dimension on dataset integer, parameter :: nbands = 2 ! Number of spectral bands integer, parameter :: naer_all = 12 + 1 integer, parameter :: naer = 10 + 1 integer, parameter :: bnd_nbr_LW=7 integer, parameter :: ndstsz = 4 ! number of dust size bins integer :: idxSUL integer :: idxSSLT integer :: idxDUSTfirst integer :: idxCARBONfirst integer :: idxOCPHO integer :: idxBCPHO integer :: idxOCPHI integer :: idxBCPHI integer :: idxBG integer :: idxVOLC integer :: mxaerl ! Maximum level of background aerosol ! indices to sections of array that represent ! groups of aerosols integer, parameter :: & numDUST = 4, & numCARBON = 4 ! portion of each species group to use in computation ! of relative radiative forcing. real(r8) :: sulscl_rf = 0._r8 ! real(r8) :: carscl_rf = 0._r8 real(r8) :: ssltscl_rf = 0._r8 real(r8) :: dustscl_rf = 0._r8 real(r8) :: bgscl_rf = 0._r8 real(r8) :: volcscl_rf = 0._r8 ! "background" aerosol species mmr. real(r8) :: tauback = 0._r8 ! portion of each species group to use in computation ! of aerosol forcing in driving the climate real(r8) :: sulscl = 1._r8 real(r8) :: carscl = 1._r8 real(r8) :: ssltscl = 1._r8 real(r8) :: dustscl = 1._r8 real(r8) :: volcscl = 1._r8 !From volcrad.F90 module integer, parameter :: idx_LW_0500_0650=3 integer, parameter :: idx_LW_0650_0800=4 integer, parameter :: idx_LW_0800_1000=5 integer, parameter :: idx_LW_1000_1200=6 integer, parameter :: idx_LW_1200_2000=7 ! First two values represent the overlap of volcanics with the non-window ! (0-800, 1200-2200 cm^-1) and window (800-1200 cm^-1) regions.| Coefficients ! were derived using crm_volc_minimize.pro with spectral flux optimization ! on first iteration, total heating rate on subsequent iterations (2-9). ! Five profiles for HLS, HLW, MLS, MLW, and TRO conditions were given equal ! weight. RMS heating rate errors for a visible stratospheric optical ! depth of 1.0 are 0.02948 K/day. ! real(r8) :: abs_cff_mss_aer(bnd_nbr_LW) = & (/ 70.257384, 285.282943, & 1.0273851e+02, 6.3073303e+01, 1.2039569e+02, & 3.6343643e+02, 2.7138528e+02 /) !From radae.F90 module real(r8), parameter:: min_tp_h2o = 160.0 ! min T_p for pre-calculated abs/emis real(r8), parameter:: max_tp_h2o = 349.999999 ! max T_p for pre-calculated abs/emis real(r8), parameter:: dtp_h2o = 21.111111111111 ! difference in adjacent elements of tp_h2o real(r8), parameter:: min_te_h2o = -120.0 ! min T_e-T_p for pre-calculated abs/emis real(r8), parameter:: max_te_h2o = 79.999999 ! max T_e-T_p for pre-calculated abs/emis real(r8), parameter:: dte_h2o = 10.0 ! difference in adjacent elements of te_h2o real(r8), parameter:: min_rh_h2o = 0.0 ! min RH for pre-calculated abs/emis real(r8), parameter:: max_rh_h2o = 1.19999999 ! max RH for pre-calculated abs/emis real(r8), parameter:: drh_h2o = 0.2 ! difference in adjacent elements of RH real(r8), parameter:: min_lu_h2o = -8.0 ! min log_10(U) for pre-calculated abs/emis real(r8), parameter:: min_u_h2o = 1.0e-8 ! min pressure-weighted path-length real(r8), parameter:: max_lu_h2o = 3.9999999 ! max log_10(U) for pre-calculated abs/emis real(r8), parameter:: dlu_h2o = 0.5 ! difference in adjacent elements of lu_h2o real(r8), parameter:: min_lp_h2o = -3.0 ! min log_10(P) for pre-calculated abs/emis real(r8), parameter:: min_p_h2o = 1.0e-3 ! min log_10(P) for pre-calculated abs/emis real(r8), parameter:: max_lp_h2o = -0.0000001 ! max log_10(P) for pre-calculated abs/emis real(r8), parameter:: dlp_h2o = 0.3333333333333 ! difference in adjacent elements of lp_h2o integer, parameter :: n_u = 25 ! Number of U in abs/emis tables integer, parameter :: n_p = 10 ! Number of P in abs/emis tables integer, parameter :: n_tp = 10 ! Number of T_p in abs/emis tables integer, parameter :: n_te = 21 ! Number of T_e in abs/emis tables integer, parameter :: n_rh = 7 ! Number of RH in abs/emis tables real(r8):: c16,c17,c26,c27,c28,c29,c30,c31 real(r8):: fwcoef ! Farwing correction constant real(r8):: fwc1,fwc2 ! Farwing correction constants real(r8):: fc1 ! Farwing correction constant real(r8):: amco2 ! Molecular weight of co2 (g/mol) real(r8):: amd ! Molecular weight of dry air (g/mol) real(r8):: p0 ! Standard pressure (dynes/cm**2) ! These are now allocatable. JM 20090612 real(r8), allocatable, dimension(:,:,:,:,:) :: ah2onw ! (n_p, n_tp, n_u, n_te, n_rh) ! absorptivity (non-window) real(r8), allocatable, dimension(:,:,:,:,:) :: eh2onw ! (n_p, n_tp, n_u, n_te, n_rh) ! emissivity (non-window) real(r8), allocatable, dimension(:,:,:,:,:) :: ah2ow ! (n_p, n_tp, n_u, n_te, n_rh) ! absorptivity (window, for adjacent layers) real(r8), allocatable, dimension(:,:,:,:,:) :: cn_ah2ow ! (n_p, n_tp, n_u, n_te, n_rh) ! continuum transmission for absorptivity (window) real(r8), allocatable, dimension(:,:,:,:,:) :: cn_eh2ow ! (n_p, n_tp, n_u, n_te, n_rh) ! continuum transmission for emissivity (window) real(r8), allocatable, dimension(:,:,:,:,:) :: ln_ah2ow ! (n_p, n_tp, n_u, n_te, n_rh) ! line-only transmission for absorptivity (window) real(r8), allocatable, dimension(:,:,:,:,:) :: ln_eh2ow ! (n_p, n_tp, n_u, n_te, n_rh) ! line-only transmission for emissivity (window) ! ! Constant coefficients for water vapor overlap with trace gases. ! Reference: Ramanathan, V. and P.Downey, 1986: A Nonisothermal ! Emissivity and Absorptivity Formulation for Water Vapor ! Journal of Geophysical Research, vol. 91., D8, pp 8649-8666 ! real(r8):: coefh(2,4) = reshape( & (/ (/5.46557e+01,-7.30387e-02/), & (/1.09311e+02,-1.46077e-01/), & (/5.11479e+01,-6.82615e-02/), & (/1.02296e+02,-1.36523e-01/) /), (/2,4/) ) ! real(r8):: coefj(3,2) = reshape( & (/ (/2.82096e-02,2.47836e-04,1.16904e-06/), & (/9.27379e-02,8.04454e-04,6.88844e-06/) /), (/3,2/) ) ! real(r8):: coefk(3,2) = reshape( & (/ (/2.48852e-01,2.09667e-03,2.60377e-06/) , & (/1.03594e+00,6.58620e-03,4.04456e-06/) /), (/3,2/) ) integer, parameter :: ntemp = 192 ! Number of temperatures in H2O sat. table for Tp real(r8) :: estblh2o(0:ntemp) ! saturation vapor pressure for H2O for Tp rang integer, parameter :: o_fa = 6 ! Degree+1 of poly of T_e for absorptivity as U->inf. integer, parameter :: o_fe = 6 ! Degree+1 of poly of T_e for emissivity as U->inf. !----------------------------------------------------------------------------- ! Data for f in C/H/E fit -- value of A and E as U->infinity ! New C/LT/E fit (Hitran 2K, CKD 2.4) -- no change ! These values are determined by integrals of Planck functions or ! derivatives of Planck functions only. !----------------------------------------------------------------------------- ! ! fa/fe coefficients for 2 bands (0-800 & 1200-2200, 800-1200 cm^-1) ! ! Coefficients of polynomial for f_a in T_e ! real(r8), parameter:: fat(o_fa,nbands) = reshape( (/ & (/-1.06665373E-01, 2.90617375E-02, -2.70642049E-04, & ! 0-800&1200-2200 cm^-1 1.07595511E-06, -1.97419681E-09, 1.37763374E-12/), & ! 0-800&1200-2200 cm^-1 (/ 1.10666537E+00, -2.90617375E-02, 2.70642049E-04, & ! 800-1200 cm^-1 -1.07595511E-06, 1.97419681E-09, -1.37763374E-12/) /) & ! 800-1200 cm^-1 , (/o_fa,nbands/) ) ! ! Coefficients of polynomial for f_e in T_e ! real(r8), parameter:: fet(o_fe,nbands) = reshape( (/ & (/3.46148163E-01, 1.51240299E-02, -1.21846479E-04, & ! 0-800&1200-2200 cm^-1 4.04970123E-07, -6.15368936E-10, 3.52415071E-13/), & ! 0-800&1200-2200 cm^-1 (/6.53851837E-01, -1.51240299E-02, 1.21846479E-04, & ! 800-1200 cm^-1 -4.04970123E-07, 6.15368936E-10, -3.52415071E-13/) /) & ! 800-1200 cm^-1 , (/o_fa,nbands/) ) real(r8) :: gravit ! Acceleration of gravity (cgs) real(r8) :: rga ! 1./gravit real(r8) :: gravmks ! Acceleration of gravity (mks) real(r8) :: cpair ! Specific heat of dry air real(r8) :: epsilo ! Ratio of mol. wght of H2O to dry air real(r8) :: epsqs ! Ratio of mol. wght of H2O to dry air real(r8) :: sslp ! Standard sea-level pressure real(r8) :: stebol ! Stefan-Boltzmann's constant real(r8) :: rgsslp ! 0.5/(gravit*sslp) real(r8) :: dpfo3 ! Voigt correction factor for O3 real(r8) :: dpfco2 ! Voigt correction factor for CO2 real(r8) :: dayspy ! Number of days per 1 year real(r8) :: pie ! 3.14..... real(r8) :: mwdry ! molecular weight dry air ~ kg/kmole (shr_const_mwdair) real(r8) :: scon ! solar constant (not used in WRF) real(r8) :: co2mmr real(r8) :: mwco2 ! molecular weight of carbon dioxide real(r8) :: mwh2o ! molecular weight water vapor (shr_const_mwwv) real(r8) :: mwch4 ! molecular weight ch4 real(r8) :: mwn2o ! molecular weight n2o real(r8) :: mwf11 ! molecular weight cfc11 real(r8) :: mwf12 ! molecular weight cfc12 real(r8) :: cappa ! R/Cp real(r8) :: rair ! Gas constant for dry air (J/K/kg) real(r8) :: tmelt ! freezing T of fresh water ~ K real(r8) :: r_universal ! Universal gas constant ~ J/K/kmole real(r8) :: latvap ! latent heat of evaporation ~ J/kg real(r8) :: latice ! latent heat of fusion ~ J/kg real(r8) :: zvir ! R_V/R_D - 1. integer plenest ! length of saturation vapor pressure table parameter (plenest=250) ! ! Table of saturation vapor pressure values es from tmin degrees ! to tmax+1 degrees k in one degree increments. ttrice defines the ! transition region where es is a combination of ice & water values ! real(r8) estbl(plenest) ! table values of saturation vapor pressure real(r8) tmin ! min temperature (K) for table real(r8) tmax ! max temperature (K) for table real(r8) pcf(6) ! polynomial coeffs -> es transition water to ice !real(r8), allocatable :: pin(:) ! ozone pressure level (levsiz) !real(r8), allocatable :: ozmix(:,:,:) ! mixing ratio !real(r8), allocatable, target :: abstot_3d(:,:,:,:) ! Non-adjacent layer absorptivites !real(r8), allocatable, target :: absnxt_3d(:,:,:,:) ! Nearest layer absorptivities !real(r8), allocatable, target :: emstot_3d(:,:,:) ! Total emissivity !From aer_optics.F90 module integer, parameter :: idxVIS = 8 ! index to visible band integer, parameter :: nrh = 1000 ! number of relative humidity values for look-up-table integer, parameter :: nspint = 19 ! number of spectral intervals ! These are now allocatable, JM 20090612 real(r8), allocatable, dimension(:,:) :: ksul ! (nrh, nspint) ! sulfate specific extinction ( m^2 g-1 ) real(r8), allocatable, dimension(:,:) :: wsul ! (nrh, nspint) ! sulfate single scattering albedo real(r8), allocatable, dimension(:,:) :: gsul ! (nrh, nspint) ! sulfate asymmetry parameter real(r8), allocatable, dimension(:,:) :: ksslt ! (nrh, nspint) ! sea-salt specific extinction ( m^2 g-1 ) real(r8), allocatable, dimension(:,:) :: wsslt ! (nrh, nspint) ! sea-salt single scattering albedo real(r8), allocatable, dimension(:,:) :: gsslt ! (nrh, nspint) ! sea-salt asymmetry parameter real(r8), allocatable, dimension(:,:) :: kcphil ! (nrh, nspint) ! hydrophilic carbon specific extinction ( m^2 g-1 ) real(r8), allocatable, dimension(:,:) :: wcphil ! (nrh, nspint) ! hydrophilic carbon single scattering albedo real(r8), allocatable, dimension(:,:) :: gcphil ! (nrh, nspint) ! hydrophilic carbon asymmetry parameter real(r8) :: kbg(nspint) ! background specific extinction ( m^2 g-1 ) real(r8) :: wbg(nspint) ! background single scattering albedo real(r8) :: gbg(nspint) ! background asymmetry parameter real(r8) :: kcphob(nspint) ! hydrophobic carbon specific extinction ( m^2 g-1 ) real(r8) :: wcphob(nspint) ! hydrophobic carbon single scattering albedo real(r8) :: gcphob(nspint) ! hydrophobic carbon asymmetry parameter real(r8) :: kcb(nspint) ! black carbon specific extinction ( m^2 g-1 ) real(r8) :: wcb(nspint) ! black carbon single scattering albedo real(r8) :: gcb(nspint) ! black carbon asymmetry parameter real(r8) :: kvolc(nspint) ! volcanic specific extinction ( m^2 g-1) real(r8) :: wvolc(nspint) ! volcanic single scattering albedo real(r8) :: gvolc(nspint) ! volcanic asymmetry parameter real(r8) :: kdst(ndstsz, nspint) ! dust specific extinction ( m^2 g-1 ) real(r8) :: wdst(ndstsz, nspint) ! dust single scattering albedo real(r8) :: gdst(ndstsz, nspint) ! dust asymmetry parameter ! !From comozp.F90 module real(r8) cplos ! constant for ozone path length integral real(r8) cplol ! constant for ozone path length integral !ccc #ifdef CLWRFGHG !! UC-CLWRF June.09 real(r8) :: co2vmr = 3.550e-4 ! co2 volume mixing ratio real(r8) :: n2ovmr = 0.311e-6 ! n2o volume mixing ratio real(r8) :: ch4vmr = 1.714e-6 ! ch4 volume mixing ratio real(r8) :: f11vmr = 0.280e-9 ! cfc11 volume mixing ratio real(r8) :: f12vmr = 0.503e-9 ! cfc12 volume mixing ratio integer, parameter :: cyr = 500 ! maximum num. of lines in 'CAMtr_volume_mixing_ratio' file #else !ccc !From ghg_surfvals.F90 module real(r8) :: co2vmr = 3.550e-4 ! co2 volume mixing ratio real(r8) :: n2ovmr = 0.311e-6 ! n2o volume mixing ratio real(r8) :: ch4vmr = 1.714e-6 ! ch4 volume mixing ratio real(r8) :: f11vmr = 0.280e-9 ! cfc11 volume mixing ratio real(r8) :: f12vmr = 0.503e-9 ! cfc12 volume mixing ratio integer, parameter :: cyr = 233 ! number of years of co2 data integer :: yrdata(cyr) = & (/ 1869, 1870, 1871, 1872, 1873, 1874, 1875, & 1876, 1877, 1878, 1879, 1880, 1881, 1882, & 1883, 1884, 1885, 1886, 1887, 1888, 1889, & 1890, 1891, 1892, 1893, 1894, 1895, 1896, & 1897, 1898, 1899, 1900, 1901, 1902, 1903, & 1904, 1905, 1906, 1907, 1908, 1909, 1910, & 1911, 1912, 1913, 1914, 1915, 1916, 1917, & 1918, 1919, 1920, 1921, 1922, 1923, 1924, & 1925, 1926, 1927, 1928, 1929, 1930, 1931, & 1932, 1933, 1934, 1935, 1936, 1937, 1938, & 1939, 1940, 1941, 1942, 1943, 1944, 1945, & 1946, 1947, 1948, 1949, 1950, 1951, 1952, & 1953, 1954, 1955, 1956, 1957, 1958, 1959, & 1960, 1961, 1962, 1963, 1964, 1965, 1966, & 1967, 1968, 1969, 1970, 1971, 1972, 1973, & 1974, 1975, 1976, 1977, 1978, 1979, 1980, & 1981, 1982, 1983, 1984, 1985, 1986, 1987, & 1988, 1989, 1990, 1991, 1992, 1993, 1994, & 1995, 1996, 1997, 1998, 1999, 2000, 2001, & 2002, 2003, 2004, 2005, 2006, 2007, 2008, & 2009, 2010, 2011, 2012, 2013, 2014, 2015, & 2016, 2017, 2018, 2019, 2020, 2021, 2022, & 2023, 2024, 2025, 2026, 2027, 2028, 2029, & 2030, 2031, 2032, 2033, 2034, 2035, 2036, & 2037, 2038, 2039, 2040, 2041, 2042, 2043, & 2044, 2045, 2046, 2047, 2048, 2049, 2050, & 2051, 2052, 2053, 2054, 2055, 2056, 2057, & 2058, 2059, 2060, 2061, 2062, 2063, 2064, & 2065, 2066, 2067, 2068, 2069, 2070, 2071, & 2072, 2073, 2074, 2075, 2076, 2077, 2078, & 2079, 2080, 2081, 2082, 2083, 2084, 2085, & 2086, 2087, 2088, 2089, 2090, 2091, 2092, & 2093, 2094, 2095, 2096, 2097, 2098, 2099, & 2100, 2101 /) ! A2 future scenario real(r8) :: co2(cyr) = & (/ 289.263, 289.263, 289.416, 289.577, 289.745, 289.919, 290.102, & 290.293, 290.491, 290.696, 290.909, 291.129, 291.355, 291.587, 291.824, & 292.066, 292.313, 292.563, 292.815, 293.071, 293.328, 293.586, 293.843, & 294.098, 294.35, 294.598, 294.842, 295.082, 295.32, 295.558, 295.797, & 296.038, 296.284, 296.535, 296.794, 297.062, 297.338, 297.62, 297.91, & 298.204, 298.504, 298.806, 299.111, 299.419, 299.729, 300.04, 300.352, & 300.666, 300.98, 301.294, 301.608, 301.923, 302.237, 302.551, 302.863, & 303.172, 303.478, 303.779, 304.075, 304.366, 304.651, 304.93, 305.206, & 305.478, 305.746, 306.013, 306.28, 306.546, 306.815, 307.087, 307.365, & 307.65, 307.943, 308.246, 308.56, 308.887, 309.228, 309.584, 309.956, & 310.344, 310.749, 311.172, 311.614, 312.077, 312.561, 313.068, 313.599, & 314.154, 314.737, 315.347, 315.984, 316.646, 317.328, 318.026, 318.742, & 319.489, 320.282, 321.133, 322.045, 323.021, 324.06, 325.155, 326.299, & 327.484, 328.698, 329.933, 331.194, 332.499, 333.854, 335.254, 336.69, & 338.15, 339.628, 341.125, 342.65, 344.206, 345.797, 347.397, 348.98, & 350.551, 352.1, 354.3637, 355.7772, 357.1601, 358.5306, 359.9046, & 361.4157, 363.0445, 364.7761, 366.6064, 368.5322, 370.534, 372.5798, & 374.6564, 376.7656, 378.9087, 381.0864, 383.2994, 385.548, 387.8326, & 390.1536, 392.523, 394.9625, 397.4806, 400.075, 402.7444, 405.4875, & 408.3035, 411.1918, 414.1518, 417.1831, 420.2806, 423.4355, 426.6442, & 429.9076, 433.2261, 436.6002, 440.0303, 443.5168, 447.06, 450.6603, & 454.3059, 457.9756, 461.6612, 465.3649, 469.0886, 472.8335, 476.6008, & 480.3916, 484.2069, 488.0473, 491.9184, 495.8295, 499.7849, 503.7843, & 507.8278, 511.9155, 516.0476, 520.2243, 524.4459, 528.7127, 533.0213, & 537.3655, 541.7429, 546.1544, 550.6005, 555.0819, 559.5991, 564.1525, & 568.7429, 573.3701, 578.0399, 582.7611, 587.5379, 592.3701, 597.2572, & 602.1997, 607.1975, 612.2507, 617.3596, 622.524, 627.7528, 633.0616, & 638.457, 643.9384, 649.505, 655.1568, 660.8936, 666.7153, 672.6219, & 678.6133, 684.6945, 690.8745, 697.1569, 703.5416, 710.0284, 716.6172, & 723.308, 730.1008, 736.9958, 743.993, 751.0975, 758.3183, 765.6594, & 773.1207, 780.702, 788.4033, 796.2249, 804.1667, 812.2289, 820.4118, & 828.6444, 828.6444 /) #endif !ccc integer :: ntoplw ! top level to solve for longwave cooling (WRF sets this to 1 for model top below 10 mb) logical :: masterproc = .true. logical :: ozncyc ! true => cycle ozone dataset ! logical :: dosw ! True => shortwave calculation this timestep ! logical :: dolw ! True => longwave calculation this timestep logical :: indirect ! True => include indirect radiative effects of sulfate aerosols ! logical :: doabsems ! True => abs/emiss calculation this timestep logical :: radforce = .false. ! True => calculate aerosol shortwave forcing logical :: trace_gas=.false. ! set true for chemistry logical :: strat_volcanic = .false. ! True => volcanic aerosol mass available real(r8) retab(95) ! ! Tabulated values of re(T) in the temperature interval ! 180 K -- 274 K; hexagonal columns assumed: ! data retab / & 5.92779, 6.26422, 6.61973, 6.99539, 7.39234, & 7.81177, 8.25496, 8.72323, 9.21800, 9.74075, 10.2930, & 10.8765, 11.4929, 12.1440, 12.8317, 13.5581, 14.2319, & 15.0351, 15.8799, 16.7674, 17.6986, 18.6744, 19.6955, & 20.7623, 21.8757, 23.0364, 24.2452, 25.5034, 26.8125, & 27.7895, 28.6450, 29.4167, 30.1088, 30.7306, 31.2943, & 31.8151, 32.3077, 32.7870, 33.2657, 33.7540, 34.2601, & 34.7892, 35.3442, 35.9255, 36.5316, 37.1602, 37.8078, & 38.4720, 39.1508, 39.8442, 40.5552, 41.2912, 42.0635, & 42.8876, 43.7863, 44.7853, 45.9170, 47.2165, 48.7221, & 50.4710, 52.4980, 54.8315, 57.4898, 60.4785, 63.7898, & 65.5604, 71.2885, 75.4113, 79.7368, 84.2351, 88.8833, & 93.6658, 98.5739, 103.603, 108.752, 114.025, 119.424, & 124.954, 130.630, 136.457, 142.446, 148.608, 154.956, & 161.503, 168.262, 175.248, 182.473, 189.952, 197.699, & 205.728, 214.055, 222.694, 231.661, 240.971, 250.639/ ! save retab contains subroutine sortarray(n, ain, indxa) 2 !----------------------------------------------- ! ! Purpose: ! Sort an array ! Alogrithm: ! Based on Shell's sorting method. ! ! Author: T. Craig !----------------------------------------------- ! use shr_kind_mod, only: r8 => shr_kind_r8 implicit none ! ! Arguments ! integer , intent(in) :: n ! total number of elements integer , intent(inout) :: indxa(n) ! array of integers real(r8), intent(inout) :: ain(n) ! array to sort ! ! local variables ! integer :: i, j ! Loop indices integer :: ni ! Starting increment integer :: itmp ! Temporary index real(r8):: atmp ! Temporary value to swap ni = 1 do while(.TRUE.) ni = 3*ni + 1 if (ni <= n) cycle exit end do do while(.TRUE.) ni = ni/3 do i = ni + 1, n atmp = ain(i) itmp = indxa(i) j = i do while(.TRUE.) if (ain(j-ni) <= atmp) exit ain(j) = ain(j-ni) indxa(j) = indxa(j-ni) j = j - ni if (j > ni) cycle exit end do ain(j) = atmp indxa(j) = itmp end do if (ni > 1) cycle exit end do return end subroutine sortarray subroutine trcab(lchnk ,ncol ,pcols, pverp, & 1 k1 ,k2 ,ucfc11 ,ucfc12 ,un2o0 , & un2o1 ,uch4 ,uco211 ,uco212 ,uco213 , & uco221 ,uco222 ,uco223 ,bn2o0 ,bn2o1 , & bch4 ,to3co2 ,pnm ,dw ,pnew , & s2c ,uptype ,dplh2o ,abplnk1 ,tco2 , & th2o ,to3 ,abstrc , & aer_trn_ttl) !----------------------------------------------------------------------- ! ! Purpose: ! Calculate absorptivity for non nearest layers for CH4, N2O, CFC11 and ! CFC12. ! ! Method: ! See CCM3 description for equations. ! ! Author: J. Kiehl ! !----------------------------------------------------------------------- ! use shr_kind_mod, only: r8 => shr_kind_r8 ! use ppgrid ! use volcrad implicit none !------------------------------Arguments-------------------------------- ! ! Input arguments ! integer, intent(in) :: lchnk ! chunk identifier integer, intent(in) :: ncol ! number of atmospheric columns integer, intent(in) :: pcols, pverp integer, intent(in) :: k1,k2 ! level indices ! real(r8), intent(in) :: to3co2(pcols) ! pressure weighted temperature real(r8), intent(in) :: pnm(pcols,pverp) ! interface pressures real(r8), intent(in) :: ucfc11(pcols,pverp) ! CFC11 path length real(r8), intent(in) :: ucfc12(pcols,pverp) ! CFC12 path length real(r8), intent(in) :: un2o0(pcols,pverp) ! N2O path length ! real(r8), intent(in) :: un2o1(pcols,pverp) ! N2O path length (hot band) real(r8), intent(in) :: uch4(pcols,pverp) ! CH4 path length real(r8), intent(in) :: uco211(pcols,pverp) ! CO2 9.4 micron band path length real(r8), intent(in) :: uco212(pcols,pverp) ! CO2 9.4 micron band path length real(r8), intent(in) :: uco213(pcols,pverp) ! CO2 9.4 micron band path length ! real(r8), intent(in) :: uco221(pcols,pverp) ! CO2 10.4 micron band path length real(r8), intent(in) :: uco222(pcols,pverp) ! CO2 10.4 micron band path length real(r8), intent(in) :: uco223(pcols,pverp) ! CO2 10.4 micron band path length real(r8), intent(in) :: bn2o0(pcols,pverp) ! pressure factor for n2o real(r8), intent(in) :: bn2o1(pcols,pverp) ! pressure factor for n2o ! real(r8), intent(in) :: bch4(pcols,pverp) ! pressure factor for ch4 real(r8), intent(in) :: dw(pcols) ! h2o path length real(r8), intent(in) :: pnew(pcols) ! pressure real(r8), intent(in) :: s2c(pcols,pverp) ! continuum path length real(r8), intent(in) :: uptype(pcols,pverp) ! p-type h2o path length ! real(r8), intent(in) :: dplh2o(pcols) ! p squared h2o path length real(r8), intent(in) :: abplnk1(14,pcols,pverp) ! Planck factor real(r8), intent(in) :: tco2(pcols) ! co2 transmission factor real(r8), intent(in) :: th2o(pcols) ! h2o transmission factor real(r8), intent(in) :: to3(pcols) ! o3 transmission factor real(r8), intent(in) :: aer_trn_ttl(pcols,pverp,pverp,bnd_nbr_LW) ! aer trn. ! ! Output Arguments ! real(r8), intent(out) :: abstrc(pcols) ! total trace gas absorptivity ! !--------------------------Local Variables------------------------------ ! integer i,l ! loop counters real(r8) sqti(pcols) ! square root of mean temp real(r8) du1 ! cfc11 path length real(r8) du2 ! cfc12 path length real(r8) acfc1 ! cfc11 absorptivity 798 cm-1 real(r8) acfc2 ! cfc11 absorptivity 846 cm-1 ! real(r8) acfc3 ! cfc11 absorptivity 933 cm-1 real(r8) acfc4 ! cfc11 absorptivity 1085 cm-1 real(r8) acfc5 ! cfc12 absorptivity 889 cm-1 real(r8) acfc6 ! cfc12 absorptivity 923 cm-1 real(r8) acfc7 ! cfc12 absorptivity 1102 cm-1 ! real(r8) acfc8 ! cfc12 absorptivity 1161 cm-1 real(r8) du01 ! n2o path length real(r8) dbeta01 ! n2o pressure factor real(r8) dbeta11 ! " real(r8) an2o1 ! absorptivity of 1285 cm-1 n2o band ! real(r8) du02 ! n2o path length real(r8) dbeta02 ! n2o pressure factor real(r8) an2o2 ! absorptivity of 589 cm-1 n2o band real(r8) du03 ! n2o path length real(r8) dbeta03 ! n2o pressure factor ! real(r8) an2o3 ! absorptivity of 1168 cm-1 n2o band real(r8) duch4 ! ch4 path length real(r8) dbetac ! ch4 pressure factor real(r8) ach4 ! absorptivity of 1306 cm-1 ch4 band real(r8) du11 ! co2 path length ! real(r8) du12 ! " real(r8) du13 ! " real(r8) dbetc1 ! co2 pressure factor real(r8) dbetc2 ! co2 pressure factor real(r8) aco21 ! absorptivity of 1064 cm-1 band ! real(r8) du21 ! co2 path length real(r8) du22 ! " real(r8) du23 ! " real(r8) aco22 ! absorptivity of 961 cm-1 band real(r8) tt(pcols) ! temp. factor for h2o overlap factor ! real(r8) psi1 ! " real(r8) phi1 ! " real(r8) p1 ! h2o overlap factor real(r8) w1 ! " real(r8) ds2c(pcols) ! continuum path length ! real(r8) duptyp(pcols) ! p-type path length real(r8) tw(pcols,6) ! h2o transmission factor real(r8) g1(6) ! " real(r8) g2(6) ! " real(r8) g3(6) ! " ! real(r8) g4(6) ! " real(r8) ab(6) ! h2o temp. factor real(r8) bb(6) ! " real(r8) abp(6) ! " real(r8) bbp(6) ! " ! real(r8) tcfc3 ! transmission for cfc11 band real(r8) tcfc4 ! transmission for cfc11 band real(r8) tcfc6 ! transmission for cfc12 band real(r8) tcfc7 ! transmission for cfc12 band real(r8) tcfc8 ! transmission for cfc12 band ! real(r8) tlw ! h2o transmission real(r8) tch4 ! ch4 transmission ! !--------------------------Data Statements------------------------------ ! data g1 /0.0468556,0.0397454,0.0407664,0.0304380,0.0540398,0.0321962/ data g2 /14.4832,4.30242,5.23523,3.25342,0.698935,16.5599/ data g3 /26.1898,18.4476,15.3633,12.1927,9.14992,8.07092/ data g4 /0.0261782,0.0369516,0.0307266,0.0243854,0.0182932,0.0161418/ data ab /3.0857e-2,2.3524e-2,1.7310e-2,2.6661e-2,2.8074e-2,2.2915e-2/ data bb /-1.3512e-4,-6.8320e-5,-3.2609e-5,-1.0228e-5,-9.5743e-5,-1.0304e-4/ data abp/2.9129e-2,2.4101e-2,1.9821e-2,2.6904e-2,2.9458e-2,1.9892e-2/ data bbp/-1.3139e-4,-5.5688e-5,-4.6380e-5,-8.0362e-5,-1.0115e-4,-8.8061e-5/ ! !--------------------------Statement Functions-------------------------- ! real(r8) func, u, b func(u,b) = u/sqrt(4.0 + u*(1.0 + 1.0 / b)) ! !------------------------------------------------------------------------ ! do i = 1,ncol sqti(i) = sqrt(to3co2(i)) ! ! h2o transmission ! tt(i) = abs(to3co2(i) - 250.0) ds2c(i) = abs(s2c(i,k1) - s2c(i,k2)) duptyp(i) = abs(uptype(i,k1) - uptype(i,k2)) end do ! do l = 1,6 do i = 1,ncol psi1 = exp(abp(l)*tt(i) + bbp(l)*tt(i)*tt(i)) phi1 = exp(ab(l)*tt(i) + bb(l)*tt(i)*tt(i)) p1 = pnew(i)*(psi1/phi1)/sslp w1 = dw(i)*phi1 tw(i,l) = exp(-g1(l)*p1*(sqrt(1.0 + g2(l)*(w1/p1)) - 1.0) - & g3(l)*ds2c(i)-g4(l)*duptyp(i)) end do end do ! do i=1,ncol tw(i,1)=tw(i,1)*(0.7*aer_trn_ttl(i,k1,k2,idx_LW_0650_0800)+&! l=1: 0750--0820 cm-1 0.3*aer_trn_ttl(i,k1,k2,idx_LW_0800_1000)) tw(i,2)=tw(i,2)*aer_trn_ttl(i,k1,k2,idx_LW_0800_1000) ! l=2: 0820--0880 cm-1 tw(i,3)=tw(i,3)*aer_trn_ttl(i,k1,k2,idx_LW_0800_1000) ! l=3: 0880--0900 cm-1 tw(i,4)=tw(i,4)*aer_trn_ttl(i,k1,k2,idx_LW_0800_1000) ! l=4: 0900--1000 cm-1 tw(i,5)=tw(i,5)*aer_trn_ttl(i,k1,k2,idx_LW_1000_1200) ! l=5: 1000--1120 cm-1 tw(i,6)=tw(i,6)*aer_trn_ttl(i,k1,k2,idx_LW_1000_1200) ! l=6: 1120--1170 cm-1 end do ! end loop over lon do i = 1,ncol du1 = abs(ucfc11(i,k1) - ucfc11(i,k2)) du2 = abs(ucfc12(i,k1) - ucfc12(i,k2)) ! ! cfc transmissions ! tcfc3 = exp(-175.005*du1) tcfc4 = exp(-1202.18*du1) tcfc6 = exp(-5786.73*du2) tcfc7 = exp(-2873.51*du2) tcfc8 = exp(-2085.59*du2) ! ! Absorptivity for CFC11 bands ! acfc1 = 50.0*(1.0 - exp(-54.09*du1))*tw(i,1)*abplnk1(7,i,k2) acfc2 = 60.0*(1.0 - exp(-5130.03*du1))*tw(i,2)*abplnk1(8,i,k2) acfc3 = 60.0*(1.0 - tcfc3)*tw(i,4)*tcfc6*abplnk1(9,i,k2) acfc4 = 100.0*(1.0 - tcfc4)*tw(i,5)*abplnk1(10,i,k2) ! ! Absorptivity for CFC12 bands ! acfc5 = 45.0*(1.0 - exp(-1272.35*du2))*tw(i,3)*abplnk1(11,i,k2) acfc6 = 50.0*(1.0 - tcfc6)* tw(i,4) * abplnk1(12,i,k2) acfc7 = 80.0*(1.0 - tcfc7)* tw(i,5) * tcfc4*abplnk1(13,i,k2) acfc8 = 70.0*(1.0 - tcfc8)* tw(i,6) * abplnk1(14,i,k2) ! ! Emissivity for CH4 band 1306 cm-1 ! tlw = exp(-1.0*sqrt(dplh2o(i))) tlw=tlw*aer_trn_ttl(i,k1,k2,idx_LW_1200_2000) duch4 = abs(uch4(i,k1) - uch4(i,k2)) dbetac = abs(bch4(i,k1) - bch4(i,k2))/duch4 ach4 = 6.00444*sqti(i)*log(1.0 + func(duch4,dbetac))*tlw*abplnk1(3,i,k2) tch4 = 1.0/(1.0 + 0.02*func(duch4,dbetac)) ! ! Absorptivity for N2O bands ! du01 = abs(un2o0(i,k1) - un2o0(i,k2)) du11 = abs(un2o1(i,k1) - un2o1(i,k2)) dbeta01 = abs(bn2o0(i,k1) - bn2o0(i,k2))/du01 dbeta11 = abs(bn2o1(i,k1) - bn2o1(i,k2))/du11 ! ! 1285 cm-1 band ! an2o1 = 2.35558*sqti(i)*log(1.0 + func(du01,dbeta01) & + func(du11,dbeta11))*tlw*tch4*abplnk1(4,i,k2) du02 = 0.100090*du01 du12 = 0.0992746*du11 dbeta02 = 0.964282*dbeta01 ! ! 589 cm-1 band ! an2o2 = 2.65581*sqti(i)*log(1.0 + func(du02,dbeta02) + & func(du12,dbeta02))*th2o(i)*tco2(i)*abplnk1(5,i,k2) du03 = 0.0333767*du01 dbeta03 = 0.982143*dbeta01 ! ! 1168 cm-1 band ! an2o3 = 2.54034*sqti(i)*log(1.0 + func(du03,dbeta03))* & tw(i,6)*tcfc8*abplnk1(6,i,k2) ! ! Emissivity for 1064 cm-1 band of CO2 ! du11 = abs(uco211(i,k1) - uco211(i,k2)) du12 = abs(uco212(i,k1) - uco212(i,k2)) du13 = abs(uco213(i,k1) - uco213(i,k2)) dbetc1 = 2.97558*abs(pnm(i,k1) + pnm(i,k2))/(2.0*sslp*sqti(i)) dbetc2 = 2.0*dbetc1 aco21 = 3.7571*sqti(i)*log(1.0 + func(du11,dbetc1) & + func(du12,dbetc2) + func(du13,dbetc2)) & *to3(i)*tw(i,5)*tcfc4*tcfc7*abplnk1(2,i,k2) ! ! Emissivity for 961 cm-1 band ! du21 = abs(uco221(i,k1) - uco221(i,k2)) du22 = abs(uco222(i,k1) - uco222(i,k2)) du23 = abs(uco223(i,k1) - uco223(i,k2)) aco22 = 3.8443*sqti(i)*log(1.0 + func(du21,dbetc1) & + func(du22,dbetc1) + func(du23,dbetc2)) & *tw(i,4)*tcfc3*tcfc6*abplnk1(1,i,k2) ! ! total trace gas absorptivity ! abstrc(i) = acfc1 + acfc2 + acfc3 + acfc4 + acfc5 + acfc6 + & acfc7 + acfc8 + an2o1 + an2o2 + an2o3 + ach4 + & aco21 + aco22 end do ! return ! end subroutine trcab subroutine trcabn(lchnk ,ncol ,pcols, pverp, & 1 k2 ,kn ,ucfc11 ,ucfc12 ,un2o0 , & un2o1 ,uch4 ,uco211 ,uco212 ,uco213 , & uco221 ,uco222 ,uco223 ,tbar ,bplnk , & winpl ,pinpl ,tco2 ,th2o ,to3 , & uptype ,dw ,s2c ,up2 ,pnew , & abstrc ,uinpl , & aer_trn_ngh) !----------------------------------------------------------------------- ! ! Purpose: ! Calculate nearest layer absorptivity due to CH4, N2O, CFC11 and CFC12 ! ! Method: ! Equations in CCM3 description ! ! Author: J. Kiehl ! !----------------------------------------------------------------------- ! ! use shr_kind_mod, only: r8 => shr_kind_r8 ! use ppgrid ! use volcrad implicit none !------------------------------Arguments-------------------------------- ! ! Input arguments ! integer, intent(in) :: lchnk ! chunk identifier integer, intent(in) :: ncol ! number of atmospheric columns integer, intent(in) :: pcols, pverp integer, intent(in) :: k2 ! level index integer, intent(in) :: kn ! level index ! real(r8), intent(in) :: tbar(pcols,4) ! pressure weighted temperature real(r8), intent(in) :: ucfc11(pcols,pverp) ! CFC11 path length real(r8), intent(in) :: ucfc12(pcols,pverp) ! CFC12 path length real(r8), intent(in) :: un2o0(pcols,pverp) ! N2O path length real(r8), intent(in) :: un2o1(pcols,pverp) ! N2O path length (hot band) ! real(r8), intent(in) :: uch4(pcols,pverp) ! CH4 path length real(r8), intent(in) :: uco211(pcols,pverp) ! CO2 9.4 micron band path length real(r8), intent(in) :: uco212(pcols,pverp) ! CO2 9.4 micron band path length real(r8), intent(in) :: uco213(pcols,pverp) ! CO2 9.4 micron band path length real(r8), intent(in) :: uco221(pcols,pverp) ! CO2 10.4 micron band path length ! real(r8), intent(in) :: uco222(pcols,pverp) ! CO2 10.4 micron band path length real(r8), intent(in) :: uco223(pcols,pverp) ! CO2 10.4 micron band path length real(r8), intent(in) :: bplnk(14,pcols,4) ! weighted Planck fnc. for absorptivity real(r8), intent(in) :: winpl(pcols,4) ! fractional path length real(r8), intent(in) :: pinpl(pcols,4) ! pressure factor for subdivided layer ! real(r8), intent(in) :: tco2(pcols) ! co2 transmission real(r8), intent(in) :: th2o(pcols) ! h2o transmission real(r8), intent(in) :: to3(pcols) ! o3 transmission real(r8), intent(in) :: dw(pcols) ! h2o path length real(r8), intent(in) :: pnew(pcols) ! pressure factor ! real(r8), intent(in) :: s2c(pcols,pverp) ! h2o continuum factor real(r8), intent(in) :: uptype(pcols,pverp) ! p-type path length real(r8), intent(in) :: up2(pcols) ! p squared path length real(r8), intent(in) :: uinpl(pcols,4) ! Nearest layer subdivision factor real(r8), intent(in) :: aer_trn_ngh(pcols,bnd_nbr_LW) ! [fraction] Total transmission between ! nearest neighbor sub-levels ! ! Output Arguments ! real(r8), intent(out) :: abstrc(pcols) ! total trace gas absorptivity ! !--------------------------Local Variables------------------------------ ! integer i,l ! loop counters ! real(r8) sqti(pcols) ! square root of mean temp real(r8) rsqti(pcols) ! reciprocal of sqti real(r8) du1 ! cfc11 path length real(r8) du2 ! cfc12 path length real(r8) acfc1 ! absorptivity of cfc11 798 cm-1 band ! real(r8) acfc2 ! absorptivity of cfc11 846 cm-1 band real(r8) acfc3 ! absorptivity of cfc11 933 cm-1 band real(r8) acfc4 ! absorptivity of cfc11 1085 cm-1 band real(r8) acfc5 ! absorptivity of cfc11 889 cm-1 band real(r8) acfc6 ! absorptivity of cfc11 923 cm-1 band ! real(r8) acfc7 ! absorptivity of cfc11 1102 cm-1 band real(r8) acfc8 ! absorptivity of cfc11 1161 cm-1 band real(r8) du01 ! n2o path length real(r8) dbeta01 ! n2o pressure factors real(r8) dbeta11 ! " ! real(r8) an2o1 ! absorptivity of the 1285 cm-1 n2o band real(r8) du02 ! n2o path length real(r8) dbeta02 ! n2o pressure factor real(r8) an2o2 ! absorptivity of the 589 cm-1 n2o band real(r8) du03 ! n2o path length ! real(r8) dbeta03 ! n2o pressure factor real(r8) an2o3 ! absorptivity of the 1168 cm-1 n2o band real(r8) duch4 ! ch4 path length real(r8) dbetac ! ch4 pressure factor real(r8) ach4 ! absorptivity of the 1306 cm-1 ch4 band ! real(r8) du11 ! co2 path length real(r8) du12 ! " real(r8) du13 ! " real(r8) dbetc1 ! co2 pressure factor real(r8) dbetc2 ! co2 pressure factor ! real(r8) aco21 ! absorptivity of the 1064 cm-1 co2 band real(r8) du21 ! co2 path length real(r8) du22 ! " real(r8) du23 ! " real(r8) aco22 ! absorptivity of the 961 cm-1 co2 band ! real(r8) tt(pcols) ! temp. factor for h2o overlap real(r8) psi1 ! " real(r8) phi1 ! " real(r8) p1 ! factor for h2o overlap real(r8) w1 ! " ! real(r8) ds2c(pcols) ! continuum path length real(r8) duptyp(pcols) ! p-type path length real(r8) tw(pcols,6) ! h2o transmission overlap real(r8) g1(6) ! h2o overlap factor real(r8) g2(6) ! " ! real(r8) g3(6) ! " real(r8) g4(6) ! " real(r8) ab(6) ! h2o temp. factor real(r8) bb(6) ! " real(r8) abp(6) ! " ! real(r8) bbp(6) ! " real(r8) tcfc3 ! transmission of cfc11 band real(r8) tcfc4 ! transmission of cfc11 band real(r8) tcfc6 ! transmission of cfc12 band real(r8) tcfc7 ! " ! real(r8) tcfc8 ! " real(r8) tlw ! h2o transmission real(r8) tch4 ! ch4 transmission ! !--------------------------Data Statements------------------------------ ! data g1 /0.0468556,0.0397454,0.0407664,0.0304380,0.0540398,0.0321962/ data g2 /14.4832,4.30242,5.23523,3.25342,0.698935,16.5599/ data g3 /26.1898,18.4476,15.3633,12.1927,9.14992,8.07092/ data g4 /0.0261782,0.0369516,0.0307266,0.0243854,0.0182932,0.0161418/ data ab /3.0857e-2,2.3524e-2,1.7310e-2,2.6661e-2,2.8074e-2,2.2915e-2/ data bb /-1.3512e-4,-6.8320e-5,-3.2609e-5,-1.0228e-5,-9.5743e-5,-1.0304e-4/ data abp/2.9129e-2,2.4101e-2,1.9821e-2,2.6904e-2,2.9458e-2,1.9892e-2/ data bbp/-1.3139e-4,-5.5688e-5,-4.6380e-5,-8.0362e-5,-1.0115e-4,-8.8061e-5/ ! !--------------------------Statement Functions-------------------------- ! real(r8) func, u, b func(u,b) = u/sqrt(4.0 + u*(1.0 + 1.0 / b)) ! !------------------------------------------------------------------ ! do i = 1,ncol sqti(i) = sqrt(tbar(i,kn)) rsqti(i) = 1. / sqti(i) ! ! h2o transmission ! tt(i) = abs(tbar(i,kn) - 250.0) ds2c(i) = abs(s2c(i,k2+1) - s2c(i,k2))*uinpl(i,kn) duptyp(i) = abs(uptype(i,k2+1) - uptype(i,k2))*uinpl(i,kn) end do ! do l = 1,6 do i = 1,ncol psi1 = exp(abp(l)*tt(i)+bbp(l)*tt(i)*tt(i)) phi1 = exp(ab(l)*tt(i)+bb(l)*tt(i)*tt(i)) p1 = pnew(i) * (psi1/phi1) / sslp w1 = dw(i) * winpl(i,kn) * phi1 tw(i,l) = exp(- g1(l)*p1*(sqrt(1.0+g2(l)*(w1/p1))-1.0) & - g3(l)*ds2c(i)-g4(l)*duptyp(i)) end do end do ! do i=1,ncol tw(i,1)=tw(i,1)*(0.7*aer_trn_ngh(i,idx_LW_0650_0800)+&! l=1: 0750--0820 cm-1 0.3*aer_trn_ngh(i,idx_LW_0800_1000)) tw(i,2)=tw(i,2)*aer_trn_ngh(i,idx_LW_0800_1000) ! l=2: 0820--0880 cm-1 tw(i,3)=tw(i,3)*aer_trn_ngh(i,idx_LW_0800_1000) ! l=3: 0880--0900 cm-1 tw(i,4)=tw(i,4)*aer_trn_ngh(i,idx_LW_0800_1000) ! l=4: 0900--1000 cm-1 tw(i,5)=tw(i,5)*aer_trn_ngh(i,idx_LW_1000_1200) ! l=5: 1000--1120 cm-1 tw(i,6)=tw(i,6)*aer_trn_ngh(i,idx_LW_1000_1200) ! l=6: 1120--1170 cm-1 end do ! end loop over lon do i = 1,ncol ! du1 = abs(ucfc11(i,k2+1) - ucfc11(i,k2)) * winpl(i,kn) du2 = abs(ucfc12(i,k2+1) - ucfc12(i,k2)) * winpl(i,kn) ! ! cfc transmissions ! tcfc3 = exp(-175.005*du1) tcfc4 = exp(-1202.18*du1) tcfc6 = exp(-5786.73*du2) tcfc7 = exp(-2873.51*du2) tcfc8 = exp(-2085.59*du2) ! ! Absorptivity for CFC11 bands ! acfc1 = 50.0*(1.0 - exp(-54.09*du1)) * tw(i,1)*bplnk(7,i,kn) acfc2 = 60.0*(1.0 - exp(-5130.03*du1))*tw(i,2)*bplnk(8,i,kn) acfc3 = 60.0*(1.0 - tcfc3)*tw(i,4)*tcfc6 * bplnk(9,i,kn) acfc4 = 100.0*(1.0 - tcfc4)* tw(i,5) * bplnk(10,i,kn) ! ! Absorptivity for CFC12 bands ! acfc5 = 45.0*(1.0 - exp(-1272.35*du2))*tw(i,3)*bplnk(11,i,kn) acfc6 = 50.0*(1.0 - tcfc6)*tw(i,4)*bplnk(12,i,kn) acfc7 = 80.0*(1.0 - tcfc7)* tw(i,5)*tcfc4 *bplnk(13,i,kn) acfc8 = 70.0*(1.0 - tcfc8)*tw(i,6)*bplnk(14,i,kn) ! ! Absorptivity for CH4 band 1306 cm-1 ! tlw = exp(-1.0*sqrt(up2(i))) tlw=tlw*aer_trn_ngh(i,idx_LW_1200_2000) duch4 = abs(uch4(i,k2+1) - uch4(i,k2)) * winpl(i,kn) dbetac = 2.94449 * pinpl(i,kn) * rsqti(i) / sslp ach4 = 6.00444*sqti(i)*log(1.0 + func(duch4,dbetac)) * tlw * bplnk(3,i,kn) tch4 = 1.0/(1.0 + 0.02*func(duch4,dbetac)) ! ! Absorptivity for N2O bands ! du01 = abs(un2o0(i,k2+1) - un2o0(i,k2)) * winpl(i,kn) du11 = abs(un2o1(i,k2+1) - un2o1(i,k2)) * winpl(i,kn) dbeta01 = 19.399 * pinpl(i,kn) * rsqti(i) / sslp dbeta11 = dbeta01 ! ! 1285 cm-1 band ! an2o1 = 2.35558*sqti(i)*log(1.0 + func(du01,dbeta01) & + func(du11,dbeta11)) * tlw * tch4 * bplnk(4,i,kn) du02 = 0.100090*du01 du12 = 0.0992746*du11 dbeta02 = 0.964282*dbeta01 ! ! 589 cm-1 band ! an2o2 = 2.65581*sqti(i)*log(1.0 + func(du02,dbeta02) & + func(du12,dbeta02)) * tco2(i) * th2o(i) * bplnk(5,i,kn) du03 = 0.0333767*du01 dbeta03 = 0.982143*dbeta01 ! ! 1168 cm-1 band ! an2o3 = 2.54034*sqti(i)*log(1.0 + func(du03,dbeta03)) * & tw(i,6) * tcfc8 * bplnk(6,i,kn) ! ! Absorptivity for 1064 cm-1 band of CO2 ! du11 = abs(uco211(i,k2+1) - uco211(i,k2)) * winpl(i,kn) du12 = abs(uco212(i,k2+1) - uco212(i,k2)) * winpl(i,kn) du13 = abs(uco213(i,k2+1) - uco213(i,k2)) * winpl(i,kn) dbetc1 = 2.97558 * pinpl(i,kn) * rsqti(i) / sslp dbetc2 = 2.0 * dbetc1 aco21 = 3.7571*sqti(i)*log(1.0 + func(du11,dbetc1) & + func(du12,dbetc2) + func(du13,dbetc2)) & * to3(i) * tw(i,5) * tcfc4 * tcfc7 * bplnk(2,i,kn) ! ! Absorptivity for 961 cm-1 band of co2 ! du21 = abs(uco221(i,k2+1) - uco221(i,k2)) * winpl(i,kn) du22 = abs(uco222(i,k2+1) - uco222(i,k2)) * winpl(i,kn) du23 = abs(uco223(i,k2+1) - uco223(i,k2)) * winpl(i,kn) aco22 = 3.8443*sqti(i)*log(1.0 + func(du21,dbetc1) & + func(du22,dbetc1) + func(du23,dbetc2)) & * tw(i,4) * tcfc3 * tcfc6 * bplnk(1,i,kn) ! ! total trace gas absorptivity ! abstrc(i) = acfc1 + acfc2 + acfc3 + acfc4 + acfc5 + acfc6 + & acfc7 + acfc8 + an2o1 + an2o2 + an2o3 + ach4 + & aco21 + aco22 end do ! return ! end subroutine trcabn subroutine trcems(lchnk ,ncol ,pcols, pverp, & 1 k ,co2t ,pnm ,ucfc11 ,ucfc12 , & un2o0 ,un2o1 ,bn2o0 ,bn2o1 ,uch4 , & bch4 ,uco211 ,uco212 ,uco213 ,uco221 , & uco222 ,uco223 ,uptype ,w ,s2c , & up2 ,emplnk ,th2o ,tco2 ,to3 , & emstrc , & aer_trn_ttl) !----------------------------------------------------------------------- ! ! Purpose: ! Calculate emissivity for CH4, N2O, CFC11 and CFC12 bands. ! ! Method: ! See CCM3 Description for equations. ! ! Author: J. Kiehl ! !----------------------------------------------------------------------- ! use shr_kind_mod, only: r8 => shr_kind_r8 ! use ppgrid ! use volcrad implicit none ! !------------------------------Arguments-------------------------------- ! ! Input arguments ! integer, intent(in) :: lchnk ! chunk identifier integer, intent(in) :: ncol ! number of atmospheric columns integer, intent(in) :: pcols, pverp real(r8), intent(in) :: co2t(pcols,pverp) ! pressure weighted temperature real(r8), intent(in) :: pnm(pcols,pverp) ! interface pressure real(r8), intent(in) :: ucfc11(pcols,pverp) ! CFC11 path length real(r8), intent(in) :: ucfc12(pcols,pverp) ! CFC12 path length real(r8), intent(in) :: un2o0(pcols,pverp) ! N2O path length ! real(r8), intent(in) :: un2o1(pcols,pverp) ! N2O path length (hot band) real(r8), intent(in) :: uch4(pcols,pverp) ! CH4 path length real(r8), intent(in) :: uco211(pcols,pverp) ! CO2 9.4 micron band path length real(r8), intent(in) :: uco212(pcols,pverp) ! CO2 9.4 micron band path length real(r8), intent(in) :: uco213(pcols,pverp) ! CO2 9.4 micron band path length ! real(r8), intent(in) :: uco221(pcols,pverp) ! CO2 10.4 micron band path length real(r8), intent(in) :: uco222(pcols,pverp) ! CO2 10.4 micron band path length real(r8), intent(in) :: uco223(pcols,pverp) ! CO2 10.4 micron band path length real(r8), intent(in) :: uptype(pcols,pverp) ! continuum path length real(r8), intent(in) :: bn2o0(pcols,pverp) ! pressure factor for n2o ! real(r8), intent(in) :: bn2o1(pcols,pverp) ! pressure factor for n2o real(r8), intent(in) :: bch4(pcols,pverp) ! pressure factor for ch4 real(r8), intent(in) :: emplnk(14,pcols) ! emissivity Planck factor real(r8), intent(in) :: th2o(pcols) ! water vapor overlap factor real(r8), intent(in) :: tco2(pcols) ! co2 overlap factor ! real(r8), intent(in) :: to3(pcols) ! o3 overlap factor real(r8), intent(in) :: s2c(pcols,pverp) ! h2o continuum path length real(r8), intent(in) :: w(pcols,pverp) ! h2o path length real(r8), intent(in) :: up2(pcols) ! pressure squared h2o path length ! integer, intent(in) :: k ! level index real(r8), intent(in) :: aer_trn_ttl(pcols,pverp,pverp,bnd_nbr_LW) ! aer trn. ! ! Output Arguments ! real(r8), intent(out) :: emstrc(pcols,pverp) ! total trace gas emissivity ! !--------------------------Local Variables------------------------------ ! integer i,l ! loop counters ! real(r8) sqti(pcols) ! square root of mean temp real(r8) ecfc1 ! emissivity of cfc11 798 cm-1 band real(r8) ecfc2 ! " " " 846 cm-1 band real(r8) ecfc3 ! " " " 933 cm-1 band real(r8) ecfc4 ! " " " 1085 cm-1 band ! real(r8) ecfc5 ! " " cfc12 889 cm-1 band real(r8) ecfc6 ! " " " 923 cm-1 band real(r8) ecfc7 ! " " " 1102 cm-1 band real(r8) ecfc8 ! " " " 1161 cm-1 band real(r8) u01 ! n2o path length ! real(r8) u11 ! n2o path length real(r8) beta01 ! n2o pressure factor real(r8) beta11 ! n2o pressure factor real(r8) en2o1 ! emissivity of the 1285 cm-1 N2O band real(r8) u02 ! n2o path length ! real(r8) u12 ! n2o path length real(r8) beta02 ! n2o pressure factor real(r8) en2o2 ! emissivity of the 589 cm-1 N2O band real(r8) u03 ! n2o path length real(r8) beta03 ! n2o pressure factor ! real(r8) en2o3 ! emissivity of the 1168 cm-1 N2O band real(r8) betac ! ch4 pressure factor real(r8) ech4 ! emissivity of 1306 cm-1 CH4 band real(r8) betac1 ! co2 pressure factor real(r8) betac2 ! co2 pressure factor ! real(r8) eco21 ! emissivity of 1064 cm-1 CO2 band real(r8) eco22 ! emissivity of 961 cm-1 CO2 band real(r8) tt(pcols) ! temp. factor for h2o overlap factor real(r8) psi1 ! narrow band h2o temp. factor real(r8) phi1 ! " ! real(r8) p1 ! h2o line overlap factor real(r8) w1 ! " real(r8) tw(pcols,6) ! h2o transmission overlap real(r8) g1(6) ! h2o overlap factor real(r8) g2(6) ! " ! real(r8) g3(6) ! " real(r8) g4(6) ! " real(r8) ab(6) ! " real(r8) bb(6) ! " real(r8) abp(6) ! " ! real(r8) bbp(6) ! " real(r8) tcfc3 ! transmission for cfc11 band real(r8) tcfc4 ! " real(r8) tcfc6 ! transmission for cfc12 band real(r8) tcfc7 ! " ! real(r8) tcfc8 ! " real(r8) tlw ! h2o overlap factor real(r8) tch4 ! ch4 overlap factor ! !--------------------------Data Statements------------------------------ ! data g1 /0.0468556,0.0397454,0.0407664,0.0304380,0.0540398,0.0321962/ data g2 /14.4832,4.30242,5.23523,3.25342,0.698935,16.5599/ data g3 /26.1898,18.4476,15.3633,12.1927,9.14992,8.07092/ data g4 /0.0261782,0.0369516,0.0307266,0.0243854,0.0182932,0.0161418/ data ab /3.0857e-2,2.3524e-2,1.7310e-2,2.6661e-2,2.8074e-2,2.2915e-2/ data bb /-1.3512e-4,-6.8320e-5,-3.2609e-5,-1.0228e-5,-9.5743e-5,-1.0304e-4/ data abp/2.9129e-2,2.4101e-2,1.9821e-2,2.6904e-2,2.9458e-2,1.9892e-2/ data bbp/-1.3139e-4,-5.5688e-5,-4.6380e-5,-8.0362e-5,-1.0115e-4,-8.8061e-5/ ! !--------------------------Statement Functions-------------------------- ! real(r8) func, u, b func(u,b) = u/sqrt(4.0 + u*(1.0 + 1.0 / b)) ! !----------------------------------------------------------------------- ! do i = 1,ncol sqti(i) = sqrt(co2t(i,k)) ! ! Transmission for h2o ! tt(i) = abs(co2t(i,k) - 250.0) end do ! do l = 1,6 do i = 1,ncol psi1 = exp(abp(l)*tt(i)+bbp(l)*tt(i)*tt(i)) phi1 = exp(ab(l)*tt(i)+bb(l)*tt(i)*tt(i)) p1 = pnm(i,k) * (psi1/phi1) / sslp w1 = w(i,k) * phi1 tw(i,l) = exp(- g1(l)*p1*(sqrt(1.0+g2(l)*(w1/p1))-1.0) & - g3(l)*s2c(i,k)-g4(l)*uptype(i,k)) end do end do ! Overlap H2O tranmission with STRAER continuum in 6 trace gas ! subbands do i=1,ncol tw(i,1)=tw(i,1)*(0.7*aer_trn_ttl(i,k,1,idx_LW_0650_0800)+&! l=1: 0750--0820 cm-1 0.3*aer_trn_ttl(i,k,1,idx_LW_0800_1000)) tw(i,2)=tw(i,2)*aer_trn_ttl(i,k,1,idx_LW_0800_1000) ! l=2: 0820--0880 cm-1 tw(i,3)=tw(i,3)*aer_trn_ttl(i,k,1,idx_LW_0800_1000) ! l=3: 0880--0900 cm-1 tw(i,4)=tw(i,4)*aer_trn_ttl(i,k,1,idx_LW_0800_1000) ! l=4: 0900--1000 cm-1 tw(i,5)=tw(i,5)*aer_trn_ttl(i,k,1,idx_LW_1000_1200) ! l=5: 1000--1120 cm-1 tw(i,6)=tw(i,6)*aer_trn_ttl(i,k,1,idx_LW_1000_1200) ! l=6: 1120--1170 cm-1 end do ! end loop over lon ! do i = 1,ncol ! ! transmission due to cfc bands ! tcfc3 = exp(-175.005*ucfc11(i,k)) tcfc4 = exp(-1202.18*ucfc11(i,k)) tcfc6 = exp(-5786.73*ucfc12(i,k)) tcfc7 = exp(-2873.51*ucfc12(i,k)) tcfc8 = exp(-2085.59*ucfc12(i,k)) ! ! Emissivity for CFC11 bands ! ecfc1 = 50.0*(1.0 - exp(-54.09*ucfc11(i,k))) * tw(i,1) * emplnk(7,i) ecfc2 = 60.0*(1.0 - exp(-5130.03*ucfc11(i,k)))* tw(i,2) * emplnk(8,i) ecfc3 = 60.0*(1.0 - tcfc3)*tw(i,4)*tcfc6*emplnk(9,i) ecfc4 = 100.0*(1.0 - tcfc4)*tw(i,5)*emplnk(10,i) ! ! Emissivity for CFC12 bands ! ecfc5 = 45.0*(1.0 - exp(-1272.35*ucfc12(i,k)))*tw(i,3)*emplnk(11,i) ecfc6 = 50.0*(1.0 - tcfc6)*tw(i,4)*emplnk(12,i) ecfc7 = 80.0*(1.0 - tcfc7)*tw(i,5)* tcfc4 * emplnk(13,i) ecfc8 = 70.0*(1.0 - tcfc8)*tw(i,6) * emplnk(14,i) ! ! Emissivity for CH4 band 1306 cm-1 ! tlw = exp(-1.0*sqrt(up2(i))) ! Overlap H2O vibration rotation band with STRAER continuum ! for CH4 1306 cm-1 and N2O 1285 cm-1 bands tlw=tlw*aer_trn_ttl(i,k,1,idx_LW_1200_2000) betac = bch4(i,k)/uch4(i,k) ech4 = 6.00444*sqti(i)*log(1.0 + func(uch4(i,k),betac)) *tlw * emplnk(3,i) tch4 = 1.0/(1.0 + 0.02*func(uch4(i,k),betac)) ! ! Emissivity for N2O bands ! u01 = un2o0(i,k) u11 = un2o1(i,k) beta01 = bn2o0(i,k)/un2o0(i,k) beta11 = bn2o1(i,k)/un2o1(i,k) ! ! 1285 cm-1 band ! en2o1 = 2.35558*sqti(i)*log(1.0 + func(u01,beta01) + & func(u11,beta11))*tlw*tch4*emplnk(4,i) u02 = 0.100090*u01 u12 = 0.0992746*u11 beta02 = 0.964282*beta01 ! ! 589 cm-1 band ! en2o2 = 2.65581*sqti(i)*log(1.0 + func(u02,beta02) + & func(u12,beta02)) * tco2(i) * th2o(i) * emplnk(5,i) u03 = 0.0333767*u01 beta03 = 0.982143*beta01 ! ! 1168 cm-1 band ! en2o3 = 2.54034*sqti(i)*log(1.0 + func(u03,beta03)) * & tw(i,6) * tcfc8 * emplnk(6,i) ! ! Emissivity for 1064 cm-1 band of CO2 ! betac1 = 2.97558*pnm(i,k) / (sslp*sqti(i)) betac2 = 2.0 * betac1 eco21 = 3.7571*sqti(i)*log(1.0 + func(uco211(i,k),betac1) & + func(uco212(i,k),betac2) + func(uco213(i,k),betac2)) & * to3(i) * tw(i,5) * tcfc4 * tcfc7 * emplnk(2,i) ! ! Emissivity for 961 cm-1 band ! eco22 = 3.8443*sqti(i)*log(1.0 + func(uco221(i,k),betac1) & + func(uco222(i,k),betac1) + func(uco223(i,k),betac2)) & * tw(i,4) * tcfc3 * tcfc6 * emplnk(1,i) ! ! total trace gas emissivity ! emstrc(i,k) = ecfc1 + ecfc2 + ecfc3 + ecfc4 + ecfc5 +ecfc6 + & ecfc7 + ecfc8 + en2o1 + en2o2 + en2o3 + ech4 + & eco21 + eco22 end do ! return ! end subroutine trcems subroutine trcmix(lchnk ,ncol ,pcols, pver, & 1 pmid ,clat, n2o ,ch4 , & cfc11 , cfc12 ) !----------------------------------------------------------------------- ! ! Purpose: ! Specify zonal mean mass mixing ratios of CH4, N2O, CFC11 and ! CFC12 ! ! Method: ! Distributions assume constant mixing ratio in the troposphere ! and a decrease of mixing ratio in the stratosphere. Tropopause ! defined by ptrop. The scale height of the particular trace gas ! depends on latitude. This assumption produces a more realistic ! stratospheric distribution of the various trace gases. ! ! Author: J. Kiehl ! !----------------------------------------------------------------------- ! use shr_kind_mod, only: r8 => shr_kind_r8 ! use ppgrid ! use phys_grid, only: get_rlat_all_p ! use physconst, only: mwdry, mwch4, mwn2o, mwf11, mwf12 ! use ghg_surfvals, only: ch4vmr, n2ovmr, f11vmr, f12vmr implicit none !-----------------------------Arguments--------------------------------- ! ! Input ! integer, intent(in) :: lchnk ! chunk identifier integer, intent(in) :: ncol ! number of atmospheric columns integer, intent(in) :: pcols, pver real(r8), intent(in) :: pmid(pcols,pver) ! model pressures real(r8), intent(in) :: clat(pcols) ! latitude in radians for columns ! ! Output ! real(r8), intent(out) :: n2o(pcols,pver) ! nitrous oxide mass mixing ratio real(r8), intent(out) :: ch4(pcols,pver) ! methane mass mixing ratio real(r8), intent(out) :: cfc11(pcols,pver) ! cfc11 mass mixing ratio real(r8), intent(out) :: cfc12(pcols,pver) ! cfc12 mass mixing ratio ! !--------------------------Local Variables------------------------------ real(r8) :: rmwn2o ! ratio of molecular weight n2o to dry air real(r8) :: rmwch4 ! ratio of molecular weight ch4 to dry air real(r8) :: rmwf11 ! ratio of molecular weight cfc11 to dry air real(r8) :: rmwf12 ! ratio of molecular weight cfc12 to dry air ! integer i ! longitude loop index integer k ! level index ! ! real(r8) clat(pcols) ! latitude in radians for columns real(r8) coslat(pcols) ! cosine of latitude real(r8) dlat ! latitude in degrees real(r8) ptrop ! pressure level of tropopause real(r8) pratio ! pressure divided by ptrop ! real(r8) xn2o ! pressure scale height for n2o real(r8) xch4 ! pressure scale height for ch4 real(r8) xcfc11 ! pressure scale height for cfc11 real(r8) xcfc12 ! pressure scale height for cfc12 ! real(r8) ch40 ! tropospheric mass mixing ratio for ch4 real(r8) n2o0 ! tropospheric mass mixing ratio for n2o real(r8) cfc110 ! tropospheric mass mixing ratio for cfc11 real(r8) cfc120 ! tropospheric mass mixing ratio for cfc12 ! !----------------------------------------------------------------------- rmwn2o = mwn2o/mwdry ! ratio of molecular weight n2o to dry air rmwch4 = mwch4/mwdry ! ratio of molecular weight ch4 to dry air rmwf11 = mwf11/mwdry ! ratio of molecular weight cfc11 to dry air rmwf12 = mwf12/mwdry ! ratio of molecular weight cfc12 to dry air ! ! get latitudes ! ! call get_rlat_all_p(lchnk, ncol, clat) do i = 1, ncol coslat(i) = cos(clat(i)) end do ! ! set tropospheric mass mixing ratios ! ch40 = rmwch4 * ch4vmr n2o0 = rmwn2o * n2ovmr cfc110 = rmwf11 * f11vmr cfc120 = rmwf12 * f12vmr do i = 1, ncol coslat(i) = cos(clat(i)) end do ! do k = 1,pver do i = 1,ncol ! ! set stratospheric scale height factor for gases dlat = abs(57.2958 * clat(i)) if(dlat.le.45.0) then xn2o = 0.3478 + 0.00116 * dlat xch4 = 0.2353 xcfc11 = 0.7273 + 0.00606 * dlat xcfc12 = 0.4000 + 0.00222 * dlat else xn2o = 0.4000 + 0.013333 * (dlat - 45) xch4 = 0.2353 + 0.0225489 * (dlat - 45) xcfc11 = 1.00 + 0.013333 * (dlat - 45) xcfc12 = 0.50 + 0.024444 * (dlat - 45) end if ! ! pressure of tropopause ptrop = 250.0e2 - 150.0e2*coslat(i)**2.0 ! ! determine output mass mixing ratios if (pmid(i,k) >= ptrop) then ch4(i,k) = ch40 n2o(i,k) = n2o0 cfc11(i,k) = cfc110 cfc12(i,k) = cfc120 else pratio = pmid(i,k)/ptrop ch4(i,k) = ch40 * (pratio)**xch4 n2o(i,k) = n2o0 * (pratio)**xn2o cfc11(i,k) = cfc110 * (pratio)**xcfc11 cfc12(i,k) = cfc120 * (pratio)**xcfc12 end if end do end do ! return ! end subroutine trcmix !ccc #ifdef CLWRFGHG subroutine trcmix_clwrf(lchnk ,ncol ,pcols, pver, & 1,3 pmid ,clat, n2ovmr, ch4vmr, f11vmr, & f12vmr, n2o ,ch4 , & cfc11 , cfc12 ) !----------------------------------------------------------------------- ! ! Purpose: ! Specify zonal mean mass mixing ratios of CH4, N2O, CFC11 and ! CFC12 ! ! Method: ! Distributions assume constant mixing ratio in the troposphere ! and a decrease of mixing ratio in the stratosphere. Tropopause ! defined by ptrop. The scale height of the particular trace gas ! depends on latitude. This assumption produces a more realistic ! stratospheric distribution of the various trace gases. ! ! Author: J. Kiehl ! !----------------------------------------------------------------------- ! use shr_kind_mod, only: r8 => shr_kind_r8 ! use ppgrid ! use phys_grid, only: get_rlat_all_p ! use physconst, only: mwdry, mwch4, mwn2o, mwf11, mwf12 implicit none !-----------------------------Arguments--------------------------------- ! ! Input ! integer, intent(in) :: lchnk ! chunk identifier integer, intent(in) :: ncol ! number of atmospheric columns integer, intent(in) :: pcols, pver real(r8), intent(in) :: pmid(pcols,pver) ! model pressures real(r8), intent(in) :: clat(pcols) ! latitude in radians for columns real(r8), intent(in) :: n2ovmr, ch4vmr, f11vmr, f12vmr ! ! Output ! real(r8), intent(out) :: n2o(pcols,pver) ! nitrous oxide mass mixing ratio real(r8), intent(out) :: ch4(pcols,pver) ! methane mass mixing ratio real(r8), intent(out) :: cfc11(pcols,pver) ! cfc11 mass mixing ratio real(r8), intent(out) :: cfc12(pcols,pver) ! cfc12 mass mixing ratio ! !--------------------------Local Variables------------------------------ real(r8) :: rmwn2o ! ratio of molecular weight n2o to dry air real(r8) :: rmwch4 ! ratio of molecular weight ch4 to dry air real(r8) :: rmwf11 ! ratio of molecular weight cfc11 to dry air real(r8) :: rmwf12 ! ratio of molecular weight cfc12 to dry air ! integer i ! longitude loop index integer k ! level index ! ! real(r8) clat(pcols) ! latitude in radians for columns real(r8) coslat(pcols) ! cosine of latitude real(r8) dlat ! latitude in degrees real(r8) ptrop ! pressure level of tropopause real(r8) pratio ! pressure divided by ptrop ! real(r8) xn2o ! pressure scale height for n2o real(r8) xch4 ! pressure scale height for ch4 real(r8) xcfc11 ! pressure scale height for cfc11 real(r8) xcfc12 ! pressure scale height for cfc12 ! real(r8) ch40 ! tropospheric mass mixing ratio for ch4 real(r8) n2o0 ! tropospheric mass mixing ratio for n2o real(r8) cfc110 ! tropospheric mass mixing ratio for cfc11 real(r8) cfc120 ! tropospheric mass mixing ratio for cfc12 CHARACTER (LEN=256) :: message ! !----------------------------------------------------------------------- rmwn2o = mwn2o/mwdry ! ratio of molecular weight n2o to dry air rmwch4 = mwch4/mwdry ! ratio of molecular weight ch4 to dry air rmwf11 = mwf11/mwdry ! ratio of molecular weight cfc11 to dry air rmwf12 = mwf12/mwdry ! ratio of molecular weight cfc12 to dry air ! ! get latitudes ! ! call get_rlat_all_p(lchnk, ncol, clat) do i = 1, ncol coslat(i) = cos(clat(i)) end do ! ! set tropospheric mass mixing ratios ! ch40 = rmwch4 * ch4vmr n2o0 = rmwn2o * n2ovmr cfc110 = rmwf11 * f11vmr cfc120 = rmwf12 * f12vmr do i = 1, ncol coslat(i) = cos(clat(i)) end do ! do k = 1,pver do i = 1,ncol ! ! set stratospheric scale height factor for gases dlat = abs(57.2958 * clat(i)) if(dlat.le.45.0) then xn2o = 0.3478 + 0.00116 * dlat xch4 = 0.2353 xcfc11 = 0.7273 + 0.00606 * dlat xcfc12 = 0.4000 + 0.00222 * dlat else xn2o = 0.4000 + 0.013333 * (dlat - 45) xch4 = 0.2353 + 0.0225489 * (dlat - 45) xcfc11 = 1.00 + 0.013333 * (dlat - 45) xcfc12 = 0.50 + 0.024444 * (dlat - 45) end if ! ! pressure of tropopause ptrop = 250.0e2 - 150.0e2*coslat(i)**2.0 ! ! determine output mass mixing ratios if (pmid(i,k) >= ptrop) then ch4(i,k) = ch40 n2o(i,k) = n2o0 cfc11(i,k) = cfc110 cfc12(i,k) = cfc120 else pratio = pmid(i,k)/ptrop ch4(i,k) = ch40 * (pratio)**xch4 n2o(i,k) = n2o0 * (pratio)**xn2o cfc11(i,k) = cfc110 * (pratio)**xcfc11 cfc12(i,k) = cfc120 * (pratio)**xcfc12 end if end do end do ! WRITE(message,*)'CLWRF-trcmix. ch4vmr:',ch4vmr,' n2ovmr:',n2ovmr,' cfc11vmr:',f11vmr,' cfc12vmr:',f12vmr CALL wrf_debug(0, message) WRITE(message,*)'CLWRF-trcmix. for i= ncol/2', ncol/2,' k=pver/2',pver/2,'__________' CALL wrf_debug(0, message) ptrop = 250.0e2 - 150.0e2*coslat(ncol/2)**2.0 if (any(pmid >= ptrop)) then WRITE(message,*)'CLWRF-trcmix. pmid: ',pmid(ncol/2,pver/2),' ch4:',ch4(ncol/2,pver/2),' n2o:',n2o(ncol/2,pver/2), & ' cfc11:',cfc11(ncol/2,pver/2),' cfc12:',cfc12(ncol/2,pver/2) else WRITE(message,*)'CLWRF-trcmix. pratio: ',pmid(ncol/2,pver/2)/ptrop,' ch4:',ch4(ncol/2,pver/2),' n2o:',n2o(ncol/2,pver/2), & ' cfc11:',cfc11(ncol/2,pver/2),' cfc12:',cfc12(ncol/2,pver/2) endif CALL wrf_debug(0, message) return ! end subroutine trcmix_clwrf #endif !ccc subroutine trcplk(lchnk ,ncol ,pcols, pver, pverp, & 1 tint ,tlayr ,tplnke ,emplnk ,abplnk1 , & abplnk2 ) !----------------------------------------------------------------------- ! ! Purpose: ! Calculate Planck factors for absorptivity and emissivity of ! CH4, N2O, CFC11 and CFC12 ! ! Method: ! Planck function and derivative evaluated at the band center. ! ! Author: J. Kiehl ! !----------------------------------------------------------------------- ! use shr_kind_mod, only: r8 => shr_kind_r8 ! use ppgrid implicit none !------------------------------Arguments-------------------------------- ! ! Input arguments ! integer, intent(in) :: lchnk ! chunk identifier integer, intent(in) :: ncol ! number of atmospheric columns integer, intent(in) :: pcols, pver, pverp real(r8), intent(in) :: tint(pcols,pverp) ! interface temperatures real(r8), intent(in) :: tlayr(pcols,pverp) ! k-1 level temperatures real(r8), intent(in) :: tplnke(pcols) ! Top Layer temperature ! ! output arguments ! real(r8), intent(out) :: emplnk(14,pcols) ! emissivity Planck factor real(r8), intent(out) :: abplnk1(14,pcols,pverp) ! non-nearest layer Plack factor real(r8), intent(out) :: abplnk2(14,pcols,pverp) ! nearest layer factor ! !--------------------------Local Variables------------------------------ ! integer wvl ! wavelength index integer i,k ! loop counters ! real(r8) f1(14) ! Planck function factor real(r8) f2(14) ! " real(r8) f3(14) ! " ! !--------------------------Data Statements------------------------------ ! data f1 /5.85713e8,7.94950e8,1.47009e9,1.40031e9,1.34853e8, & 1.05158e9,3.35370e8,3.99601e8,5.35994e8,8.42955e8, & 4.63682e8,5.18944e8,8.83202e8,1.03279e9/ data f2 /2.02493e11,3.04286e11,6.90698e11,6.47333e11, & 2.85744e10,4.41862e11,9.62780e10,1.21618e11, & 1.79905e11,3.29029e11,1.48294e11,1.72315e11, & 3.50140e11,4.31364e11/ data f3 /1383.0,1531.0,1879.0,1849.0,848.0,1681.0, & 1148.0,1217.0,1343.0,1561.0,1279.0,1328.0, & 1586.0,1671.0/ ! !----------------------------------------------------------------------- ! ! Calculate emissivity Planck factor ! do wvl = 1,14 do i = 1,ncol emplnk(wvl,i) = f1(wvl)/(tplnke(i)**4.0*(exp(f3(wvl)/tplnke(i))-1.0)) end do end do ! ! Calculate absorptivity Planck factor for tint and tlayr temperatures ! do wvl = 1,14 do k = ntoplw, pverp do i = 1, ncol ! ! non-nearlest layer function ! abplnk1(wvl,i,k) = (f2(wvl)*exp(f3(wvl)/tint(i,k))) & /(tint(i,k)**5.0*(exp(f3(wvl)/tint(i,k))-1.0)**2.0) ! ! nearest layer function ! abplnk2(wvl,i,k) = (f2(wvl)*exp(f3(wvl)/tlayr(i,k))) & /(tlayr(i,k)**5.0*(exp(f3(wvl)/tlayr(i,k))-1.0)**2.0) end do end do end do ! return end subroutine trcplk subroutine trcpth(lchnk ,ncol ,pcols, pver, pverp, & 1 tnm ,pnm ,cfc11 ,cfc12 ,n2o , & ch4 ,qnm ,ucfc11 ,ucfc12 ,un2o0 , & un2o1 ,uch4 ,uco211 ,uco212 ,uco213 , & uco221 ,uco222 ,uco223 ,bn2o0 ,bn2o1 , & bch4 ,uptype ) !----------------------------------------------------------------------- ! ! Purpose: ! Calculate path lengths and pressure factors for CH4, N2O, CFC11 ! and CFC12. ! ! Method: ! See CCM3 description for details ! ! Author: J. Kiehl ! !----------------------------------------------------------------------- ! use shr_kind_mod, only: r8 => shr_kind_r8 ! use ppgrid ! use ghg_surfvals, only: co2mmr implicit none !------------------------------Arguments-------------------------------- ! ! Input arguments ! integer, intent(in) :: lchnk ! chunk identifier integer, intent(in) :: ncol ! number of atmospheric columns integer, intent(in) :: pcols, pver, pverp real(r8), intent(in) :: tnm(pcols,pver) ! Model level temperatures real(r8), intent(in) :: pnm(pcols,pverp) ! Pres. at model interfaces (dynes/cm2) real(r8), intent(in) :: qnm(pcols,pver) ! h2o specific humidity real(r8), intent(in) :: cfc11(pcols,pver) ! CFC11 mass mixing ratio ! real(r8), intent(in) :: cfc12(pcols,pver) ! CFC12 mass mixing ratio real(r8), intent(in) :: n2o(pcols,pver) ! N2O mass mixing ratio real(r8), intent(in) :: ch4(pcols,pver) ! CH4 mass mixing ratio ! ! Output arguments ! real(r8), intent(out) :: ucfc11(pcols,pverp) ! CFC11 path length real(r8), intent(out) :: ucfc12(pcols,pverp) ! CFC12 path length real(r8), intent(out) :: un2o0(pcols,pverp) ! N2O path length real(r8), intent(out) :: un2o1(pcols,pverp) ! N2O path length (hot band) real(r8), intent(out) :: uch4(pcols,pverp) ! CH4 path length ! real(r8), intent(out) :: uco211(pcols,pverp) ! CO2 9.4 micron band path length real(r8), intent(out) :: uco212(pcols,pverp) ! CO2 9.4 micron band path length real(r8), intent(out) :: uco213(pcols,pverp) ! CO2 9.4 micron band path length real(r8), intent(out) :: uco221(pcols,pverp) ! CO2 10.4 micron band path length real(r8), intent(out) :: uco222(pcols,pverp) ! CO2 10.4 micron band path length ! real(r8), intent(out) :: uco223(pcols,pverp) ! CO2 10.4 micron band path length real(r8), intent(out) :: bn2o0(pcols,pverp) ! pressure factor for n2o real(r8), intent(out) :: bn2o1(pcols,pverp) ! pressure factor for n2o real(r8), intent(out) :: bch4(pcols,pverp) ! pressure factor for ch4 real(r8), intent(out) :: uptype(pcols,pverp) ! p-type continuum path length ! !---------------------------Local variables----------------------------- ! integer i ! Longitude index integer k ! Level index ! real(r8) co2fac(pcols,1) ! co2 factor real(r8) alpha1(pcols) ! stimulated emission term real(r8) alpha2(pcols) ! stimulated emission term real(r8) rt(pcols) ! reciprocal of local temperature real(r8) rsqrt(pcols) ! reciprocal of sqrt of temp ! real(r8) pbar(pcols) ! mean pressure real(r8) dpnm(pcols) ! difference in pressure real(r8) diff ! diffusivity factor ! !--------------------------Data Statements------------------------------ ! data diff /1.66/ ! !----------------------------------------------------------------------- ! ! Calculate path lengths for the trace gases at model top ! do i = 1,ncol ucfc11(i,ntoplw) = 1.8 * cfc11(i,ntoplw) * pnm(i,ntoplw) * rga ucfc12(i,ntoplw) = 1.8 * cfc12(i,ntoplw) * pnm(i,ntoplw) * rga un2o0(i,ntoplw) = diff * 1.02346e5 * n2o(i,ntoplw) * pnm(i,ntoplw) * rga / sqrt(tnm(i,ntoplw)) un2o1(i,ntoplw) = diff * 2.01909 * un2o0(i,ntoplw) * exp(-847.36/tnm(i,ntoplw)) uch4(i,ntoplw) = diff * 8.60957e4 * ch4(i,ntoplw) * pnm(i,ntoplw) * rga / sqrt(tnm(i,ntoplw)) co2fac(i,1) = diff * co2mmr * pnm(i,ntoplw) * rga alpha1(i) = (1.0 - exp(-1540.0/tnm(i,ntoplw)))**3.0/sqrt(tnm(i,ntoplw)) alpha2(i) = (1.0 - exp(-1360.0/tnm(i,ntoplw)))**3.0/sqrt(tnm(i,ntoplw)) uco211(i,ntoplw) = 3.42217e3 * co2fac(i,1) * alpha1(i) * exp(-1849.7/tnm(i,ntoplw)) uco212(i,ntoplw) = 6.02454e3 * co2fac(i,1) * alpha1(i) * exp(-2782.1/tnm(i,ntoplw)) uco213(i,ntoplw) = 5.53143e3 * co2fac(i,1) * alpha1(i) * exp(-3723.2/tnm(i,ntoplw)) uco221(i,ntoplw) = 3.88984e3 * co2fac(i,1) * alpha2(i) * exp(-1997.6/tnm(i,ntoplw)) uco222(i,ntoplw) = 3.67108e3 * co2fac(i,1) * alpha2(i) * exp(-3843.8/tnm(i,ntoplw)) uco223(i,ntoplw) = 6.50642e3 * co2fac(i,1) * alpha2(i) * exp(-2989.7/tnm(i,ntoplw)) bn2o0(i,ntoplw) = diff * 19.399 * pnm(i,ntoplw)**2.0 * n2o(i,ntoplw) * & 1.02346e5 * rga / (sslp*tnm(i,ntoplw)) bn2o1(i,ntoplw) = bn2o0(i,ntoplw) * exp(-847.36/tnm(i,ntoplw)) * 2.06646e5 bch4(i,ntoplw) = diff * 2.94449 * ch4(i,ntoplw) * pnm(i,ntoplw)**2.0 * rga * & 8.60957e4 / (sslp*tnm(i,ntoplw)) uptype(i,ntoplw) = diff * qnm(i,ntoplw) * pnm(i,ntoplw)**2.0 * & exp(1800.0*(1.0/tnm(i,ntoplw) - 1.0/296.0)) * rga / sslp end do ! ! Calculate trace gas path lengths through model atmosphere ! do k = ntoplw,pver do i = 1,ncol rt(i) = 1./tnm(i,k) rsqrt(i) = sqrt(rt(i)) pbar(i) = 0.5 * (pnm(i,k+1) + pnm(i,k)) / sslp dpnm(i) = (pnm(i,k+1) - pnm(i,k)) * rga alpha1(i) = diff * rsqrt(i) * (1.0 - exp(-1540.0/tnm(i,k)))**3.0 alpha2(i) = diff * rsqrt(i) * (1.0 - exp(-1360.0/tnm(i,k)))**3.0 ucfc11(i,k+1) = ucfc11(i,k) + 1.8 * cfc11(i,k) * dpnm(i) ucfc12(i,k+1) = ucfc12(i,k) + 1.8 * cfc12(i,k) * dpnm(i) un2o0(i,k+1) = un2o0(i,k) + diff * 1.02346e5 * n2o(i,k) * rsqrt(i) * dpnm(i) un2o1(i,k+1) = un2o1(i,k) + diff * 2.06646e5 * n2o(i,k) * & rsqrt(i) * exp(-847.36/tnm(i,k)) * dpnm(i) uch4(i,k+1) = uch4(i,k) + diff * 8.60957e4 * ch4(i,k) * rsqrt(i) * dpnm(i) uco211(i,k+1) = uco211(i,k) + 1.15*3.42217e3 * alpha1(i) * & co2mmr * exp(-1849.7/tnm(i,k)) * dpnm(i) uco212(i,k+1) = uco212(i,k) + 1.15*6.02454e3 * alpha1(i) * & co2mmr * exp(-2782.1/tnm(i,k)) * dpnm(i) uco213(i,k+1) = uco213(i,k) + 1.15*5.53143e3 * alpha1(i) * & co2mmr * exp(-3723.2/tnm(i,k)) * dpnm(i) uco221(i,k+1) = uco221(i,k) + 1.15*3.88984e3 * alpha2(i) * & co2mmr * exp(-1997.6/tnm(i,k)) * dpnm(i) uco222(i,k+1) = uco222(i,k) + 1.15*3.67108e3 * alpha2(i) * & co2mmr * exp(-3843.8/tnm(i,k)) * dpnm(i) uco223(i,k+1) = uco223(i,k) + 1.15*6.50642e3 * alpha2(i) * & co2mmr * exp(-2989.7/tnm(i,k)) * dpnm(i) bn2o0(i,k+1) = bn2o0(i,k) + diff * 19.399 * pbar(i) * rt(i) & * 1.02346e5 * n2o(i,k) * dpnm(i) bn2o1(i,k+1) = bn2o1(i,k) + diff * 19.399 * pbar(i) * rt(i) & * 2.06646e5 * exp(-847.36/tnm(i,k)) * n2o(i,k)*dpnm(i) bch4(i,k+1) = bch4(i,k) + diff * 2.94449 * rt(i) * pbar(i) & * 8.60957e4 * ch4(i,k) * dpnm(i) uptype(i,k+1) = uptype(i,k) + diff *qnm(i,k) * & exp(1800.0*(1.0/tnm(i,k) - 1.0/296.0)) * pbar(i) * dpnm(i) end do end do ! return end subroutine trcpth subroutine aqsat(t ,p ,es ,qs ,ii , & 4,2 ilen ,kk ,kstart ,kend ) !----------------------------------------------------------------------- ! ! Purpose: ! Utility procedure to look up and return saturation vapor pressure from ! precomputed table, calculate and return saturation specific humidity ! (g/g),for input arrays of temperature and pressure (dimensioned ii,kk) ! This routine is useful for evaluating only a selected region in the ! vertical. ! ! Method: ! <Describe the algorithm(s) used in the routine.> ! <Also include any applicable external references.> ! ! Author: J. Hack ! !------------------------------Arguments-------------------------------- ! ! Input arguments ! integer, intent(in) :: ii ! I dimension of arrays t, p, es, qs integer, intent(in) :: kk ! K dimension of arrays t, p, es, qs integer, intent(in) :: ilen ! Length of vectors in I direction which integer, intent(in) :: kstart ! Starting location in K direction integer, intent(in) :: kend ! Ending location in K direction real(r8), intent(in) :: t(ii,kk) ! Temperature real(r8), intent(in) :: p(ii,kk) ! Pressure ! ! Output arguments ! real(r8), intent(out) :: es(ii,kk) ! Saturation vapor pressure real(r8), intent(out) :: qs(ii,kk) ! Saturation specific humidity ! !---------------------------Local workspace----------------------------- ! real(r8) omeps ! 1 - 0.622 integer i, k ! Indices ! !----------------------------------------------------------------------- ! omeps = 1.0 - epsqs do k=kstart,kend do i=1,ilen es(i,k) = estblf(t(i,k)) ! ! Saturation specific humidity ! qs(i,k) = epsqs*es(i,k)/(p(i,k) - omeps*es(i,k)) ! ! The following check is to avoid the generation of negative values ! that can occur in the upper stratosphere and mesosphere ! qs(i,k) = min(1.0_r8,qs(i,k)) ! if (qs(i,k) < 0.0) then qs(i,k) = 1.0 es(i,k) = p(i,k) end if end do end do ! return end subroutine aqsat !=============================================================================== subroutine cldefr(lchnk ,ncol ,pcols, pver, pverp, & 1,2 landfrac,t ,rel ,rei ,ps ,pmid , landm, icefrac, snowh) !----------------------------------------------------------------------- ! ! Purpose: ! Compute cloud water and ice particle size ! ! Method: ! use empirical formulas to construct effective radii ! ! Author: J.T. Kiehl, B. A. Boville, P. Rasch ! !----------------------------------------------------------------------- implicit none !------------------------------Arguments-------------------------------- ! ! Input arguments ! integer, intent(in) :: lchnk ! chunk identifier integer, intent(in) :: ncol ! number of atmospheric columns integer, intent(in) :: pcols, pver, pverp real(r8), intent(in) :: landfrac(pcols) ! Land fraction real(r8), intent(in) :: icefrac(pcols) ! Ice fraction real(r8), intent(in) :: t(pcols,pver) ! Temperature real(r8), intent(in) :: ps(pcols) ! Surface pressure real(r8), intent(in) :: pmid(pcols,pver) ! Midpoint pressures real(r8), intent(in) :: landm(pcols) real(r8), intent(in) :: snowh(pcols) ! Snow depth over land, water equivalent (m) ! ! Output arguments ! real(r8), intent(out) :: rel(pcols,pver) ! Liquid effective drop size (microns) real(r8), intent(out) :: rei(pcols,pver) ! Ice effective drop size (microns) ! !++pjr ! following Kiehl call reltab(ncol, pcols, pver, t, landfrac, landm, icefrac, rel, snowh) ! following Kristjansson and Mitchell call reitab(ncol, pcols, pver, t, rei) !--pjr ! ! return end subroutine cldefr subroutine background(lchnk, ncol, pint, pcols, pverr, pverrp, mmr) 1 !----------------------------------------------------------------------- ! ! Purpose: ! Set global mean tropospheric aerosol background (or tuning) field ! ! Method: ! Specify aerosol mixing ratio. ! Aerosol mass mixing ratio ! is specified so that the column visible aerosol optical depth is a ! specified global number (tauback). This means that the actual mixing ! ratio depends on pressure thickness of the lowest three atmospheric ! layers near the surface. ! !----------------------------------------------------------------------- ! use shr_kind_mod, only: r8 => shr_kind_r8 ! use aer_optics, only: kbg,idxVIS ! use physconst, only: gravit !----------------------------------------------------------------------- implicit none !----------------------------------------------------------------------- !#include <ptrrgrid.h> !------------------------------Arguments-------------------------------- ! ! Input arguments ! integer, intent(in) :: lchnk ! chunk identifier integer, intent(in) :: ncol ! number of atmospheric columns integer, intent(in) :: pcols,pverr,pverrp real(r8), intent(in) :: pint(pcols,pverrp) ! Interface pressure (mks) ! ! Output arguments ! real(r8), intent(out) :: mmr(pcols,pverr) ! "background" aerosol mass mixing ratio ! !---------------------------Local variables----------------------------- ! integer i ! Longitude index integer k ! Level index ! real(r8) mass2mmr ! Factor to convert mass to mass mixing ratio real(r8) mass ! Mass of "background" aerosol as specified by tauback ! !----------------------------------------------------------------------- ! do i=1,ncol mass2mmr = gravmks / (pint(i,pverrp)-pint(i,pverrp-mxaerl)) do k=1,pverr ! ! Compute aerosol mass mixing ratio for specified levels (1.e3 factor is ! for units conversion of the extinction coefficiant from m2/g to m2/kg) ! if ( k >= pverrp-mxaerl ) then ! kaervs is not consistent with the values in aer_optics ! this ?should? be changed. ! rhfac is also implemented differently mass = tauback / (1.e3 * kbg(idxVIS)) mmr(i,k) = mass2mmr*mass else mmr(i,k) = 0._r8 endif ! enddo enddo ! return end subroutine background subroutine scale_aerosols(AEROSOLt, pcols, pver, ncol, lchnk, scale) 1 !----------------------------------------------------------------- ! scale each species as determined by scale factors !----------------------------------------------------------------- integer, intent(in) :: ncol, lchnk ! number of columns and chunk index integer, intent(in) :: pcols, pver real(r8), intent(in) :: scale(naer_all) ! scale each aerosol by this amount real(r8), intent(inout) :: AEROSOLt(pcols, pver, naer_all) ! aerosols integer m do m = 1, naer_all AEROSOLt(:ncol, :, m) = scale(m)*AEROSOLt(:ncol, :, m) end do return end subroutine scale_aerosols subroutine get_int_scales(scales) 2 real(r8), intent(out)::scales(naer_all) ! scale each aerosol by this amount integer i ! index through species !initialize scales = 1. scales(idxBG) = 1._r8 scales(idxSUL) = sulscl scales(idxSSLT) = ssltscl do i = idxCARBONfirst, idxCARBONfirst+numCARBON-1 scales(i) = carscl enddo do i = idxDUSTfirst, idxDUSTfirst+numDUST-1 scales(i) = dustscl enddo scales(idxVOLC) = volcscl return end subroutine get_int_scales subroutine vert_interpolate (Match_ps, aerosolc, m_hybi, paerlev, naer_c, pint, n, AEROSOL_mmr, pcols, pver, pverp, ncol, c) 2,3 !-------------------------------------------------------------------- ! Input: match surface pressure, cam interface pressure, ! month index, number of columns, chunk index ! ! Output: Aerosol mass mixing ratio (AEROSOL_mmr) ! ! Method: ! interpolate column mass (cumulative) from match onto ! cam's vertical grid (pressure coordinate) ! convert back to mass mixing ratio ! !-------------------------------------------------------------------- ! use physconst, only: gravit integer, intent(in) :: paerlev,naer_c,pcols,pver,pverp real(r8), intent(out) :: AEROSOL_mmr(pcols,pver,naer) ! aerosol mmr from MATCH real(r8), intent(in) :: Match_ps(pcols) ! surface pressure at a particular month real(r8), intent(in) :: pint(pcols,pverp) ! interface pressure from CAM real(r8), intent(in) :: aerosolc(pcols,paerlev,naer_c) real(r8), intent(in) :: m_hybi(paerlev) integer, intent(in) :: ncol,c ! chunk index and number of columns integer, intent(in) :: n ! prv or nxt month index ! ! Local workspace ! integer m ! index to aerosol species integer kupper(pcols) ! last upper bound for interpolation integer i, k, kk, kkstart, kount ! loop vars for interpolation integer isv, ksv, msv ! loop indices to save logical bad ! indicates a bad point found logical lev_interp_comp ! interpolation completed for a level real(r8) AEROSOL(pcols,pverp,naer) ! cumulative mass of aerosol in column beneath upper ! interface of level in column at particular month real(r8) dpl, dpu ! lower and upper intepolation factors real(r8) v_coord ! vertical coordinate real(r8) m_to_mmr ! mass to mass mixing ratio conversion factor real(r8) AER_diff ! temp var for difference between aerosol masses !ccc #ifdef CLWRFGHG !CLWRF-UC July.09 ! LOGICAL ISNAND, EXTERNAL ! NaN values detection #endif !ccc ! call t_startf ('vert_interpolate') ! ! Initialize index array ! do i=1,ncol kupper(i) = 1 end do ! ! assign total mass to topmost level ! do i=1,ncol do m=1,naer AEROSOL(i,1,m) = AEROSOLc(i,1,m) enddo enddo ! ! At every pressure level, interpolate onto that pressure level ! do k=2,pver ! ! Top level we need to start looking is the top level for the previous k ! for all longitude points ! kkstart = paerlev do i=1,ncol kkstart = min0(kkstart,kupper(i)) end do kount = 0 ! ! Store level indices for interpolation ! ! for the pressure interpolation should be comparing ! pint(column,lev) with M_hybi(lev)*M_ps_cam_col(month,column,chunk) ! lev_interp_comp = .false. do kk=kkstart,paerlev-1 if(.not.lev_interp_comp) then do i=1,ncol v_coord = pint(i,k) if (M_hybi(kk)*Match_ps(i) .lt. v_coord .and. v_coord .le. M_hybi(kk+1)*Match_ps(i)) then kupper(i) = kk kount = kount + 1 end if end do ! ! If all indices for this level have been found, do the interpolation and ! go to the next level ! ! Interpolate in pressure. ! if (kount.eq.ncol) then do i=1,ncol do m=1,naer dpu = pint(i,k) - M_hybi(kupper(i))*Match_ps(i) dpl = M_hybi(kupper(i)+1)*Match_ps(i) - pint(i,k) AEROSOL(i,k,m) = & (AEROSOLc(i,kupper(i) ,m)*dpl + & AEROSOLc(i,kupper(i)+1,m)*dpu)/(dpl + dpu) enddo enddo !i lev_interp_comp = .true. end if end if end do ! ! If we've fallen through the kk=1,levsiz-1 loop, we cannot interpolate and ! must extrapolate from the bottom or top pressure level for at least some ! of the longitude points. ! if(.not.lev_interp_comp) then do i=1,ncol do m=1,naer if (pint(i,k) .lt. M_hybi(1)*Match_ps(i)) then AEROSOL(i,k,m) = AEROSOLc(i,1,m) else if (pint(i,k) .gt. M_hybi(paerlev)*Match_ps(i)) then AEROSOL(i,k,m) = 0.0 else dpu = pint(i,k) - M_hybi(kupper(i))*Match_ps(i) dpl = M_hybi(kupper(i)+1)*Match_ps(i) - pint(i,k) AEROSOL(i,k,m) = & (AEROSOLc(i,kupper(i) ,m)*dpl + & AEROSOLc(i,kupper(i)+1,m)*dpu)/(dpl + dpu) end if enddo end do if (kount.gt.ncol) then call endrun ('VERT_INTERPOLATE: Bad data: non-monotonicity suspected in dependent variable') end if end if end do ! call t_startf ('vi_checks') ! ! aerosol mass beneath lowest interface (pverp) must be 0 ! AEROSOL(1:ncol,pverp,:) = 0. ! ! Set mass in layer to zero whenever it is less than ! 1.e-40 kg/m^2 in the layer ! do m = 1, naer do k = 1, pver do i = 1, ncol if (AEROSOL(i,k,m) < 1.e-40_r8) AEROSOL(i,k,m) = 0. end do end do end do ! ! Set mass in layer to zero whenever it is less than ! 10^-15 relative to column total mass ! convert back to mass mixing ratios. ! exit if mmr is negative ! do m = 1, naer do k = 1, pver do i = 1, ncol AER_diff = AEROSOL(i,k,m) - AEROSOL(i,k+1,m) if( abs(AER_diff) < 1e-15*AEROSOL(i,1,m)) then AER_diff = 0. end if m_to_mmr = gravmks / (pint(i,k+1)-pint(i,k)) AEROSOL_mmr(i,k,m)= AER_diff * m_to_mmr if (AEROSOL_mmr(i,k,m) < 0) then write(6,*)'vert_interpolate: mmr < 0, m, col, lev, mmr',m, i, k, AEROSOL_mmr(i,k,m) write(6,*)'vert_interpolate: aerosol(k),(k+1)',AEROSOL(i,k,m),AEROSOL(i,k+1,m) write(6,*)'vert_interpolate: pint(k+1),(k)',pint(i,k+1),pint(i,k) write(6,*)'n,c',n,c !ccc #ifdef CLWRFGHG !CLWRF-UC July.09 ! IF (ISNAND(pint(i,k+1))) THEN CALL wrf_error_fatal('CLWRF-module_ra_cam_support. vert_interpolate: ERROR -- error -- Error of computation pint=NaN') ! ENDIF ! IF (ISNAND(pint(i,k))) THEN ! CALL wrf_error_fatal('CLWRF-module_ra_cam_support. vert_interpolate: ERROR -- error -- Error of computation pint=NaN') ! ENDIF #endif !ccc call endrun() end if end do end do end do ! call t_stopf ('vi_checks') ! call t_stopf ('vert_interpolate') return end subroutine vert_interpolate !=============================================================================== subroutine cldems(lchnk ,ncol ,pcols, pver, pverp, clwp ,fice ,rei ,emis ) 1 !----------------------------------------------------------------------- ! ! Purpose: ! Compute cloud emissivity using cloud liquid water path (g/m**2) ! ! Method: ! <Describe the algorithm(s) used in the routine.> ! <Also include any applicable external references.> ! ! Author: J.T. Kiehl ! !----------------------------------------------------------------------- implicit none !------------------------------Parameters------------------------------- ! real(r8) kabsl ! longwave liquid absorption coeff (m**2/g) parameter (kabsl = 0.090361) ! !------------------------------Arguments-------------------------------- ! ! Input arguments ! integer, intent(in) :: lchnk ! chunk identifier integer, intent(in) :: ncol ! number of atmospheric columns integer, intent(in) :: pcols, pver, pverp real(r8), intent(in) :: clwp(pcols,pver) ! cloud liquid water path (g/m**2) real(r8), intent(in) :: rei(pcols,pver) ! ice effective drop size (microns) real(r8), intent(in) :: fice(pcols,pver) ! fractional ice content within cloud ! ! Output arguments ! real(r8), intent(out) :: emis(pcols,pver) ! cloud emissivity (fraction) ! !---------------------------Local workspace----------------------------- ! integer i,k ! longitude, level indices real(r8) kabs ! longwave absorption coeff (m**2/g) real(r8) kabsi ! ice absorption coefficient ! !----------------------------------------------------------------------- ! do k=1,pver do i=1,ncol kabsi = 0.005 + 1./rei(i,k) kabs = kabsl*(1.-fice(i,k)) + kabsi*fice(i,k) emis(i,k) = 1. - exp(-1.66*kabs*clwp(i,k)) end do end do ! return end subroutine cldems !=============================================================================== subroutine cldovrlap(lchnk ,ncol ,pcols, pver, pverp, pint ,cld ,nmxrgn ,pmxrgn ) 1 !----------------------------------------------------------------------- ! ! Purpose: ! Partitions each column into regions with clouds in neighboring layers. ! This information is used to implement maximum overlap in these regions ! with random overlap between them. ! On output, ! nmxrgn contains the number of regions in each column ! pmxrgn contains the interface pressures for the lower boundaries of ! each region! ! Method: ! ! Author: W. Collins ! !----------------------------------------------------------------------- implicit none ! ! Input arguments ! integer, intent(in) :: lchnk ! chunk identifier integer, intent(in) :: ncol ! number of atmospheric columns integer, intent(in) :: pcols, pver, pverp real(r8), intent(in) :: pint(pcols,pverp) ! Interface pressure real(r8), intent(in) :: cld(pcols,pver) ! Fractional cloud cover ! ! Output arguments ! real(r8), intent(out) :: pmxrgn(pcols,pverp)! Maximum values of pressure for each ! maximally overlapped region. ! 0->pmxrgn(i,1) is range of pressure for ! 1st region,pmxrgn(i,1)->pmxrgn(i,2) for ! 2nd region, etc integer nmxrgn(pcols) ! Number of maximally overlapped regions ! !---------------------------Local variables----------------------------- ! integer i ! Longitude index integer k ! Level index integer n ! Max-overlap region counter real(r8) pnm(pcols,pverp) ! Interface pressure logical cld_found ! Flag for detection of cloud logical cld_layer(pver) ! Flag for cloud in layer ! !------------------------------------------------------------------------ ! do i = 1, ncol cld_found = .false. cld_layer(:) = cld(i,:) > 0.0_r8 pmxrgn(i,:) = 0.0 pnm(i,:)=pint(i,:)*10. n = 1 do k = 1, pver if (cld_layer(k) .and. .not. cld_found) then cld_found = .true. else if ( .not. cld_layer(k) .and. cld_found) then cld_found = .false. if (count(cld_layer(k:pver)) == 0) then exit endif pmxrgn(i,n) = pnm(i,k) n = n + 1 endif end do pmxrgn(i,n) = pnm(i,pverp) nmxrgn(i) = n end do return end subroutine cldovrlap !=============================================================================== subroutine cldclw(lchnk ,ncol ,pcols, pver, pverp, zi ,clwp ,tpw ,hl ) !----------------------------------------------------------------------- ! ! Purpose: ! Evaluate cloud liquid water path clwp (g/m**2) ! ! Method: ! <Describe the algorithm(s) used in the routine.> ! <Also include any applicable external references.> ! ! Author: J.T. Kiehl ! !----------------------------------------------------------------------- implicit none ! ! Input arguments ! integer, intent(in) :: lchnk ! chunk identifier integer, intent(in) :: ncol ! number of atmospheric columns integer, intent(in) :: pcols, pver, pverp real(r8), intent(in) :: zi(pcols,pverp) ! height at layer interfaces(m) real(r8), intent(in) :: tpw(pcols) ! total precipitable water (mm) ! ! Output arguments ! real(r8) clwp(pcols,pver) ! cloud liquid water path (g/m**2) real(r8) hl(pcols) ! liquid water scale height real(r8) rhl(pcols) ! 1/hl ! !---------------------------Local workspace----------------------------- ! integer i,k ! longitude, level indices real(r8) clwc0 ! reference liquid water concentration (g/m**3) real(r8) emziohl(pcols,pverp) ! exp(-zi/hl) ! !----------------------------------------------------------------------- ! ! Set reference liquid water concentration ! clwc0 = 0.21 ! ! Diagnose liquid water scale height from precipitable water ! do i=1,ncol hl(i) = 700.0*log(max(tpw(i)+1.0_r8,1.0_r8)) rhl(i) = 1.0/hl(i) end do ! ! Evaluate cloud liquid water path (vertical integral of exponential fn) ! do k=1,pverp do i=1,ncol emziohl(i,k) = exp(-zi(i,k)*rhl(i)) end do end do do k=1,pver do i=1,ncol clwp(i,k) = clwc0*hl(i)*(emziohl(i,k+1) - emziohl(i,k)) end do end do ! return end subroutine cldclw !=============================================================================== subroutine reltab(ncol, pcols, pver, t, landfrac, landm, icefrac, rel, snowh) 1 !----------------------------------------------------------------------- ! ! Purpose: ! Compute cloud water size ! ! Method: ! analytic formula following the formulation originally developed by J. T. Kiehl ! ! Author: Phil Rasch ! !----------------------------------------------------------------------- ! use physconst, only: tmelt implicit none !------------------------------Arguments-------------------------------- ! ! Input arguments ! integer, intent(in) :: ncol integer, intent(in) :: pcols, pver real(r8), intent(in) :: landfrac(pcols) ! Land fraction real(r8), intent(in) :: icefrac(pcols) ! Ice fraction real(r8), intent(in) :: snowh(pcols) ! Snow depth over land, water equivalent (m) real(r8), intent(in) :: landm(pcols) ! Land fraction ramping to zero over ocean real(r8), intent(in) :: t(pcols,pver) ! Temperature ! ! Output arguments ! real(r8), intent(out) :: rel(pcols,pver) ! Liquid effective drop size (microns) ! !---------------------------Local workspace----------------------------- ! integer i,k ! Lon, lev indices real(r8) rliqland ! liquid drop size if over land real(r8) rliqocean ! liquid drop size if over ocean real(r8) rliqice ! liquid drop size if over sea ice ! !----------------------------------------------------------------------- ! rliqocean = 14.0_r8 rliqice = 14.0_r8 rliqland = 8.0_r8 do k=1,pver do i=1,ncol ! jrm Reworked effective radius algorithm ! Start with temperature-dependent value appropriate for continental air ! Note: findmcnew has a pressure dependence here rel(i,k) = rliqland + (rliqocean-rliqland) * min(1.0_r8,max(0.0_r8,(tmelt-t(i,k))*0.05)) ! Modify for snow depth over land rel(i,k) = rel(i,k) + (rliqocean-rel(i,k)) * min(1.0_r8,max(0.0_r8,snowh(i)*10.)) ! Ramp between polluted value over land to clean value over ocean. rel(i,k) = rel(i,k) + (rliqocean-rel(i,k)) * min(1.0_r8,max(0.0_r8,1.0-landm(i))) ! Ramp between the resultant value and a sea ice value in the presence of ice. rel(i,k) = rel(i,k) + (rliqice-rel(i,k)) * min(1.0_r8,max(0.0_r8,icefrac(i))) ! end jrm end do end do end subroutine reltab !=============================================================================== subroutine reitab(ncol, pcols, pver, t, re) 1 ! integer, intent(in) :: ncol, pcols, pver real(r8), intent(out) :: re(pcols,pver) real(r8), intent(in) :: t(pcols,pver) real(r8) corr integer i integer k integer index ! do k=1,pver do i=1,ncol index = int(t(i,k)-179.) index = min(max(index,1),94) corr = t(i,k) - int(t(i,k)) re(i,k) = retab(index)*(1.-corr) & +retab(index+1)*corr ! re(i,k) = amax1(amin1(re(i,k),30.),10.) end do end do ! return end subroutine reitab function exp_interpol(x, f, y) result(g) 3 ! Purpose: ! interpolates f(x) to point y ! assuming f(x) = f(x0) exp a(x - x0) ! where a = ( ln f(x1) - ln f(x0) ) / (x1 - x0) ! x0 <= x <= x1 ! assumes x is monotonically increasing ! Author: D. Fillmore ! use shr_kind_mod, only: r8 => shr_kind_r8 implicit none real(r8), intent(in), dimension(:) :: x ! grid points real(r8), intent(in), dimension(:) :: f ! grid function values real(r8), intent(in) :: y ! interpolation point real(r8) :: g ! interpolated function value integer :: k ! interpolation point index integer :: n ! length of x real(r8) :: a n = size(x) ! find k such that x(k) < y =< x(k+1) ! set k = 1 if y <= x(1) and k = n-1 if y > x(n) if (y <= x(1)) then k = 1 else if (y >= x(n)) then k = n - 1 else k = 1 do while (y > x(k+1) .and. k < n) k = k + 1 end do end if ! interpolate a = ( log( f(k+1) / f(k) ) ) / ( x(k+1) - x(k) ) g = f(k) * exp( a * (y - x(k)) ) end function exp_interpol function lin_interpol(x, f, y) result(g) 6 ! Purpose: ! interpolates f(x) to point y ! assuming f(x) = f(x0) + a * (x - x0) ! where a = ( f(x1) - f(x0) ) / (x1 - x0) ! x0 <= x <= x1 ! assumes x is monotonically increasing ! Author: D. Fillmore ! use shr_kind_mod, only: r8 => shr_kind_r8 implicit none real(r8), intent(in), dimension(:) :: x ! grid points real(r8), intent(in), dimension(:) :: f ! grid function values real(r8), intent(in) :: y ! interpolation point real(r8) :: g ! interpolated function value integer :: k ! interpolation point index integer :: n ! length of x real(r8) :: a n = size(x) ! find k such that x(k) < y =< x(k+1) ! set k = 1 if y <= x(1) and k = n-1 if y > x(n) if (y <= x(1)) then k = 1 else if (y >= x(n)) then k = n - 1 else k = 1 do while (y > x(k+1) .and. k < n) k = k + 1 end do end if ! interpolate a = ( f(k+1) - f(k) ) / ( x(k+1) - x(k) ) g = f(k) + a * (y - x(k)) end function lin_interpol function lin_interpol2(x, f, y) result(g) 1 ! Purpose: ! interpolates f(x) to point y ! assuming f(x) = f(x0) + a * (x - x0) ! where a = ( f(x1) - f(x0) ) / (x1 - x0) ! x0 <= x <= x1 ! assumes x is monotonically increasing ! Author: D. Fillmore :: J. Done changed from r8 to r4 implicit none real, intent(in), dimension(:) :: x ! grid points real, intent(in), dimension(:) :: f ! grid function values real, intent(in) :: y ! interpolation point real :: g ! interpolated function value integer :: k ! interpolation point index integer :: n ! length of x real :: a n = size(x) ! find k such that x(k) < y =< x(k+1) ! set k = 1 if y <= x(1) and k = n-1 if y > x(n) if (y <= x(1)) then k = 1 else if (y >= x(n)) then k = n - 1 else k = 1 do while (y > x(k+1) .and. k < n) k = k + 1 end do end if ! interpolate a = ( f(k+1) - f(k) ) / ( x(k+1) - x(k) ) g = f(k) + a * (y - x(k)) end function lin_interpol2 subroutine getfactors (cycflag, np1, cdayminus, cdayplus, cday, & 2,3 fact1, fact2) !--------------------------------------------------------------------------- ! ! Purpose: Determine time interpolation factors (normally for a boundary dataset) ! for linear interpolation. ! ! Method: Assume 365 days per year. Output variable fact1 will be the weight to ! apply to data at calendar time "cdayminus", and fact2 the weight to apply ! to data at time "cdayplus". Combining these values will produce a result ! valid at time "cday". Output arguments fact1 and fact2 will be between ! 0 and 1, and fact1 + fact2 = 1 to roundoff. ! ! Author: Jim Rosinski ! !--------------------------------------------------------------------------- implicit none ! ! Arguments ! logical, intent(in) :: cycflag ! flag indicates whether dataset is being cycled yearly integer, intent(in) :: np1 ! index points to forward time slice matching cdayplus real(r8), intent(in) :: cdayminus ! calendar day of rearward time slice real(r8), intent(in) :: cdayplus ! calendar day of forward time slice real(r8), intent(in) :: cday ! calenar day to be interpolated to real(r8), intent(out) :: fact1 ! time interpolation factor to apply to rearward time slice real(r8), intent(out) :: fact2 ! time interpolation factor to apply to forward time slice ! character(len=*), intent(in) :: str ! string to be added to print in case of error (normally the callers name) ! ! Local workspace ! real(r8) :: deltat ! time difference (days) between cdayminus and cdayplus real(r8), parameter :: daysperyear = 365. ! number of days in a year ! ! Initial sanity checks ! ! if (np1 == 1 .and. .not. cycflag) then ! call endrun ('GETFACTORS:'//str//' cycflag false and forward month index = Jan. not allowed') ! end if ! if (np1 < 1) then ! call endrun ('GETFACTORS:'//str//' input arg np1 must be > 0') ! end if if (cycflag) then if ((cday < 1.) .or. (cday > (daysperyear+1.))) then write(6,*) 'GETFACTORS:', ' bad cday=',cday call endrun () end if else if (cday < 1.) then write(6,*) 'GETFACTORS:', ' bad cday=',cday call endrun () end if end if ! ! Determine time interpolation factors. Account for December-January ! interpolation if dataset is being cycled yearly. ! if (cycflag .and. np1 == 1) then ! Dec-Jan interpolation deltat = cdayplus + daysperyear - cdayminus if (cday > cdayplus) then ! We are in December fact1 = (cdayplus + daysperyear - cday)/deltat fact2 = (cday - cdayminus)/deltat else ! We are in January fact1 = (cdayplus - cday)/deltat fact2 = (cday + daysperyear - cdayminus)/deltat end if else deltat = cdayplus - cdayminus fact1 = (cdayplus - cday)/deltat fact2 = (cday - cdayminus)/deltat end if if (.not. validfactors (fact1, fact2)) then write(6,*) 'GETFACTORS: ', ' bad fact1 and/or fact2=', fact1, fact2 call endrun () end if return end subroutine getfactors logical function validfactors (fact1, fact2) !--------------------------------------------------------------------------- ! ! Purpose: check sanity of time interpolation factors to within 32-bit roundoff ! !--------------------------------------------------------------------------- implicit none real(r8), intent(in) :: fact1, fact2 ! time interpolation factors validfactors = .true. if (abs(fact1+fact2-1.) > 1.e-6 .or. & fact1 > 1.000001 .or. fact1 < -1.e-6 .or. & fact2 > 1.000001 .or. fact2 < -1.e-6) then validfactors = .false. end if return end function validfactors subroutine get_rf_scales(scales) 1 real(r8), intent(out)::scales(naer_all) ! scale aerosols by this amount integer i ! loop index scales(idxBG) = bgscl_rf scales(idxSUL) = sulscl_rf scales(idxSSLT) = ssltscl_rf do i = idxCARBONfirst, idxCARBONfirst+numCARBON-1 scales(i) = carscl_rf enddo do i = idxDUSTfirst, idxDUSTfirst+numDUST-1 scales(i) = dustscl_rf enddo scales(idxVOLC) = volcscl_rf end subroutine get_rf_scales function psi(tpx,iband) 5 ! ! History: First version for Hitran 1996 (C/H/E) ! Current version for Hitran 2000 (C/LT/E) ! Short function for Hulst-Curtis-Godson temperature factors for ! computing effective H2O path ! Line data for H2O: Hitran 2000, plus H2O patches v11.0 for 1341 missing ! lines between 500 and 2820 cm^-1. ! See cfa-www.harvard.edu/HITRAN ! Isotopes of H2O: all ! Line widths: air-broadened only (self set to 0) ! Code for line strengths and widths: GENLN3 ! Reference: Edwards, D.P., 1992: GENLN2, A General Line-by-Line Atmospheric ! Transmittance and Radiance Model, Version 3.0 Description ! and Users Guide, NCAR/TN-367+STR, 147 pp. ! ! Note: functions have been normalized by dividing by their values at ! a path temperature of 160K ! ! spectral intervals: ! 1 = 0-800 cm^-1 and 1200-2200 cm^-1 ! 2 = 800-1200 cm^-1 ! ! Formulae: Goody and Yung, Atmospheric Radiation: Theoretical Basis, ! 2nd edition, Oxford University Press, 1989. ! Psi: function for pressure along path ! eq. 6.30, p. 228 ! real(r8),intent(in):: tpx ! path temperature integer, intent(in):: iband ! band to process real(r8) psi ! psi for given band real(r8),parameter :: psi_r0(nbands) = (/ 5.65308452E-01, -7.30087891E+01/) real(r8),parameter :: psi_r1(nbands) = (/ 4.07519005E-03, 1.22199547E+00/) real(r8),parameter :: psi_r2(nbands) = (/-1.04347237E-05, -7.12256227E-03/) real(r8),parameter :: psi_r3(nbands) = (/ 1.23765354E-08, 1.47852825E-05/) psi = (((psi_r3(iband) * tpx) + psi_r2(iband)) * tpx + psi_r1(iband)) * tpx + psi_r0(iband) end function psi function phi(tpx,iband) 3 ! ! History: First version for Hitran 1996 (C/H/E) ! Current version for Hitran 2000 (C/LT/E) ! Short function for Hulst-Curtis-Godson temperature factors for ! computing effective H2O path ! Line data for H2O: Hitran 2000, plus H2O patches v11.0 for 1341 missing ! lines between 500 and 2820 cm^-1. ! See cfa-www.harvard.edu/HITRAN ! Isotopes of H2O: all ! Line widths: air-broadened only (self set to 0) ! Code for line strengths and widths: GENLN3 ! Reference: Edwards, D.P., 1992: GENLN2, A General Line-by-Line Atmospheric ! Transmittance and Radiance Model, Version 3.0 Description ! and Users Guide, NCAR/TN-367+STR, 147 pp. ! ! Note: functions have been normalized by dividing by their values at ! a path temperature of 160K ! ! spectral intervals: ! 1 = 0-800 cm^-1 and 1200-2200 cm^-1 ! 2 = 800-1200 cm^-1 ! ! Formulae: Goody and Yung, Atmospheric Radiation: Theoretical Basis, ! 2nd edition, Oxford University Press, 1989. ! Phi: function for H2O path ! eq. 6.25, p. 228 ! real(r8),intent(in):: tpx ! path temperature integer, intent(in):: iband ! band to process real(r8) phi ! phi for given band real(r8),parameter :: phi_r0(nbands) = (/ 9.60917711E-01, -2.21031342E+01/) real(r8),parameter :: phi_r1(nbands) = (/ 4.86076751E-04, 4.24062610E-01/) real(r8),parameter :: phi_r2(nbands) = (/-1.84806265E-06, -2.95543415E-03/) real(r8),parameter :: phi_r3(nbands) = (/ 2.11239959E-09, 7.52470896E-06/) phi = (((phi_r3(iband) * tpx) + phi_r2(iband)) * tpx + phi_r1(iband)) & * tpx + phi_r0(iband) end function phi function fh2oself( temp ) 2 ! ! Short function for H2O self-continuum temperature factor in ! calculation of effective H2O self-continuum path length ! ! H2O Continuum: CKD 2.4 ! Code for continuum: GENLN3 ! Reference: Edwards, D.P., 1992: GENLN2, A General Line-by-Line Atmospheric ! Transmittance and Radiance Model, Version 3.0 Description ! and Users Guide, NCAR/TN-367+STR, 147 pp. ! ! In GENLN, the temperature scaling of the self-continuum is handled ! by exponential interpolation/extrapolation from observations at ! 260K and 296K by: ! ! TFAC = (T(IPATH) - 296.0)/(260.0 - 296.0) ! CSFFT = CSFF296*(CSFF260/CSFF296)**TFAC ! ! For 800-1200 cm^-1, (CSFF260/CSFF296) ranges from ~2.1 to ~1.9 ! with increasing wavenumber. The ratio <CSFF260>/<CSFF296>, ! where <> indicates average over wavenumber, is ~2.07 ! ! fh2oself is (<CSFF260>/<CSFF296>)**TFAC ! real(r8),intent(in) :: temp ! path temperature real(r8) fh2oself ! mean ratio of self-continuum at temp and 296K fh2oself = 2.0727484**((296.0 - temp) / 36.0) end function fh2oself ! from wv_saturation.F90 subroutine esinti(epslon ,latvap ,latice ,rh2o ,cpair ,tmelt ) 2,4 !----------------------------------------------------------------------- ! ! Purpose: ! Initialize es lookup tables ! ! Method: ! <Describe the algorithm(s) used in the routine.> ! <Also include any applicable external references.> ! ! Author: J. Hack ! !----------------------------------------------------------------------- ! use shr_kind_mod, only: r8 => shr_kind_r8 ! use wv_saturation, only: gestbl implicit none !------------------------------Arguments-------------------------------- ! ! Input arguments ! real(r8), intent(in) :: epslon ! Ratio of h2o to dry air molecular weights real(r8), intent(in) :: latvap ! Latent heat of vaporization real(r8), intent(in) :: latice ! Latent heat of fusion real(r8), intent(in) :: rh2o ! Gas constant for water vapor real(r8), intent(in) :: cpair ! Specific heat of dry air real(r8), intent(in) :: tmelt ! Melting point of water (K) ! !---------------------------Local workspace----------------------------- ! real(r8) tmn ! Minimum temperature entry in table real(r8) tmx ! Maximum temperature entry in table real(r8) trice ! Trans range from es over h2o to es over ice logical ip ! Ice phase (true or false) ! !----------------------------------------------------------------------- ! ! Specify control parameters first ! tmn = 173.16 tmx = 375.16 trice = 20.00 ip = .true. ! ! Call gestbl to build saturation vapor pressure table. ! call gestbl(tmn ,tmx ,trice ,ip ,epslon , & latvap ,latice ,rh2o ,cpair ,tmelt ) ! return end subroutine esinti subroutine gestbl(tmn ,tmx ,trice ,ip ,epsil , & 2,8 latvap ,latice ,rh2o ,cpair ,tmeltx ) !----------------------------------------------------------------------- ! ! Purpose: ! Builds saturation vapor pressure table for later lookup procedure. ! ! Method: ! Uses Goff & Gratch (1946) relationships to generate the table ! according to a set of free parameters defined below. Auxiliary ! routines are also included for making rapid estimates (well with 1%) ! of both es and d(es)/dt for the particular table configuration. ! ! Author: J. Hack ! !----------------------------------------------------------------------- ! use pmgrid, only: masterproc implicit none !------------------------------Arguments-------------------------------- ! ! Input arguments ! real(r8), intent(in) :: tmn ! Minimum temperature entry in es lookup table real(r8), intent(in) :: tmx ! Maximum temperature entry in es lookup table real(r8), intent(in) :: epsil ! Ratio of h2o to dry air molecular weights real(r8), intent(in) :: trice ! Transition range from es over range to es over ice real(r8), intent(in) :: latvap ! Latent heat of vaporization real(r8), intent(in) :: latice ! Latent heat of fusion real(r8), intent(in) :: rh2o ! Gas constant for water vapor real(r8), intent(in) :: cpair ! Specific heat of dry air real(r8), intent(in) :: tmeltx ! Melting point of water (K) ! !---------------------------Local variables----------------------------- ! real(r8) t ! Temperature real(r8) rgasv real(r8) cp real(r8) hlatf real(r8) ttrice real(r8) hlatv integer n ! Increment counter integer lentbl ! Calculated length of lookup table integer itype ! Ice phase: 0 -> no ice phase ! 1 -> ice phase, no transition ! -x -> ice phase, x degree transition logical ip ! Ice phase logical flag logical icephs ! !----------------------------------------------------------------------- ! ! Set es table parameters ! tmin = tmn ! Minimum temperature entry in table tmax = tmx ! Maximum temperature entry in table ttrice = trice ! Trans. range from es over h2o to es over ice icephs = ip ! Ice phase (true or false) ! ! Set physical constants required for es calculation ! epsqs = epsil hlatv = latvap hlatf = latice rgasv = rh2o cp = cpair tmelt = tmeltx ! lentbl = INT(tmax-tmin+2.000001) if (lentbl .gt. plenest) then write(6,9000) tmax, tmin, plenest call endrun ('GESTBL') ! Abnormal termination end if ! ! Begin building es table. ! Check whether ice phase requested. ! If so, set appropriate transition range for temperature ! if (icephs) then if (ttrice /= 0.0) then itype = -ttrice else itype = 1 end if else itype = 0 end if ! t = tmin - 1.0 do n=1,lentbl t = t + 1.0 call gffgch(t,estbl(n),itype) end do ! do n=lentbl+1,plenest estbl(n) = -99999.0 end do ! ! Table complete -- Set coefficients for polynomial approximation of ! difference between saturation vapor press over water and saturation ! pressure over ice for -ttrice < t < 0 (degrees C). NOTE: polynomial ! is valid in the range -40 < t < 0 (degrees C). ! ! --- Degree 5 approximation --- ! pcf(1) = 5.04469588506e-01 pcf(2) = -5.47288442819e+00 pcf(3) = -3.67471858735e-01 pcf(4) = -8.95963532403e-03 pcf(5) = -7.78053686625e-05 ! ! --- Degree 6 approximation --- ! !-----pcf(1) = 7.63285250063e-02 !-----pcf(2) = -5.86048427932e+00 !-----pcf(3) = -4.38660831780e-01 !-----pcf(4) = -1.37898276415e-02 !-----pcf(5) = -2.14444472424e-04 !-----pcf(6) = -1.36639103771e-06 ! if (masterproc) then write(6,*)' *** SATURATION VAPOR PRESSURE TABLE COMPLETED ***' end if return ! 9000 format('GESTBL: FATAL ERROR *********************************',/, & ' TMAX AND TMIN REQUIRE A LARGER DIMENSION ON THE LENGTH', & ' OF THE SATURATION VAPOR PRESSURE TABLE ESTBL(PLENEST)',/, & ' TMAX, TMIN, AND PLENEST => ', 2f7.2, i3) ! end subroutine gestbl subroutine gffgch(t ,es ,itype ) 3,6 !----------------------------------------------------------------------- ! ! Purpose: ! Computes saturation vapor pressure over water and/or over ice using ! Goff & Gratch (1946) relationships. ! <Say what the routine does> ! ! Method: ! T (temperature), and itype are input parameters, while es (saturation ! vapor pressure) is an output parameter. The input parameter itype ! serves two purposes: a value of zero indicates that saturation vapor ! pressures over water are to be returned (regardless of temperature), ! while a value of one indicates that saturation vapor pressures over ! ice should be returned when t is less than freezing degrees. If itype ! is negative, its absolute value is interpreted to define a temperature ! transition region below freezing in which the returned ! saturation vapor pressure is a weighted average of the respective ice ! and water value. That is, in the temperature range 0 => -itype ! degrees c, the saturation vapor pressures are assumed to be a weighted ! average of the vapor pressure over supercooled water and ice (all ! water at 0 c; all ice at -itype c). Maximum transition range => 40 c ! ! Author: J. Hack ! !----------------------------------------------------------------------- ! use shr_kind_mod, only: r8 => shr_kind_r8 ! use physconst, only: tmelt ! use abortutils, only: endrun implicit none !------------------------------Arguments-------------------------------- ! ! Input arguments ! real(r8), intent(in) :: t ! Temperature ! ! Output arguments ! integer, intent(inout) :: itype ! Flag for ice phase and associated transition real(r8), intent(out) :: es ! Saturation vapor pressure ! !---------------------------Local variables----------------------------- ! real(r8) e1 ! Intermediate scratch variable for es over water real(r8) e2 ! Intermediate scratch variable for es over water real(r8) eswtr ! Saturation vapor pressure over water real(r8) f ! Intermediate scratch variable for es over water real(r8) f1 ! Intermediate scratch variable for es over water real(r8) f2 ! Intermediate scratch variable for es over water real(r8) f3 ! Intermediate scratch variable for es over water real(r8) f4 ! Intermediate scratch variable for es over water real(r8) f5 ! Intermediate scratch variable for es over water real(r8) ps ! Reference pressure (mb) real(r8) t0 ! Reference temperature (freezing point of water) real(r8) term1 ! Intermediate scratch variable for es over ice real(r8) term2 ! Intermediate scratch variable for es over ice real(r8) term3 ! Intermediate scratch variable for es over ice real(r8) tr ! Transition range for es over water to es over ice real(r8) ts ! Reference temperature (boiling point of water) real(r8) weight ! Intermediate scratch variable for es transition integer itypo ! Intermediate scratch variable for holding itype ! !----------------------------------------------------------------------- ! ! Check on whether there is to be a transition region for es ! if (itype < 0) then tr = abs(float(itype)) itypo = itype itype = 1 else tr = 0.0 itypo = itype end if if (tr > 40.0) then write(6,900) tr call endrun ('GFFGCH') ! Abnormal termination end if ! if(t < (tmelt - tr) .and. itype == 1) go to 10 ! ! Water ! ps = 1013.246 ts = 373.16 e1 = 11.344*(1.0 - t/ts) e2 = -3.49149*(ts/t - 1.0) f1 = -7.90298*(ts/t - 1.0) f2 = 5.02808*log10(ts/t) f3 = -1.3816*(10.0**e1 - 1.0)/10000000.0 f4 = 8.1328*(10.0**e2 - 1.0)/1000.0 f5 = log10(ps) f = f1 + f2 + f3 + f4 + f5 es = (10.0**f)*100.0 eswtr = es ! if(t >= tmelt .or. itype == 0) go to 20 ! ! Ice ! 10 continue t0 = tmelt term1 = 2.01889049/(t0/t) term2 = 3.56654*log(t0/t) term3 = 20.947031*(t0/t) es = 575.185606e10*exp(-(term1 + term2 + term3)) ! if (t < (tmelt - tr)) go to 20 ! ! Weighted transition between water and ice ! weight = min((tmelt - t)/tr,1.0_r8) es = weight*es + (1.0 - weight)*eswtr ! 20 continue itype = itypo return ! 900 format('GFFGCH: FATAL ERROR ******************************',/, & 'TRANSITION RANGE FOR WATER TO ICE SATURATION VAPOR', & ' PRESSURE, TR, EXCEEDS MAXIMUM ALLOWABLE VALUE OF', & ' 40.0 DEGREES C',/, ' TR = ',f7.2) ! end subroutine gffgch real(r8) function estblf( td ) 18 ! ! Saturation vapor pressure table lookup ! real(r8), intent(in) :: td ! Temperature for saturation lookup ! real(r8) :: e ! intermediate variable for es look-up real(r8) :: ai integer :: i ! e = max(min(td,tmax),tmin) ! partial pressure i = int(e-tmin)+1 ai = aint(e-tmin) estblf = (tmin+ai-e+1.)* & estbl(i)-(tmin+ai-e)* & estbl(i+1) end function estblf function findvalue(ix,n,ain,indxa) 1 !----------------------------------------------------------------------- ! ! Purpose: ! Subroutine for finding ix-th smallest value in the array ! The elements are rearranged so that the ix-th smallest ! element is in the ix place and all smaller elements are ! moved to the elements up to ix (with random order). ! ! Algorithm: Based on the quicksort algorithm. ! ! Author: T. Craig ! !----------------------------------------------------------------------- ! use shr_kind_mod, only: r8 => shr_kind_r8 implicit none ! ! arguments ! integer, intent(in) :: ix ! element to search for integer, intent(in) :: n ! total number of elements integer, intent(inout):: indxa(n) ! array of integers real(r8), intent(in) :: ain(n) ! array to search ! integer findvalue ! return value ! ! local variables ! integer i,j integer il,im,ir integer ia integer itmp ! !---------------------------Routine----------------------------- ! il=1 ir=n do if (ir-il <= 1) then if (ir-il == 1) then if (ain(indxa(ir)) < ain(indxa(il))) then itmp=indxa(il) indxa(il)=indxa(ir) indxa(ir)=itmp endif endif findvalue=indxa(ix) return else im=(il+ir)/2 itmp=indxa(im) indxa(im)=indxa(il+1) indxa(il+1)=itmp if (ain(indxa(il+1)) > ain(indxa(ir))) then itmp=indxa(il+1) indxa(il+1)=indxa(ir) indxa(ir)=itmp endif if (ain(indxa(il)) > ain(indxa(ir))) then itmp=indxa(il) indxa(il)=indxa(ir) indxa(ir)=itmp endif if (ain(indxa(il+1)) > ain(indxa(il))) then itmp=indxa(il+1) indxa(il+1)=indxa(il) indxa(il)=itmp endif i=il+1 j=ir ia=indxa(il) do do i=i+1 if (ain(indxa(i)) >= ain(ia)) exit end do do j=j-1 if (ain(indxa(j)) <= ain(ia)) exit end do if (j < i) exit itmp=indxa(i) indxa(i)=indxa(j) indxa(j)=itmp end do indxa(il)=indxa(j) indxa(j)=ia if (j >= ix)ir=j-1 if (j <= ix)il=i endif end do end function findvalue subroutine radini(gravx ,cpairx ,epsilox ,stebolx, pstdx ) 1,1 !----------------------------------------------------------------------- ! ! Purpose: ! Initialize various constants for radiation scheme; note that ! the radiation scheme uses cgs units. ! ! Method: ! <Describe the algorithm(s) used in the routine.> ! <Also include any applicable external references.> ! ! Author: W. Collins (H2O parameterization) and J. Kiehl ! !----------------------------------------------------------------------- ! use shr_kind_mod, only: r8 => shr_kind_r8 ! use ppgrid, only: pver, pverp ! use comozp, only: cplos, cplol ! use pmgrid, only: masterproc, plev, plevp ! use radae, only: radaeini ! use physconst, only: mwdry, mwco2 #if ( defined SPMD ) ! use mpishorthand #endif implicit none !------------------------------Arguments-------------------------------- ! ! Input arguments ! real, intent(in) :: gravx ! Acceleration of gravity (MKS) real, intent(in) :: cpairx ! Specific heat of dry air (MKS) real, intent(in) :: epsilox ! Ratio of mol. wght of H2O to dry air real, intent(in) :: stebolx ! Stefan-Boltzmann's constant (MKS) real(r8), intent(in) :: pstdx ! Standard pressure (Pascals) ! !---------------------------Local variables----------------------------- ! integer k ! Loop variable real(r8) v0 ! Volume of a gas at stp (m**3/kmol) real(r8) p0 ! Standard pressure (pascals) real(r8) amd ! Effective molecular weight of dry air (kg/kmol) real(r8) goz ! Acceleration of gravity (m/s**2) ! !----------------------------------------------------------------------- ! ! Set general radiation consts; convert to cgs units where appropriate: ! gravit = 100.*gravx rga = 1./gravit gravmks = gravx cpair = 1.e4*cpairx epsilo = epsilox sslp = 1.013250e6 stebol = 1.e3*stebolx rgsslp = 0.5/(gravit*sslp) dpfo3 = 2.5e-3 dpfco2 = 5.0e-3 dayspy = 365. pie = 4.*atan(1.) ! ! Initialize ozone data. ! v0 = 22.4136 ! Volume of a gas at stp (m**3/kmol) p0 = 0.1*sslp ! Standard pressure (pascals) amd = 28.9644 ! Molecular weight of dry air (kg/kmol) goz = gravx ! Acceleration of gravity (m/s**2) ! ! Constants for ozone path integrals (multiplication by 100 for unit ! conversion to cgs from mks): ! cplos = v0/(amd*goz) *100.0 cplol = v0/(amd*goz*p0)*0.5*100.0 ! ! Derived constants ! If the top model level is above ~90 km (0.1 Pa), set the top level to compute ! longwave cooling to about 80 km (1 Pa) ! WRF: assume top level > 0.1 mb ! if (hypm(1) .lt. 0.1) then ! do k = 1, pver ! if (hypm(k) .lt. 1.) ntoplw = k ! end do ! else ntoplw = 1 ! end if ! if (masterproc) then ! write (6,*) 'RADINI: ntoplw =',ntoplw, ' pressure:',hypm(ntoplw) ! endif call radaeini( pstdx, mwdry, mwco2 ) return end subroutine radini subroutine oznini(ozmixm,pin,levsiz,num_months,XLAT, & 2,2 ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte) ! ! This subroutine assumes uniform distribution of ozone concentration. ! It should be replaced by monthly climatology that varies latitudinally and vertically ! IMPLICIT NONE INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte INTEGER, INTENT(IN ) :: levsiz, num_months REAL, DIMENSION( ims:ime, jms:jme ), INTENT(IN ) :: XLAT REAL, DIMENSION( ims:ime, levsiz, jms:jme, num_months ), & INTENT(OUT ) :: OZMIXM REAL, DIMENSION(levsiz), INTENT(OUT ) :: PIN ! Local INTEGER, PARAMETER :: latsiz = 64 INTEGER, PARAMETER :: lonsiz = 1 INTEGER :: i, j, k, itf, jtf, ktf, m, pin_unit, lat_unit, oz_unit REAL :: interp_pt CHARACTER*256 :: message REAL, DIMENSION( lonsiz, levsiz, latsiz, num_months ) :: & OZMIXIN REAL, DIMENSION(latsiz) :: lat_ozone jtf=min0(jte,jde-1) ktf=min0(kte,kde-1) itf=min0(ite,ide-1) !-- read in ozone pressure data WRITE(message,*)'num_months = ',num_months CALL wrf_debug(50,message) pin_unit = 27 OPEN(pin_unit, FILE='ozone_plev.formatted',FORM='FORMATTED',STATUS='OLD') do k = 1,levsiz READ (pin_unit,*)pin(k) end do close(27) do k=1,levsiz pin(k) = pin(k)*100. end do !-- read in ozone lat data lat_unit = 28 OPEN(lat_unit, FILE='ozone_lat.formatted',FORM='FORMATTED',STATUS='OLD') do j = 1,latsiz READ (lat_unit,*)lat_ozone(j) end do close(28) !-- read in ozone data oz_unit = 29 OPEN(oz_unit, FILE='ozone.formatted',FORM='FORMATTED',STATUS='OLD') do m=2,num_months do j=1,latsiz ! latsiz=64 do k=1,levsiz ! levsiz=59 do i=1,lonsiz ! lonsiz=1 READ (oz_unit,*)ozmixin(i,k,j,m) enddo enddo enddo enddo close(29) !-- latitudinally interpolate ozone data (and extend longitudinally) !-- using function lin_interpol2(x, f, y) result(g) ! Purpose: ! interpolates f(x) to point y ! assuming f(x) = f(x0) + a * (x - x0) ! where a = ( f(x1) - f(x0) ) / (x1 - x0) ! x0 <= x <= x1 ! assumes x is monotonically increasing ! real, intent(in), dimension(:) :: x ! grid points ! real, intent(in), dimension(:) :: f ! grid function values ! real, intent(in) :: y ! interpolation point ! real :: g ! interpolated function value !--------------------------------------------------------------------------- do m=2,num_months do j=jts,jtf do k=1,levsiz do i=its,itf interp_pt=XLAT(i,j) ozmixm(i,k,j,m)=lin_interpol2(lat_ozone(:),ozmixin(1,k,:,m),interp_pt) enddo enddo enddo enddo ! Old code for fixed ozone ! pin(1)=70. ! DO k=2,levsiz ! pin(k)=pin(k-1)+16. ! ENDDO ! DO k=1,levsiz ! pin(k) = pin(k)*100. ! end do ! DO m=1,num_months ! DO j=jts,jtf ! DO i=its,itf ! DO k=1,2 ! ozmixm(i,k,j,m)=1.e-6 ! ENDDO ! DO k=3,levsiz ! ozmixm(i,k,j,m)=1.e-7 ! ENDDO ! ENDDO ! ENDDO ! ENDDO END SUBROUTINE oznini subroutine aerosol_init(m_psp,m_psn,m_hybi,aerosolcp,aerosolcn,paerlev,naer_c,shalf,pptop, & 2,15 ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte) ! ! This subroutine assumes a uniform aerosol distribution in both time and space. ! It should be modified if aerosol data are available from WRF-CHEM or other sources ! IMPLICIT NONE INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte INTEGER, INTENT(IN ) :: paerlev,naer_c REAL, intent(in) :: pptop REAL, DIMENSION( kms:kme ), intent(in) :: shalf REAL, DIMENSION( ims:ime, paerlev, jms:jme, naer_c ), & INTENT(INOUT ) :: aerosolcn , aerosolcp REAL, DIMENSION(paerlev), INTENT(OUT ) :: m_hybi REAL, DIMENSION( ims:ime, jms:jme), INTENT(OUT ) :: m_psp,m_psn REAL :: psurf real, dimension(29) :: hybi integer k ! index through vertical levels INTEGER :: i, j, itf, jtf, ktf,m data hybi/0, 0.0065700002014637, 0.0138600002974272, 0.023089999333024, & 0.0346900001168251, 0.0491999983787537, 0.0672300010919571, & 0.0894500017166138, 0.116539999842644, 0.149159997701645, & 0.187830001115799, 0.232859998941422, 0.284209996461868, & 0.341369986534119, 0.403340011835098, 0.468600004911423, & 0.535290002822876, 0.601350009441376, 0.66482001543045, & 0.724009990692139, 0.777729988098145, 0.825269997119904, & 0.866419970989227, 0.901350021362305, 0.930540025234222, & 0.954590022563934, 0.974179983139038, 0.990000009536743, 1/ jtf=min0(jte,jde-1) ktf=min0(kte,kde-1) itf=min0(ite,ide-1) do k=1,paerlev m_hybi(k)=hybi(k) enddo ! ! mxaerl = max number of levels (from bottom) for background aerosol ! Limit background aerosol height to regions below 900 mb ! psurf = 1.e05 mxaerl = 0 ! do k=pver,1,-1 do k=kms,kme-1 ! if (hypm(k) >= 9.e4) mxaerl = mxaerl + 1 if (shalf(k)*psurf+pptop >= 9.e4) mxaerl = mxaerl + 1 end do mxaerl = max(mxaerl,1) ! if (masterproc) then write(6,*)'AEROSOLS: Background aerosol will be limited to ', & 'bottom ',mxaerl,' model interfaces.' ! 'bottom ',mxaerl,' model interfaces. Top interface is ', & ! hypi(pverp-mxaerl),' pascals' ! end if DO j=jts,jtf DO i=its,itf m_psp(i,j)=psurf m_psn(i,j)=psurf ENDDO ENDDO DO j=jts,jtf DO i=its,itf DO k=1,paerlev ! aerosolc arrays are upward cumulative (kg/m2) at each level ! Here we assume uniform vertical distribution (aerosolc linear with hybi) aerosolcp(i,k,j,idxSUL)=1.e-7*(1.-hybi(k)) aerosolcn(i,k,j,idxSUL)=1.e-7*(1.-hybi(k)) aerosolcp(i,k,j,idxSSLT)=1.e-22*(1.-hybi(k)) aerosolcn(i,k,j,idxSSLT)=1.e-22*(1.-hybi(k)) aerosolcp(i,k,j,idxDUSTfirst)=1.e-7*(1.-hybi(k)) aerosolcn(i,k,j,idxDUSTfirst)=1.e-7*(1.-hybi(k)) aerosolcp(i,k,j,idxDUSTfirst+1)=1.e-7*(1.-hybi(k)) aerosolcn(i,k,j,idxDUSTfirst+1)=1.e-7*(1.-hybi(k)) aerosolcp(i,k,j,idxDUSTfirst+2)=1.e-7*(1.-hybi(k)) aerosolcn(i,k,j,idxDUSTfirst+2)=1.e-7*(1.-hybi(k)) aerosolcp(i,k,j,idxDUSTfirst+3)=1.e-7*(1.-hybi(k)) aerosolcn(i,k,j,idxDUSTfirst+3)=1.e-7*(1.-hybi(k)) aerosolcp(i,k,j,idxOCPHO)=1.e-7*(1.-hybi(k)) aerosolcn(i,k,j,idxOCPHO)=1.e-7*(1.-hybi(k)) aerosolcp(i,k,j,idxBCPHO)=1.e-9*(1.-hybi(k)) aerosolcn(i,k,j,idxBCPHO)=1.e-9*(1.-hybi(k)) aerosolcp(i,k,j,idxOCPHI)=1.e-7*(1.-hybi(k)) aerosolcn(i,k,j,idxOCPHI)=1.e-7*(1.-hybi(k)) aerosolcp(i,k,j,idxBCPHI)=1.e-8*(1.-hybi(k)) aerosolcn(i,k,j,idxBCPHI)=1.e-8*(1.-hybi(k)) ENDDO ENDDO ENDDO call aer_optics_initialize END subroutine aerosol_init subroutine aer_optics_initialize 1,15 USE module_wrf_error ! use shr_kind_mod, only: r8 => shr_kind_r8 ! use pmgrid ! masterproc is here ! use ioFileMod, only: getfil !#if ( defined SPMD ) ! use mpishorthand !#endif implicit none ! include 'netcdf.inc' integer :: nrh_opac ! number of relative humidity values for OPAC data integer :: nbnd ! number of spectral bands, should be identical to nspint real(r8), parameter :: wgt_sscm = 6.0 / 7.0 integer :: krh_opac ! rh index for OPAC rh grid integer :: krh ! another rh index integer :: ksz ! dust size bin index integer :: kbnd ! band index real(r8) :: rh ! local relative humidity variable integer, parameter :: irh=8 real(r8) :: rh_opac(irh) ! OPAC relative humidity grid real(r8) :: ksul_opac(irh,nspint) ! sulfate extinction real(r8) :: wsul_opac(irh,nspint) ! single scattering albedo real(r8) :: gsul_opac(irh,nspint) ! asymmetry parameter real(r8) :: ksslt_opac(irh,nspint) ! sea-salt real(r8) :: wsslt_opac(irh,nspint) real(r8) :: gsslt_opac(irh,nspint) real(r8) :: kssam_opac(irh,nspint) ! sea-salt accumulation mode real(r8) :: wssam_opac(irh,nspint) real(r8) :: gssam_opac(irh,nspint) real(r8) :: ksscm_opac(irh,nspint) ! sea-salt coarse mode real(r8) :: wsscm_opac(irh,nspint) real(r8) :: gsscm_opac(irh,nspint) real(r8) :: kcphil_opac(irh,nspint) ! hydrophilic organic carbon real(r8) :: wcphil_opac(irh,nspint) real(r8) :: gcphil_opac(irh,nspint) real(r8) :: dummy(nspint) LOGICAL :: opened LOGICAL , EXTERNAL :: wrf_dm_on_monitor CHARACTER*80 errmess INTEGER cam_aer_unit integer :: i ! read aerosol optics data IF ( wrf_dm_on_monitor() ) THEN DO i = 10,99 INQUIRE ( i , OPENED = opened ) IF ( .NOT. opened ) THEN cam_aer_unit = i GOTO 2010 ENDIF ENDDO cam_aer_unit = -1 2010 CONTINUE ENDIF CALL wrf_dm_bcast_bytes ( cam_aer_unit , IWORDSIZE ) IF ( cam_aer_unit < 0 ) THEN CALL wrf_error_fatal ( 'module_ra_cam: aer_optics_initialize: Can not find unused fortran unit to read in lookup table.' ) ENDIF IF ( wrf_dm_on_monitor() ) THEN OPEN(cam_aer_unit,FILE='CAM_AEROPT_DATA', & FORM='UNFORMATTED',STATUS='OLD',ERR=9010) call wrf_debug(50,'reading CAM_AEROPT_DATA') ENDIF #define DM_BCAST_MACRO(A) CALL wrf_dm_bcast_bytes ( A , size ( A ) * r8 ) IF ( wrf_dm_on_monitor() ) then READ (cam_aer_unit,ERR=9010) dummy READ (cam_aer_unit,ERR=9010) rh_opac READ (cam_aer_unit,ERR=9010) ksul_opac READ (cam_aer_unit,ERR=9010) wsul_opac READ (cam_aer_unit,ERR=9010) gsul_opac READ (cam_aer_unit,ERR=9010) kssam_opac READ (cam_aer_unit,ERR=9010) wssam_opac READ (cam_aer_unit,ERR=9010) gssam_opac READ (cam_aer_unit,ERR=9010) ksscm_opac READ (cam_aer_unit,ERR=9010) wsscm_opac READ (cam_aer_unit,ERR=9010) gsscm_opac READ (cam_aer_unit,ERR=9010) kcphil_opac READ (cam_aer_unit,ERR=9010) wcphil_opac READ (cam_aer_unit,ERR=9010) gcphil_opac READ (cam_aer_unit,ERR=9010) kcb READ (cam_aer_unit,ERR=9010) wcb READ (cam_aer_unit,ERR=9010) gcb READ (cam_aer_unit,ERR=9010) kdst READ (cam_aer_unit,ERR=9010) wdst READ (cam_aer_unit,ERR=9010) gdst READ (cam_aer_unit,ERR=9010) kbg READ (cam_aer_unit,ERR=9010) wbg READ (cam_aer_unit,ERR=9010) gbg READ (cam_aer_unit,ERR=9010) kvolc READ (cam_aer_unit,ERR=9010) wvolc READ (cam_aer_unit,ERR=9010) gvolc endif DM_BCAST_MACRO(rh_opac) DM_BCAST_MACRO(ksul_opac) DM_BCAST_MACRO(wsul_opac) DM_BCAST_MACRO(gsul_opac) DM_BCAST_MACRO(kssam_opac) DM_BCAST_MACRO(wssam_opac) DM_BCAST_MACRO(gssam_opac) DM_BCAST_MACRO(ksscm_opac) DM_BCAST_MACRO(wsscm_opac) DM_BCAST_MACRO(gsscm_opac) DM_BCAST_MACRO(kcphil_opac) DM_BCAST_MACRO(wcphil_opac) DM_BCAST_MACRO(gcphil_opac) DM_BCAST_MACRO(kcb) DM_BCAST_MACRO(wcb) DM_BCAST_MACRO(gcb) DM_BCAST_MACRO(kvolc) DM_BCAST_MACRO(wvolc) DM_BCAST_MACRO(gvolc) DM_BCAST_MACRO(kdst) DM_BCAST_MACRO(wdst) DM_BCAST_MACRO(gdst) DM_BCAST_MACRO(kbg) DM_BCAST_MACRO(wbg) DM_BCAST_MACRO(gbg) IF ( wrf_dm_on_monitor() ) CLOSE (cam_aer_unit) ! map OPAC aerosol species onto CAM aerosol species ! CAM name OPAC name ! sul or SO4 = suso sulfate soluble ! sslt or SSLT = 1/7 ssam + 6/7 sscm sea-salt accumulation/coagulation mode ! cphil or CPHI = waso water soluble (carbon) ! cphob or CPHO = waso @ rh = 0 ! cb or BCPHI/BCPHO = soot ksslt_opac(:,:) = (1.0 - wgt_sscm) * kssam_opac(:,:) + wgt_sscm * ksscm_opac(:,:) wsslt_opac(:,:) = ( (1.0 - wgt_sscm) * kssam_opac(:,:) * wssam_opac(:,:) & + wgt_sscm * ksscm_opac(:,:) * wsscm_opac(:,:) ) & / ksslt_opac(:,:) gsslt_opac(:,:) = ( (1.0 - wgt_sscm) * kssam_opac(:,:) * wssam_opac(:,:) * gssam_opac(:,:) & + wgt_sscm * ksscm_opac(:,:) * wsscm_opac(:,:) * gsscm_opac(:,:) ) & / ( ksslt_opac(:,:) * wsslt_opac(:,:) ) do i=1,nspint kcphob(i) = kcphil_opac(1,i) wcphob(i) = wcphil_opac(1,i) gcphob(i) = gcphil_opac(1,i) end do ! interpolate optical properties of hygrospopic aerosol species ! onto a uniform relative humidity grid nbnd = nspint do krh = 1, nrh rh = 1.0_r8 / nrh * (krh - 1) do kbnd = 1, nbnd ksul(krh, kbnd) = exp_interpol( rh_opac, & ksul_opac(:, kbnd) / ksul_opac(1, kbnd), rh ) * ksul_opac(1, kbnd) wsul(krh, kbnd) = lin_interpol( rh_opac, & wsul_opac(:, kbnd) / wsul_opac(1, kbnd), rh ) * wsul_opac(1, kbnd) gsul(krh, kbnd) = lin_interpol( rh_opac, & gsul_opac(:, kbnd) / gsul_opac(1, kbnd), rh ) * gsul_opac(1, kbnd) ksslt(krh, kbnd) = exp_interpol( rh_opac, & ksslt_opac(:, kbnd) / ksslt_opac(1, kbnd), rh ) * ksslt_opac(1, kbnd) wsslt(krh, kbnd) = lin_interpol( rh_opac, & wsslt_opac(:, kbnd) / wsslt_opac(1, kbnd), rh ) * wsslt_opac(1, kbnd) gsslt(krh, kbnd) = lin_interpol( rh_opac, & gsslt_opac(:, kbnd) / gsslt_opac(1, kbnd), rh ) * gsslt_opac(1, kbnd) kcphil(krh, kbnd) = exp_interpol( rh_opac, & kcphil_opac(:, kbnd) / kcphil_opac(1, kbnd), rh ) * kcphil_opac(1, kbnd) wcphil(krh, kbnd) = lin_interpol( rh_opac, & wcphil_opac(:, kbnd) / wcphil_opac(1, kbnd), rh ) * wcphil_opac(1, kbnd) gcphil(krh, kbnd) = lin_interpol( rh_opac, & gcphil_opac(:, kbnd) / gcphil_opac(1, kbnd), rh ) * gcphil_opac(1, kbnd) end do end do RETURN 9010 CONTINUE WRITE( errmess , '(A35,I4)' ) 'module_ra_cam: error reading unit ',cam_aer_unit CALL wrf_error_fatal(errmess) END subroutine aer_optics_initialize subroutine radaeini( pstdx, mwdryx, mwco2x ) 1,7 USE module_wrf_error ! ! Initialize radae module data ! ! ! Input variables ! real(r8), intent(in) :: pstdx ! Standard pressure (dynes/cm^2) real(r8), intent(in) :: mwdryx ! Molecular weight of dry air real(r8), intent(in) :: mwco2x ! Molecular weight of carbon dioxide ! ! Variables for loading absorptivity/emissivity ! integer ncid_ae ! NetCDF file id for abs/ems file integer pdimid ! pressure dimension id integer psize ! pressure dimension size integer tpdimid ! path temperature dimension id integer tpsize ! path temperature size integer tedimid ! emission temperature dimension id integer tesize ! emission temperature size integer udimid ! u (H2O path) dimension id integer usize ! u (H2O path) dimension size integer rhdimid ! relative humidity dimension id integer rhsize ! relative humidity dimension size integer ah2onwid ! var. id for non-wndw abs. integer eh2onwid ! var. id for non-wndw ems. integer ah2owid ! var. id for wndw abs. (adjacent layers) integer cn_ah2owid ! var. id for continuum trans. for wndw abs. integer cn_eh2owid ! var. id for continuum trans. for wndw ems. integer ln_ah2owid ! var. id for line trans. for wndw abs. integer ln_eh2owid ! var. id for line trans. for wndw ems. ! character*(NF_MAX_NAME) tmpname! dummy variable for var/dim names character(len=256) locfn ! local filename integer tmptype ! dummy variable for variable type integer ndims ! number of dimensions ! integer dims(NF_MAX_VAR_DIMS) ! vector of dimension ids integer natt ! number of attributes ! ! Variables for setting up H2O table ! integer t ! path temperature integer tmin ! mininum path temperature integer tmax ! maximum path temperature integer itype ! type of sat. pressure (=0 -> H2O only) integer i real(r8) tdbl LOGICAL :: opened LOGICAL , EXTERNAL :: wrf_dm_on_monitor CHARACTER*80 errmess INTEGER cam_abs_unit ! ! Constants to set ! p0 = pstdx amd = mwdryx amco2 = mwco2x ! ! Coefficients for h2o emissivity and absorptivity for overlap of H2O ! and trace gases. ! c16 = coefj(3,1)/coefj(2,1) c17 = coefk(3,1)/coefk(2,1) c26 = coefj(3,2)/coefj(2,2) c27 = coefk(3,2)/coefk(2,2) c28 = .5 c29 = .002053 c30 = .1 c31 = 3.0e-5 ! ! Initialize further longwave constants referring to far wing ! correction for overlap of H2O and trace gases; R&D refers to: ! ! Ramanathan, V. and P.Downey, 1986: A Nonisothermal ! Emissivity and Absorptivity Formulation for Water Vapor ! Journal of Geophysical Research, vol. 91., D8, pp 8649-8666 ! fwcoef = .1 ! See eq(33) R&D fwc1 = .30 ! See eq(33) R&D fwc2 = 4.5 ! See eq(33) and eq(34) in R&D fc1 = 2.6 ! See eq(34) R&D IF ( wrf_dm_on_monitor() ) THEN DO i = 10,99 INQUIRE ( i , OPENED = opened ) IF ( .NOT. opened ) THEN cam_abs_unit = i GOTO 2010 ENDIF ENDDO cam_abs_unit = -1 2010 CONTINUE ENDIF CALL wrf_dm_bcast_bytes ( cam_abs_unit , IWORDSIZE ) IF ( cam_abs_unit < 0 ) THEN CALL wrf_error_fatal ( 'module_ra_cam: radaeinit: Can not find unused fortran unit to read in lookup table.' ) ENDIF IF ( wrf_dm_on_monitor() ) THEN OPEN(cam_abs_unit,FILE='CAM_ABS_DATA', & FORM='UNFORMATTED',STATUS='OLD',ERR=9010) call wrf_debug(50,'reading CAM_ABS_DATA') ENDIF #define DM_BCAST_MACRO(A) CALL wrf_dm_bcast_bytes ( A , size ( A ) * r8 ) IF ( wrf_dm_on_monitor() ) then READ (cam_abs_unit,ERR=9010) ah2onw READ (cam_abs_unit,ERR=9010) eh2onw READ (cam_abs_unit,ERR=9010) ah2ow READ (cam_abs_unit,ERR=9010) cn_ah2ow READ (cam_abs_unit,ERR=9010) cn_eh2ow READ (cam_abs_unit,ERR=9010) ln_ah2ow READ (cam_abs_unit,ERR=9010) ln_eh2ow endif DM_BCAST_MACRO(ah2onw) DM_BCAST_MACRO(eh2onw) DM_BCAST_MACRO(ah2ow) DM_BCAST_MACRO(cn_ah2ow) DM_BCAST_MACRO(cn_eh2ow) DM_BCAST_MACRO(ln_ah2ow) DM_BCAST_MACRO(ln_eh2ow) IF ( wrf_dm_on_monitor() ) CLOSE (cam_abs_unit) ! Set up table of H2O saturation vapor pressures for use in calculation ! effective path RH. Need separate table from table in wv_saturation ! because: ! (1. Path temperatures can fall below minimum of that table; and ! (2. Abs/Emissivity tables are derived with RH for water only. ! tmin = nint(min_tp_h2o) tmax = nint(max_tp_h2o)+1 itype = 0 do t = tmin, tmax ! call gffgch(dble(t),estblh2o(t-tmin),itype) tdbl = t call gffgch(tdbl,estblh2o(t-tmin),itype) end do RETURN 9010 CONTINUE WRITE( errmess , '(A35,I4)' ) 'module_ra_cam: error reading unit ',cam_abs_unit CALL wrf_error_fatal(errmess) end subroutine radaeini end MODULE module_ra_cam_support