!  Create an initial data set for the WRF model based on real data.  This
!  program is specifically set up for the Eulerian, mass-based coordinate.

PROGRAM tc_data,41
   USE module_machine
   USE module_domain, ONLY : domain, alloc_and_configure_domain, &
        domain_clock_set, head_grid, program_name, domain_clockprint, &
        set_current_grid_ptr
   USE module_io_domain
   USE module_initialize_real, ONLY : wrfu_initialize
   USE module_driver_constants
   USE module_configure, ONLY : grid_config_rec_type, model_config_rec, &
        initial_config, get_config_as_buffer, set_config_as_buffer
   USE module_timing
   USE module_state_description, ONLY: tconly
#ifdef DM_PARALLEL
   USE module_dm, ONLY: wrf_dm_initialize
#endif
#ifdef NO_LEAP_CALENDAR
   USE module_symbols_util, ONLY: wrfu_cal_noleap
#else
   USE module_symbols_util, ONLY: wrfu_cal_gregorian
#endif
   USE module_utility, ONLY : WRFU_finalize

   IMPLICIT NONE


   REAL    :: time , bdyfrq

   INTEGER :: loop , levels_to_process , debug_level


   TYPE(domain) , POINTER :: null_domain
   TYPE(domain) , POINTER :: grid , another_grid
   TYPE(domain) , POINTER :: grid_ptr , grid_ptr2
   TYPE (grid_config_rec_type)              :: config_flags
   INTEGER                :: number_at_same_level

   INTEGER :: max_dom, domain_id , grid_id , parent_id , parent_id1 , id
   INTEGER :: e_we , e_sn , i_parent_start , j_parent_start
   INTEGER :: idum1, idum2 
#ifdef DM_PARALLEL
   INTEGER                 :: nbytes
   INTEGER, PARAMETER      :: configbuflen = 4* CONFIG_BUF_LEN
   INTEGER                 :: configbuf( configbuflen )
   LOGICAL , EXTERNAL      :: wrf_dm_on_monitor
#endif
   LOGICAL found_the_id

   INTEGER :: ids , ide , jds , jde , kds , kde
   INTEGER :: ims , ime , jms , jme , kms , kme
   INTEGER :: ips , ipe , jps , jpe , kps , kpe
   INTEGER :: ijds , ijde , spec_bdy_width
   INTEGER :: i , j , k , idts, rc
   INTEGER :: sibling_count , parent_id_hold , dom_loop

   CHARACTER (LEN=80)     :: message

   INTEGER :: start_year , start_month , start_day , start_hour , start_minute , start_second
   INTEGER ::   end_year ,   end_month ,   end_day ,   end_hour ,   end_minute ,   end_second
   INTEGER :: interval_seconds , real_data_init_type
   INTEGER :: time_loop_max , time_loop, bogus_id, storm
   real::t1,t2
   real    :: latc_loc(max_bogus),lonc_loc(max_bogus),vmax(max_bogus),rmax(max_bogus)
   real    :: rankine_lid
   INTERFACE
     SUBROUTINE Setup_Timekeeping( grid )
      USE module_domain, ONLY : domain
      TYPE(domain), POINTER :: grid
     END SUBROUTINE Setup_Timekeeping
   END INTERFACE

#include "version_decl"

   !  Define the name of this program (program_name defined in module_domain)

   program_name = "TC_EM " // TRIM(release_version) // " PREPROCESSOR"

!  The TC bogus algorithm assumes that the user defines a central point, and then
!  allows the program to remove a typhoon based on a distance in km.  This is
!  implemented on a single processor only.

#ifdef DM_PARALLEL
   IF ( .NOT. wrf_dm_on_monitor() ) THEN
      CALL wrf_error_fatal( 'TC bogus must run with a single processor only, re-run with num procs set to 1' )
   END IF
#endif

#ifdef DM_PARALLEL
   CALL disable_quilting
#endif

   !  Initialize the modules used by the WRF system.  Many of the CALLs made from the
   !  init_modules routine are NO-OPs.  Typical initializations are: the size of a
   !  REAL, setting the file handles to a pre-use value, defining moisture and
   !  chemistry indices, etc.

   CALL       wrf_debug ( 100 , 'real_em: calling init_modules ' )
   CALL init_modules(1)   ! Phase 1 returns after MPI_INIT() (if it is called)
#ifdef NO_LEAP_CALENDAR
   CALL WRFU_Initialize( defaultCalKind=WRFU_CAL_NOLEAP, rc=rc )
#else
   CALL WRFU_Initialize( defaultCalKind=WRFU_CAL_GREGORIAN, rc=rc )
#endif
   CALL init_modules(2)   ! Phase 2 resumes after MPI_INIT() (if it is called)

   !  The configuration switches mostly come from the NAMELIST input.

#ifdef DM_PARALLEL
   IF ( wrf_dm_on_monitor() ) THEN
      CALL initial_config
   END IF
   CALL get_config_as_buffer( configbuf, configbuflen, nbytes )
   CALL wrf_dm_bcast_bytes( configbuf, nbytes )
   CALL set_config_as_buffer( configbuf, configbuflen )
   CALL wrf_dm_initialize
#else
   CALL initial_config
#endif


   CALL nl_get_debug_level ( 1, debug_level )
   CALL set_wrf_debug_level ( debug_level )

   CALL  wrf_message ( program_name )

   !  There are variables in the Registry that are only required for the real
   !  program, fields that come from the WPS package.  We define the run-time
   !  flag that says to allocate space for these input-from-WPS-only arrays.

   CALL nl_set_use_wps_input ( 1 , TCONLY )

   !  Allocate the space for the mother of all domains.

   NULLIFY( null_domain )
   CALL       wrf_debug ( 100 , 'real_em: calling alloc_and_configure_domain ' )
   CALL alloc_and_configure_domain ( domain_id  = 1           , &
                                     grid       = head_grid   , &
                                     parent     = null_domain , &
                                     kid        = -1            )

   grid => head_grid
   CALL nl_get_max_dom ( 1 , max_dom )

   IF ( model_config_rec%interval_seconds .LE. 0 ) THEN
     CALL wrf_error_fatal( 'namelist value for interval_seconds must be > 0')
   END IF

   all_domains : DO domain_id = 1 , max_dom

      IF ( ( model_config_rec%input_from_file(domain_id) ) .OR. &
           ( domain_id .EQ. 1 ) ) THEN

         CALL Setup_Timekeeping ( grid )
         CALL set_current_grid_ptr( grid )
         CALL domain_clockprint ( 150, grid, &
                'DEBUG real:  clock after Setup_Timekeeping,' )
         CALL domain_clock_set( grid, &
                                time_step_seconds=model_config_rec%interval_seconds )
         CALL domain_clockprint ( 150, grid, &
                'DEBUG real:  clock after timeStep set,' )


         CALL       wrf_debug ( 100 , 'tc_em: calling set_scalar_indices_from_config ' )
         CALL set_scalar_indices_from_config ( grid%id , idum1, idum2 )

!This is goofy but we need to loop through the number of storms to get 
!the namelist variables for the tc_bogus.  But then we need to 
!call model_to_grid_config_rec with the grid%id = to 1 in order to
!reset to the correct information.
         CALL       wrf_debug ( 100 , 'tc_em: calling model_to_grid_config_rec ' )
         lonc_loc(:) = -999.
         latc_loc(:) = -999.
         vmax(:)     = -999.
         rmax(:)     = -999.
         CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags )
         lonc_loc(1) = config_flags%lonc_loc
         latc_loc(1) = config_flags%latc_loc
         vmax(1)     = config_flags%vmax_meters_per_second
         rmax(1)     = config_flags%rmax
         rankine_lid = config_flags%rankine_lid
         do storm = 2,config_flags%num_storm
             bogus_id = storm
             CALL model_to_grid_config_rec ( bogus_id , model_config_rec , config_flags )
             lonc_loc(storm) = config_flags%lonc_loc
             latc_loc(storm) = config_flags%latc_loc
             vmax(storm)     = config_flags%vmax_meters_per_second
             rmax(storm)     = config_flags%rmax
!             print *,"in loop ",storm,lonc_loc(storm),latc_loc(storm),vmax(storm),rmax(storm)
         end do
         CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags )

         !  Initialize the WRF IO: open files, init file handles, etc.

         CALL       wrf_debug ( 100 , 'tc_em: calling init_wrfio' )
         CALL init_wrfio

         !  Some of the configuration values may have been modified from the initial READ
         !  of the NAMELIST, so we re-broadcast the configuration records.

#ifdef DM_PARALLEL
         CALL       wrf_debug ( 100 , 'tc_em: re-broadcast the configuration records' )
         CALL get_config_as_buffer( configbuf, configbuflen, nbytes )
         CALL wrf_dm_bcast_bytes( configbuf, nbytes )
         CALL set_config_as_buffer( configbuf, configbuflen )
#endif

         !   No looping in this layer.  

         CALL       wrf_debug ( 100 , 'calling tc_med_sidata_input' )
         CALL tc_med_sidata_input ( grid , config_flags, latc_loc, lonc_loc, &
                                    vmax,rmax,rankine_lid)
         CALL       wrf_debug ( 100 , 'backfrom tc_med_sidata_input' )

      ELSE 
         CYCLE all_domains
      END IF

   END DO all_domains

   CALL set_current_grid_ptr( head_grid )

   !  We are done.

   CALL       wrf_debug (   0 , 'tc_em: SUCCESS COMPLETE TC BOGUS' )

   CALL wrf_shutdown

   CALL WRFU_Finalize( rc=rc )


END PROGRAM tc_data


!-----------------------------------------------------------------

SUBROUTINE tc_med_sidata_input ( grid , config_flags, latc_loc, lonc_loc, & 1,26
                                 vmax, rmax,rankine_lid)
  ! Driver layer
   USE module_domain
   USE module_io_domain
  ! Model layer
   USE module_configure
   USE module_bc_time_utilities
   USE module_optional_input

   USE module_date_time
   USE module_utility

   IMPLICIT NONE


  ! Interface 
   INTERFACE
     SUBROUTINE start_domain ( grid , allowed_to_read )  ! comes from module_start in appropriate dyn_ directory
       USE module_domain
       TYPE (domain) grid
       LOGICAL, INTENT(IN) :: allowed_to_read
     END SUBROUTINE start_domain
   END INTERFACE

  ! Arguments
   TYPE(domain)                :: grid
   TYPE (grid_config_rec_type) :: config_flags
  ! Local
   INTEGER                :: time_step_begin_restart
   INTEGER                :: idsi , ierr , myproc, internal_time_loop,iflag
! Declarations for the netcdf routines.
   INTEGER                ::nf_inq
!
   CHARACTER (LEN=80)     :: si_inpname
   CHARACTER (LEN=80)     :: message

   CHARACTER(LEN=19) :: start_date_char , end_date_char , current_date_char , next_date_char
   CHARACTER(LEN=8)  :: flag_name

   INTEGER :: time_loop_max , loop, rc,icnt,itmp
   INTEGER :: julyr , julday ,metndims, metnvars, metngatts, nunlimdimid,rcode
   REAL    :: gmt
   real    :: t1,t2,t3,t4
   real    :: latc_loc(max_bogus), lonc_loc(max_bogus)
   real    :: vmax(max_bogus),rmax(max_bogus),rankine_lid

   grid%input_from_file = .true.
   grid%input_from_file = .false.

   CALL tc_compute_si_start ( model_config_rec%start_year  (grid%id) , &
                                   model_config_rec%start_month (grid%id) , &
                                   model_config_rec%start_day   (grid%id) , &
                                   model_config_rec%start_hour  (grid%id) , &
                                   model_config_rec%start_minute(grid%id) , &
                                   model_config_rec%start_second(grid%id) , &
                                   model_config_rec%interval_seconds      , &
                                   model_config_rec%real_data_init_type   , &
                                   start_date_char)

   end_date_char = start_date_char
   IF ( end_date_char .LT. start_date_char ) THEN
      CALL wrf_error_fatal( 'Ending date in namelist ' // end_date_char // ' prior to beginning date ' // start_date_char )
   END IF
   print *,"the start date char ",start_date_char
   print *,"the end date char ",end_date_char

   time_loop_max = 1
   !  Override stop time with value computed above.  
   CALL domain_clock_set( grid, stop_timestr=end_date_char )

   ! TBH:  for now, turn off stop time and let it run data-driven
   CALL WRFU_ClockStopTimeDisable( grid%domain_clock, rc=rc ) 
   CALL wrf_check_error( WRFU_SUCCESS, rc, &
                         'WRFU_ClockStopTimeDisable(grid%domain_clock) FAILED', &
                         __FILE__ , &
                         __LINE__  )
   CALL domain_clockprint ( 150, grid, &
          'DEBUG med_sidata_input:  clock after stopTime set,' )

   !  Here we define the initial time to process, for later use by the code.
   
   current_date_char = start_date_char
   start_date = start_date_char // '.0000'
   current_date = start_date

   CALL nl_set_bdyfrq ( grid%id , REAL(model_config_rec%interval_seconds) )


   CALL cpu_time ( t1 )
   DO loop = 1 , time_loop_max

      internal_time_loop = loop
      IF ( ( grid%id .GT. 1 ) .AND. ( loop .GT. 1 ) .AND. &
           ( model_config_rec%grid_fdda(grid%id) .EQ. 0 ) .AND. &
           ( model_config_rec%sst_update .EQ. 0 ) ) EXIT

      print *,' '
      print *,'-----------------------------------------------------------------------------'
      print *,' '
      print '(A,I2,A,A,A,I4,A,I4)' , &
      ' Domain ',grid%id,': Current date being processed: ',current_date, ', which is loop #',loop,' out of ',time_loop_max

      !  After current_date has been set, fill in the julgmt stuff.

      CALL geth_julgmt ( config_flags%julyr , config_flags%julday , config_flags%gmt )

        print *,'configflags%julyr, %julday, %gmt:',config_flags%julyr, config_flags%julday, config_flags%gmt
      !  Now that the specific Julian info is available, save these in the model config record.

      CALL nl_set_gmt (grid%id, config_flags%gmt)
      CALL nl_set_julyr (grid%id, config_flags%julyr)
      CALL nl_set_julday (grid%id, config_flags%julday)

      !  Open the input file for tc stuff.  Either the "new" one or the "old" one.  The "new" one could have
      !  a suffix for the type of the data format.  Check to see if either is around.

      CALL cpu_time ( t3 )
      WRITE ( wrf_err_message , FMT='(A,A)' )'med_sidata_input: calling open_r_dataset for ', &
                                             TRIM(config_flags%auxinput1_inname)
      CALL wrf_debug ( 100 , wrf_err_message )
      IF ( config_flags%auxinput1_inname(1:8) .NE. 'wrf_real' ) THEN
         CALL construct_filename4a( si_inpname , config_flags%auxinput1_inname , grid%id , 2 , &
                                    current_date_char , config_flags%io_form_auxinput1 )
      ELSE
         CALL construct_filename2a( si_inpname , config_flags%auxinput1_inname , grid%id , 2 , &
                                    current_date_char )
      END IF
      CALL open_r_dataset ( idsi, TRIM(si_inpname) , grid , config_flags , "DATASET=AUXINPUT1", ierr )
      IF ( ierr .NE. 0 ) THEN
         CALL wrf_error_fatal( 'error opening ' // TRIM(si_inpname) // &
                               ' for input; bad date in namelist or file not in directory' )
      END IF

      !  Input data.

      CALL wrf_debug ( 100 , 'med_sidata_input: calling input_auxinput1' )
      CALL input_auxinput1 ( idsi ,   grid , config_flags , ierr )
      WRITE ( wrf_err_message , FMT='(A,I10,A)' ) 'Timing for input ',NINT(t4-t3) ,' s.'
      CALL wrf_debug( 0, wrf_err_message )

      !  Possible optional SI input.  This sets flags used by init_domain.

      CALL cpu_time ( t3 )
      CALL       wrf_debug ( 100 , 'med_sidata_input: calling init_module_optional_input' )
      CALL init_module_optional_input ( grid , config_flags )
      CALL       wrf_debug ( 100 , 'med_sidata_input: calling optional_input' )
      CALL optional_input ( grid , idsi , config_flags )

!Here we check the flags yet again.  The flags are checked in optional_input but 
!the grid% flags are not set.
      flag_name(1:8) = 'SM000010'
      CALL wrf_get_dom_ti_integer ( idsi, 'FLAG_' // flag_name, itmp, 1, icnt, ierr ) 
      IF ( ierr .EQ. 0 ) THEN
          grid%flag_sm000010 = 1
      end if

       flag_name(1:8) = 'SM010040'
       CALL wrf_get_dom_ti_integer ( idsi, 'FLAG_' // flag_name, itmp, 1, icnt, ierr ) 
       IF ( ierr .EQ. 0 ) THEN
          grid%flag_sm010040 = 1
       end if

       flag_name(1:8) = 'SM040100'
       CALL wrf_get_dom_ti_integer ( idsi, 'FLAG_' // flag_name, itmp, 1, icnt, ierr ) 
       IF ( ierr .EQ. 0 ) THEN
            grid%flag_sm040100 = itmp   
       end if


       flag_name(1:8) = 'SM100200'
       CALL wrf_get_dom_ti_integer ( idsi, 'FLAG_' // flag_name, itmp, 1, icnt, ierr ) 
       IF ( ierr .EQ. 0 ) THEN
            grid%flag_sm100200 = itmp  
       end if

!       flag_name(1:8) = 'SM010200'
!       CALL wrf_get_dom_ti_integer ( idsi, 'FLAG_' // flag_name, itmp, 1, icnt, ierr ) 
!       IF ( ierr .EQ. 0 ) THEN
!            config_flags%flag_sm010200 = itmp 
!            print *,"found the flag_sm010200 "         
!       end if

!Now the soil temperature flags
        flag_name(1:8) = 'ST000010'
        CALL wrf_get_dom_ti_integer ( idsi, 'FLAG_' // flag_name, itmp, 1, icnt, ierr ) 
        IF ( ierr .EQ. 0 ) THEN
            grid%flag_st000010 = 1
        END IF


         flag_name(1:8) = 'ST010040'
         CALL wrf_get_dom_ti_integer ( idsi, 'FLAG_' // flag_name, itmp, 1, icnt, ierr ) 
         IF ( ierr .EQ. 0 ) THEN
            grid%flag_st010040 = 1
         END IF

         flag_name(1:8) = 'ST040100'
         CALL wrf_get_dom_ti_integer ( idsi, 'FLAG_' // flag_name, itmp, 1, icnt, ierr ) 
         IF ( ierr .EQ. 0 ) THEN
            grid%flag_st040100 = 1
         END IF


         flag_name(1:8) = 'ST100200'
         CALL wrf_get_dom_ti_integer ( idsi, 'FLAG_' // flag_name, itmp, 1, icnt, ierr ) 
         IF ( ierr .EQ. 0 ) THEN
            grid%flag_st100200 = 1
         END IF

         CALL wrf_get_dom_ti_integer ( idsi, 'FLAG_SOIL_LAYERS', itmp, 1, icnt, ierr ) 
         IF ( ierr .EQ. 0 ) THEN
            grid%flag_soil_layers = 1
         END IF




      CALL close_dataset ( idsi , config_flags , "DATASET=AUXINPUT1" )
      CALL cpu_time ( t4 )

      !  Possible optional SI input.  This sets flags used by init_domain.
      !  We need to call the optional input routines to get the flags that 
      !  are in the metgrid output file so they can be put in the tc bogus 
      !  output file for real to read.
      CALL cpu_time ( t3 )
      already_been_here = .FALSE.
      CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags )


      CALL cpu_time ( t3 )

      CALL assemble_output ( grid , config_flags , loop , time_loop_max, current_date_char, &
                             latc_loc, lonc_loc, vmax, rmax, rankine_lid,si_inpname)
      CALL cpu_time ( t4 )
      WRITE ( wrf_err_message , FMT='(A,I10,A)' ) 'Timing for output ',NINT(t4-t3) ,' s.'
      CALL wrf_debug( 0, wrf_err_message )
      CALL cpu_time ( t2 )
      WRITE ( wrf_err_message , FMT='(A,I4,A,I10,A)' ) 'Timing for loop # ',loop,' = ',NINT(t2-t1) ,' s.'
      CALL wrf_debug( 0, wrf_err_message )

      CALL cpu_time ( t1 )
   END DO

END SUBROUTINE tc_med_sidata_input


!-------------------------------------------------------------------------------------

SUBROUTINE tc_compute_si_start(  & 1,1
   start_year , start_month , start_day , start_hour , start_minute , start_second , &
   interval_seconds , real_data_init_type , &
   start_date_char)

   USE module_date_time

   IMPLICIT NONE

   INTEGER :: start_year , start_month , start_day , start_hour , start_minute , start_second
   INTEGER ::   end_year ,   end_month ,   end_day ,   end_hour ,   end_minute ,   end_second
   INTEGER :: interval_seconds , real_data_init_type
   INTEGER :: time_loop_max , time_loop

   CHARACTER(LEN=19) :: current_date_char , start_date_char , end_date_char , next_date_char

#ifdef PLANET
   WRITE ( start_date_char , FMT = '(I4.4,"-",I5.5,"_",I2.2,":",I2.2,":",I2.2)' ) &
           start_year,start_day,start_hour,start_minute,start_second
#else
   WRITE ( start_date_char , FMT = '(I4.4,"-",I2.2,"-",I2.2,"_",I2.2,":",I2.2,":",I2.2)' ) &
           start_year,start_month,start_day,start_hour,start_minute,start_second
#endif


END SUBROUTINE tc_compute_si_start

!-----------------------------------------------------------------------

SUBROUTINE assemble_output ( grid , config_flags , loop , time_loop_max,current_date_char, & 4,234
                             latc_loc, lonc_loc,vmax,rmax,rankine_lid,si_inpname)

   USE module_big_step_utilities_em
   USE module_domain
   USE module_io_domain
   USE module_configure
   USE module_date_time
   USE module_bc
   IMPLICIT NONE

   TYPE(domain)                 :: grid
   TYPE (grid_config_rec_type)  :: config_flags

   INTEGER , INTENT(IN)         :: loop , time_loop_max

!These values are in the name list and are avaiable from
!from the config_flags.
   real    :: vmax(max_bogus),vmax_ratio,rankine_lid
   real    :: rmax(max_bogus),stand_lon,cen_lat,ptop_in_pa
   real    :: latc_loc(max_bogus),lonc_loc(max_bogus)

   INTEGER :: ijds , ijde , spec_bdy_width
   INTEGER :: i , j , k , idts,map_proj,remove_only,storms

   INTEGER :: id1 , interval_seconds , ierr, rc, sst_update, grid_fdda
   INTEGER , SAVE :: id, id2,  id4 
   CHARACTER (LEN=80) :: tcoutname , bdyname,si_inpname
   CHARACTER(LEN= 4) :: loop_char
   CHARACTER(LEN=19) ::  current_date_char
   
character *19 :: temp19
character *24 :: temp24 , temp24b

real::t1,t2,truelat1,truelat2


   !  Boundary width, scalar value.

   spec_bdy_width = model_config_rec%spec_bdy_width
   interval_seconds = model_config_rec%interval_seconds
   sst_update = model_config_rec%sst_update
   grid_fdda = model_config_rec%grid_fdda(grid%id)
   truelat1  = config_flags%truelat1
   truelat2  = config_flags%truelat2

   stand_lon = config_flags%stand_lon
   cen_lat   = config_flags%cen_lat
   map_proj  = config_flags%map_proj

   vmax_ratio = config_flags%vmax_ratio
   ptop_in_pa = config_flags%p_top_requested
   remove_only = 0
   if(config_flags%remove_storm) then
      remove_only = 1
   end if

   storms = config_flags%num_storm
   print *,"number of storms ",config_flags%num_storm
   call tc_bogus(cen_lat,stand_lon,map_proj,truelat1,truelat2, &
                 grid%dx,grid%e_we,grid%e_sn,grid%num_metgrid_levels,ptop_in_pa, &
                 rankine_lid,latc_loc,lonc_loc,vmax,vmax_ratio,rmax,remove_only, &
                 storms,grid)



   !  Open the tc bogused output file. cd 
   CALL construct_filename4a( tcoutname , config_flags%auxinput1_outname , grid%id , 2 , &
                                    current_date_char , config_flags%io_form_auxinput1 )

   print *,"outfile name from construct filename ",tcoutname
   CALL open_w_dataset ( id1, TRIM(tcoutname) , grid , config_flags ,output_auxinput1,"DATASET=AUXINPUT1",ierr )
   IF ( ierr .NE. 0 ) THEN
        CALL wrf_error_fatal( 'tc_em: error opening tc bogus file for writing' )
   END IF
   CALL output_auxinput1( id1, grid , config_flags , ierr )
   CALL close_dataset ( id1 , config_flags , "DATASET=AUXINPUT1" )


END SUBROUTINE assemble_output

!----------------------------------------------------------------------------------------------


SUBROUTINE tc_bogus(centerlat,stdlon,nproj,truelat1,truelat2,dsm,ew,ns,nz,ptop_in_pa, & 1,24
                    rankine_lid,latc_loc,lonc_loc,vmax,vmax_ratio,rmax,remove_only, &
                    storms,grid)

!!Original Author Dave Gill.  Modified by Sherrie Fredrick      
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!These are read in from the netcdf file.
!centerlat  The center latitude from the global attributes in the netcdf file.
!stdlon     The center longitude from the global attributes in the netcdf file.  
!nproj      The map projection from the global attributes in the netcdf file.
!dsm        The spacing in meters from the global attributes in the netcdf file.
!ew         The west_east_stag from the dimensions in the netcdf file..
!ns         The south_north_stag from the dimensions in the netcdf file. .
!nz         The number of metgrid levels from the dimensions in the netcdf file.

!ptop_in_pa This is part of the namelist.input file under the &domains section.

!These values are part of the namelist.input file under the &tc section specifically
!for the tc bogus code.
!NOTES: There can be up to five bogus storms.  The variable max_bogus is set in
!the WRF subroutine called module_driver_constants.F in the ./WRFV3/frame directory.

!latc_loc    The center latitude of the bogus strorm. This is an array dimensioned max_bogus.
  
!lonc_loc    The center longitude of the bogus strorm. This is an array dimensioned max_bogus.
  
!vmax        The max vortex in meters/second it comes from the namelist entry.
!             This is an array dimensioned max_bogus.

!vmax_ratio  This comes from the namelist entry.

!rmax        The maximum radius this comes from the namelist entry.
!             This is an array dimensioned max_bogus

!remove_only If this is set to true in the namelist.input file a value of 0.1
!             is automatically assigned to vmax. 

!rankine_lid This comes from the namelist entry.  It can be used to determine
!            what model levels the bogus storm affects.

!storms      The number of bogus storms. 

!grid        This is a Fortran structure which holds all of the field data values
!            for the netcdf that was read in.  
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!


!module_llxy resides in the share directory.
  USE module_llxy
!This is for the large structure (grid)
  USE module_domain



  IMPLICIT NONE 
  TYPE(domain)                 :: grid
  integer ew,ns,nz
  integer nproj
  integer storms,nstrm
  real :: centerlat,stdlon,conef,truelat1,truelat2,dsm,dx,rankine_lid
  real :: latc_loc(max_bogus),lonc_loc(max_bogus),vmax(max_bogus),vmax_ratio,rmax(max_bogus)
  
  real :: press(ew-1,nz,ns-1),rhmx(nz), vwgt(nz),old_slp(ew-1,ns-1)
  real, dimension(:,:,:) , allocatable :: u11,v11,t11,rh11,phi11
  real, dimension(:,:,:) , allocatable :: u1 , v1 , t1 , rh1 , phi1
  real, dimension(ew-1,ns-1) :: lond,terrain,cor,pslx


!The map scale factors. 
  real, dimension(ew,ns-1)    :: msfu   !The mapscale factor for the ew wind staggered grid
  real, dimension(ew-1,ns)    :: msfv   !The mapscale factor for the ns wind staggered grid
  real, dimension(ew-1,ns-1)  :: msfm   !The mapscale factor for the unstaggered grid.

  CHARACTER*2  jproj
  LOGICAL :: l_tcbogus


  real :: r_search,r_vor,beta,devps,humidity_max
  real :: devpc,const,r_vor2,cnst,alphar,epsilon,vormx , rad , sum_q 
  real :: avg_q ,q_old,ror,q_new,dph,dphx0
  real :: rh_max,min_RH_value,ps
  integer :: vert_variation
  integer :: i,k,j,kx,remove_only
  integer :: k00,kfrm ,kto ,k85,n_iter,ew_mvc,ns_mvc,nct,itr
  integer :: strmci(nz), strmcj(nz)
  real :: disx,disy,alpha,degran,pie,rovcp,cp
  REAL :: rho,pprm,phip0,x0,y0,vmx,xico,xjco,xicn,xjcn,p85,xlo,rconst,ew_gcntr,ns_gcntr
  real :: ptop_in_pa,themax,themin
  real :: latinc,loninc
  real :: rtemp,colat0,colat
  REAL :: q1(ew-1,nz,ns-1), psi1(ew-1,nz,ns-1) 

! This is the entire map projection enchilada.
  TYPE(proj_info) :: proj

  

  REAL :: lat1 , lon1
! These values are read in from the data set. 
   real :: knowni,knownj

!  TC bogus
   REAL utcr(ew,nz,ns-1),  vtcr(ew-1,nz,ns)
   REAL utcp(ew,nz,ns-1),  vtcp(ew-1,nz,ns)
   REAL psitc(ew-1,nz,ns-1), psiv(nz)
   REAL vortc(ew-1,nz,ns-1), vorv(nz)
   REAL tptc(ew-1,nz,ns-1)
   REAL phiptc(ew-1,nz,ns-1)

!  Work arrays
   REAL uuwork(nz), vvwork(nz), temp2(ew,ns)
   REAL vort(ew-1,nz,ns-1), div(ew-1,nz,ns-1)
   REAL vortsv(ew-1,nz,ns-1)
   REAL theta(ew-1,nz,ns-1), t_reduce(ew-1,nz,ns-1)
   REAL ug(ew,nz,ns-1),   vg(ew-1,nz,ns),  vorg(ew-1,nz,ns-1)
   REAL delpx(ew-1,ns-1)

!subroutines for relaxation
   REAL outold(ew-1,ns-1)
   REAL rd(ew-1,ns-1),     ff(ew-1,ns-1)
   REAL tmp1(ew-1,ns-1),   tmp2(ew-1,ns-1) 

!  Background fields.
   REAL , DIMENSION (ew-1,nz,ns-1) :: t0, t00, rh0, q0, phi0, psi0, chi

!  Perturbations
   REAL , DIMENSION (ew-1,nz,ns-1) :: psipos, tpos, psi ,phipos, phip
      
!  Final fields.
   REAL  u2(ew,nz,ns-1),  v2(ew-1,nz,ns)                         
   REAL  t2(ew-1,nz,ns-1),z2(ew-1,nz,ns-1)                      
   REAL  phi2(ew-1,nz,ns-1),rh2(ew-1,nz,ns-1)
      
   print *,"the dimensions: north-south = ",ns," east-west =",ew
   IF (nproj .EQ. 1) THEN
        jproj = 'LC'
        print *,"Lambert Conformal projection"
   ELSE IF (nproj .EQ. 2) THEN
        jproj = 'ST'
   ELSE IF (nproj .EQ. 3) THEN
        jproj = 'ME'
        print *,"A mercator projection"
   END IF


  knowni = 1.
  knownj = 1.
  pie     = 3.141592653589793
  degran = pie/180.
  rconst = 287.04
  min_RH_value = 5.0
  cp = 1004.0
  rovcp = rconst/cp
   
   r_search = 400000.0
   r_vor = 300000.0
   r_vor2 = r_vor * 4
   beta = 0.5
   devpc= 40.0
   vert_variation = 1   
   humidity_max   = 95.0 
   alphar         = 1.8
   latinc        = -999.
   loninc        = -999.

   if(remove_only .eq. 1) then
     do nstrm=1,storms
         vmax(nstrm) = 0.1
     end do
   end if

  !  Set up initializations for map projection so that the lat/lon
  !  of the tropical storm can be put into model (i,j) space.  This needs to be done once per 
  !  map projection definition.  Since this is the domain that we are "GOING TO", it is a once
  !  per regridder requirement.  If the user somehow ends up calling this routine for several
  !  time periods, there is no problemos, just a bit of overhead with redundant calls.
   
   dx = dsm
   lat1 = grid%xlat_gc(1,1)
   lon1 = grid%xlong_gc(1,1)
   IF( jproj .EQ. 'ME' )THEN
       IF ( lon1  .LT. -180. ) lon1  = lon1  + 360.
       IF ( lon1  .GT.  180. ) lon1  = lon1  - 360.
       IF ( stdlon .LT. -180. ) stdlon = stdlon + 360.
       IF ( stdlon .GT.  180. ) stdlon = stdlon - 360.
       CALL map_set ( proj_merc, proj, lat1, lon1, lat1, lon1, knowni, knownj, dx, &
                      latinc,loninc,stdlon , truelat1 , truelat2)
       conef = 0.
   ELSE IF ( jproj .EQ. 'LC' ) THEN
        if((truelat1 .eq. 0.0)  .and. (truelat2 .eq. 0.0)) then
            print *,"Truelat1 and Truelat2 are both 0"
            stop
         end if
        CALL map_set (proj_lc,proj, lat1, lon1, lat1, lon1, knowni, knownj, dx, &
                       latinc,loninc,stdlon , truelat1 , truelat2)
       conef = proj%cone
   ELSE IF ( jproj .EQ. 'ST' ) THEN
        conef = 1.
        CALL map_set ( proj_ps,proj,lat1, lon1, lat1, lon1, knowni, knownj, dx, &
                      latinc,loninc,stdlon , truelat1 , truelat2)
   END IF

! Load the pressure array.   
 kx = nz
 do j = 1,ns-1
    do k = 1,nz
       do i = 1,ew-1
           press(i,k,j) = grid%p_gc(i,k,j)*0.01
       end do
    end do
 end do


!  Initialize the vertical profiles for humidity and weighting.
!The ptop variable will be read in from the namelist
   IF ( ( ptop_in_pa .EQ. 40000. ) .OR. ( ptop_in_pa .EQ. 60000. ) ) THEN
         PRINT '(A)','Hold on pardner, your value for PTOP is gonna cause problems for the TC bogus option.'
         PRINT '(A)','Make it higher up than 400 mb.'
         STOP 'ptop_woes_for_tc_bogus'
   END IF

 IF ( vert_variation .EQ. 1 ) THEN
    DO k=1,kx
       IF ( press(1,k,1) .GT. 400. ) THEN
               rhmx(k) = humidity_max
       ELSE
               rhmx(k) = humidity_max * MAX( 0.1 , (press(1,k,1) - ptop_in_pa/100.)/(400.-ptop_in_pa/100.) )
       END IF

        IF ( press(1,k,1) .GT. 600. ) THEN
             vwgt(k) = 1.0
        ELSE IF ( press(1,k,1) .LE. 100. ) THEN
             vwgt(k) = 0.0001
        ELSE
             vwgt(k) = MAX ( 0.0001 , (press(1,k,1)-ptop_in_pa/100.)/(600.-ptop_in_pa/100.) )
        END IF
      END DO

 ELSE IF ( vert_variation .EQ. 2 ) THEN
         IF ( kx .eq. 24 ) THEN
            rhmx = (/ 95.,       95., 95., 95., 95., 95., 95., 95.,      &
                      95., 95.,  95., 95., 95., 90., 85., 80., 75.,      &
                      70., 66.,  60., 39., 10., 10., 10./)
            vwgt = (/ 1.0000,         1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 0.9850,      &
                      0.9680, 0.9500, 0.9290, 0.9060, 0.8810, 0.8500, 0.7580, 0.6500, 0.5100,      &
                      0.3500, 0.2120, 0.0500, 0.0270, 0.0001, 0.0001, 0.0001/)
         ELSE
            PRINT '(A)','Number of vertical levels assumed to be 24 for AFWA TC bogus option'
            STOP 'AFWA_TC_BOGUS_LEVEL_ERROR'
         END IF
 END IF

!Remember that ns = the north south staggered. This is one more than the ns mass point grid.
!              ew = the east west staggered. This is one more than the ew mass point grid.


!Put the U and V into the new arrays.
!Remember that the WRF ordering is ew,vert level,ns
!Vorticity and Divergence calculatins are done on 
!the staggered grids so the winds are not destaggered
 allocate(u11 (1:ew, 1:nz, 1:ns-1))
 allocate(u1  (1:ew, 1:nz, 1:ns-1))      
 allocate(v11 (1:ew-1, 1:nz, 1:ns))
 allocate(v1  (1:ew-1, 1:nz, 1:ns))
 do j = 1,ns-1
    do k = 1,nz
       do i = 1,ew
            u11(i,k,j) = grid%u_gc(i,k,j)
             u1(i,k,j) = grid%u_gc(i,k,j)
             msfu(i,j) = grid%msfu(i,j) !map scale factor on the U staggered grid
       end do
    end do
 end do


 do j = 1,ns
    do k = 1,nz
       do i = 1,ew-1
            v11(i,k,j) = grid%v_gc(i,k,j)
             v1(i,k,j) = grid%v_gc(i,k,j)
           msfv(i,j)   = grid%msfv(i,j)  !map scale factor on the V staggered grid    
       end do
    end do
 end do


!Put the temperature, relative humidity and height fields
!into arrays.  Save the initial fields also.
!These arrays are on the WRF mass points
 allocate(t11  (1:ew-1, 1:nz, 1:ns-1))
 allocate(t1   (1:ew-1, 1:nz, 1:ns-1))
 allocate(rh11 (1:ew-1, 1:nz, 1:ns-1))
 allocate(rh1  (1:ew-1, 1:nz, 1:ns-1))
 allocate(phi11(1:ew-1, 1:nz, 1:ns-1))
 allocate(phi1 (1:ew-1, 1:nz, 1:ns-1))
 do j = 1,ns-1
    do k = 1,nz
       do i = 1,ew-1
             t11(i,k,j)  =  grid%t_gc(i,k,j)
              t1(i,k,j)  =  grid%t_gc(i,k,j)
            rh11(i,k,j)  =  grid%rh_gc(i,k,j)
             rh1(i,k,j)  =  grid%rh_gc(i,k,j)
              msfm(i,j)  = grid%msft(i,j)
            if(k .eq. 1)then
               phi11(i,k,j) =  grid%ht_gc(i,j)
               phi1(i,k,j)  =  grid%ht_gc(i,j) * 9.81
            else
               phi11(i,k,j) =  grid%ght_gc(i,k,j)
               phi1(i,k,j)  =  grid%ght_gc(i,k,j) * 9.81 
            end if
       end do
    end do
 end do

!The two D fields
!The terrain soil height is from ght at level 1
 do j = 1,ns-1
    do i = 1,ew-1
       pslx(i,j)    = grid%pslv_gc(i,j) * 0.01
       cor(i,j)     = grid%f(i,j)               !coreolous
       lond(i,j)    = grid%xlong_gc(i,j)
       terrain(i,j) = grid%ht_gc(i,j)
       old_slp(i,j) = grid%pslv_gc(i,j)
    end do
 end do



!  Loop over the number of storms to process.
   
 l_tcbogus = .FALSE.
 all_storms : DO nstrm=1,storms


!Make sure the user has defined the rmax variable
 if(rmax(nstrm) .eq. -999.) then
    print *,"Please enter a value for rmax in the namelist"
    stop
 end if


 k00  = 2
 kfrm = k00
 p85  = 850.

 kto  = kfrm
 DO k=kfrm+1,kx
     IF ( press(1,k,1) .GE. p85 ) THEN
           kto = kto + 1
     END IF
 END DO
 k85 = kto 


!  Parameters for max wind
 rho  = 1.2
 pprm = devpc*100.
 phip0= pprm/rho 


!latc_loc and lonc_loc come in from the namelist. 
!These x0 and y0 points are relative to the mass points. 
 CALL latlon_to_ij ( proj , latc_loc(nstrm) , lonc_loc(nstrm) , x0 , y0 )
 IF ( ( x0 .LT. 1. ) .OR. ( x0 .GT. REAL(ew-1) ) .OR. &
              ( y0 .LT. 1. ) .OR. ( y0 .GT. REAL(ns-1) ) ) THEN
         PRINT '(A,I3,A,A,A)','         Storm position is outside the computational domain.'
         PRINT '(A,2F6.2,A)' ,'         Storm postion: (x,y) = ',x0,y0,'.'
         stop
 END IF

 l_tcbogus = .TRUE.
!  Bogus vortex specifications, vmax (m/s); rmax (m);
 vmx = vmax(nstrm)  * vmax_ratio

 IF (  latc_loc(nstrm) .LT. 0.  ) THEN
       vmx = -vmx
 END IF
   
 IF (  vmax(nstrm)  .LE. 0.  ) THEN
       vmx = SQRT( 2.*(1-beta)*ABS(phip0) )  
 END IF

 ew_gcntr    = x0  !ew center grid location
 ns_gcntr    = y0  !ns center grid location
!For right now we are adding 0.5 to the grid location this
!makes the output of the wrf tc_bogus scheme analogous to the
!ouput of the MM5 tc_bogus scheme.
 ew_gcntr    = x0 + 0.5
 ns_gcntr    = y0 + 0.5

 n_iter  = 1

!  Start computing.

 PRINT '(/,A,I3,A,A,A)'     ,'---> TC: Processing storm number= ',nstrm
 PRINT '(A,F6.2,A,F7.2,A)'  ,'         Storm center lat= ',latc_loc(nstrm),' lon= ',lonc_loc(nstrm),'.'
 PRINT '(A,2F6.2,A)'        ,'         Storm center grid position (x,y)= ',ew_gcntr,ns_gcntr,'.'
 PRINT '(A,F5.2,F9.2,A)'    ,'         Storm max wind (m/s) and max radius (m)= ',vmx,rmax(nstrm),'.'
 PRINT '(A,F5.2,A)'         ,'         Estimated central press dev (mb)= ',devpc,'.'


!  Initialize storm center to (1,1)

  DO k=1,kx
     strmci(k) = 1
     strmcj(k) = 1
  END DO
 
!  Define complete field of bogus storm
!Note dx is spacing in meters.  
!The output arrays from the rankine subroutine vvwork,uuwork,psiv and vorv
!are defined on the WRF mass points.
  utcp(:,:,:) = 0.0
  vtcp(:,:,:) = 0.0
  print *,"nstrm  ",rmax(nstrm),ew_gcntr,ns_gcntr
  DO j=1,ns-1
     DO i=1,ew-1
        disx = REAL(i) - ew_gcntr 
        disy = REAL(j) - ns_gcntr 
        CALL rankine(disx,disy,dx,kx,vwgt,rmax(nstrm),vmx,uuwork,vvwork,psiv,vorv)
        DO k=1,kx
            utcp(i,k,j) = uuwork(k)
            vtcp(i,k,j) = vvwork(k)
           psitc(i,k,j) = psiv(k)
           vortc(i,k,j) = vorv(k)
        END DO
     END DO
  END DO
  call stagger_rankine_winds(utcp,vtcp,ew,ns,nz)


  utcr(:,:,:) = 0.0
  vtcr(:,:,:) = 0.0
! dave Rotate wind to map proj, on the correct staggering
  DO j=1,ns-1
     DO i=2,ew-1
        xlo = stdlon-grid%xlong_u(i,j)
        IF ( xlo .GT. 180.)xlo = xlo-360.
        IF ( xlo .LT.-180.)xlo = xlo+360.
   
        alpha = xlo*conef*degran*SIGN(1.,centerlat)
        DO k=1,kx
           utcr(i,k,j) = (vtcp(i-1,k,j)+vtcp(i,k,j)+vtcp(i,k,j+1)+vtcp(i-1,k,j+1))/4 *SIN(alpha)+utcp(i,k,j)*COS(alpha)
           if(utcr(i,k,j) .gt. 300.) then
              print *,i,k,j,"a very bad value of utcr"
              stop
           end if           
        END DO
     END DO
  END DO


  DO j=2,ns-1
     DO i=1,ew-1
        xlo = stdlon-grid%xlong_v(i,j)
        IF ( xlo .GT. 180.)xlo = xlo-360.
        IF ( xlo .LT.-180.)xlo = xlo+360.
   
        alpha = xlo*conef*degran*SIGN(1.,centerlat)
        DO k=1,kx
           vtcr(i,k,j) = vtcp(i,k,j)*COS(alpha)-(utcp(i,k,j-1)+utcp(i+1,k,j-1)+utcp(i+1,k,j)+utcp(i,k,j))/4*SIN(alpha)
           if(vtcr(i,k,j) .gt. 300.) then
              print *,i,k,j,"a very bad value of vtcr"
              stop
           end if
        END DO
     END DO
  END DO


!Fill in UTCR's along the left and right side.
  do j = 1,ns-1
     utcr(1,:,j)  = utcr(2,:,j)
     utcr(ew,:,j) = utcr(ew-1,:,j)
 end do

!Fill in V's along the bottom and top.   
  do i = 1,ew-1
     vtcr(i,:,1)  = vtcr(i,:,2)
     vtcr(i,:,ns) = vtcr(i,:,ns-1)
  end do

  
!  Compute vorticity of FG.  This is the vorticity of the original winds
!  on the staggered grid.  The vorticity and divergence are defined at
!  the mass points when done.
   CALL vor(u1,v1,msfu,msfv,msfm,ew,ns,kx,dx,vort)


!  Compute divergence of FG
   CALL diverg(u1,v1,msfu,msfv,msfm,ew,ns,kx,dx,div)


!  Compute mixing ratio of FG
   CALL mxratprs(rh1,t1,press*100.,ew,ns,kx,q1,min_RH_value)
   q1(:,1,:) = q1(:,2,:)


!  Compute initial streamfunction - PSI1 
   vortsv = vort
   q0 = q1
   

!  Solve for streamfunction.
   DO k=1,kx 
      DO j=1,ns-1
         DO i=1,ew-1
            ff(i,j) = vort(i,k,j)
            tmp1(i,j)= 0.0
         END DO
      END DO
      epsilon = 1.E-2
      CALL relax(tmp1,ff,rd,ew,ns,dx,epsilon,alphar)
      DO j=1,ns-1
         DO i=1,ew-1
            psi1(i,k,j) = tmp1(i,j)
         END DO
      END DO
   END DO

   
   DO k=1,kx  !start of the k loop
      IF ( latc_loc(nstrm) .GE. 0. ) THEN
           vormx = -1.e10
      ELSE
           vormx =  1.e10
      END IF
   
      ew_mvc = 1
      ns_mvc = 1

      DO j=1,ns-1
         DO i=1,ew-1
            rad = SQRT((REAL(i)-ew_gcntr)**2.+(REAL(j)-ns_gcntr)**2.)*dx
            IF ( rad .LE. r_search ) THEN
               IF ( latc_loc(nstrm) .GE. 0. ) THEN
                   IF ( vortsv(i,k,j) .GT. vormx ) THEN
                        vormx = vortsv(i,k,j)
                        ew_mvc = i
                        ns_mvc = j
                    END IF
               ELSE IF (latc_loc(nstrm) .LT. 0. ) THEN
                    IF ( vortsv(i,k,j) .LT. vormx ) THEN
                         vormx = vortsv(i,k,j)
                         ew_mvc = i
                         ns_mvc = j
                    END IF
               END IF
            END IF
         END DO
      END DO
      
      strmci(k) = ew_mvc 
      strmcj(k) = ns_mvc

      DO j=1,ns-1
         DO i=1,ew-1
            rad = SQRT(REAL((i-ew_mvc)**2.+(j-ns_mvc)**2.))*dx
            IF ( rad .GT. r_vor ) THEN
                 vort(i,k,j) = 0.
                 div(i,k,j)  = 0.
            END IF
         END DO
      END DO   

      DO itr=1,n_iter
         sum_q = 0.
         nct = 0
         DO j=1,ns-1
            DO i=1,ew-1
               rad = SQRT(REAL(i-ew_mvc)**2.+REAL(j-ns_mvc)**2.)*dx
               IF ( (rad .LT. r_vor2).AND.(rad .GE. 0.8*r_vor2) ) THEN
                     sum_q = sum_q + q0(i,k,j)
                     nct = nct + 1
               END IF
             END DO
          END DO
          avg_q = sum_q/MAX(REAL(nct),1.)
   
          DO j=1,ns-1
             DO i=1,ew-1
                 q_old = q0(i,k,j)
                 rad = SQRT(REAL(i-ew_mvc)**2.+REAL(j-ns_mvc)**2.)*dx
                 IF ( rad .LT. r_vor2 ) THEN
                      ror = rad/r_vor2
                      q_new = ((1.-ror)*avg_q) + (ror*q_old)
                      q0(i,k,j) = q_new
                 END IF
              END DO
           END DO
     END DO !end of itr loop
 END DO !of the k loop


!  Compute divergent wind (chi) at the mass points
   DO k=1,kx
      DO j=1,ns-1
         DO i=1,ew-1
            ff(i,j) = div(i,k,j)
            tmp1(i,j)= 0.0
         END DO
      END DO

      epsilon = 1.e-2
      CALL relax(tmp1,ff,rd,ew,ns,dx,epsilon,alphar)
      DO j=1,ns-1
         DO i=1,ew-1
            chi(i,k,j) = tmp1(i,j)
         END DO
      END DO
    END DO !of the k loop for divergent winds 



!  Compute background streamfunction (PSI0) and perturbation field (PSI)
!     print *,"perturbation field (PSI) relax three"
     DO k=1,kx 
         DO j=1,ns-1
            DO i=1,ew-1
               ff(i,j)=vort(i,k,j)
               tmp1(i,j)=0.0
            END DO
         END DO
         epsilon = 1.e-2
         CALL relax(tmp1,ff,rd,ew,ns,dx,epsilon,alphar)
         DO j=1,ns-1
            DO i=1,ew-1
               psi(i,k,j)=tmp1(i,j)
            END DO
         END DO
     END DO


 !We can now calculate the final wind fields.
   call final_ew_velocity(u2,u1,chi,psi,utcr,dx,ew,ns,nz)
   call final_ns_velocity(v2,v1,chi,psi,vtcr,dx,ew,ns,nz)

     DO k=1,kx
        DO j=1,ns-1
           DO i=1,ew-1
              psi0(i,k,j) = psi1(i,k,j)-psi(i,k,j)
           END DO
        END DO
     END DO

     DO k=k00,kx
        DO j=1,ns-1
           DO i=1,ew-1
              psipos(i,k,j)=psi(i,k,j)
           END DO
        END DO
     END DO


!  Geostrophic vorticity.
!We calculate the ug and vg on the wrf U and V staggered grids
!since this is where the vorticity subroutine expects them.

     CALL geowind(phi1,ew,ns,kx,dx,ug,vg)
     CALL vor(ug,vg,msfu,msfv,msfm,ew,ns,kx,dx,vorg)

     DO k=1,kx
        ew_mvc = strmci(k)
        ns_mvc = strmcj(k)

         DO j=1,ns-1
           DO i=1,ew-1
               rad = SQRT(REAL(i-ew_mvc)**2.+REAL(j-ns_mvc)**2.)*dx
               IF ( rad .GT. r_vor ) THEN
                    vorg(i,k,j) = 0.
               END IF
           END DO
         END DO
     END DO
   
      DO k=k00,kx
         DO j=1,ns-1
            DO i=1,ew-1
               ff(i,j) = vorg(i,k,j)
               tmp1(i,j)= 0.0
            END DO
         END DO
         epsilon = 1.e-3
         CALL relax(tmp1,ff,rd,ew,ns,dx,epsilon,alphar)
         DO j=1,ns-1
            DO i=1,ew-1
               phip(i,k,j) = tmp1(i,j)
            END DO
         END DO
     END DO


     !  Background geopotential.
     DO k=k00,kx
         DO j=1,ns-1
            DO i=1,ew-1
               phi0(i,k,j) = phi1(i,k,j) - phip(i,k,j) 
            END DO
         END DO
     END DO


     !  Background temperature
     DO k=k00,kx 
        DO j=1,ns-1
           DO i=1,ew-1
              IF( k .EQ.  2 ) THEN
                  tpos(i,k,j) = (-1./rconst)*(phip(i,k+1,j)-phip(i,k,j  ))/LOG(press(i,k+1,j)/press(i,k,j))
              ELSE IF ( k .EQ. kx ) THEN
                  tpos(i,k,j) = (-1./rconst)*(phip(i,k  ,j)-phip(i,k-1,j))/LOG(press(i,k,j  )/press(i,k-1,j))
              ELSE
                  tpos(i,k,j) = (-1./rconst)*(phip(i,k+1,j)-phip(i,k-1,j))/LOG(press(i,k+1,j)/press(i,k-1,j))
              END IF
              t0(i,k,j) = t1(i,k,j)-tpos(i,k,j)
              t00(i,k,j) = t0(i,k,j)
              if(t0(i,k,j) .gt. 400) then
                 print *,"interesting temperature ",t0(i,k,j)," at ",i,j,k
                 stop
              end if
           END DO
        END DO
     END DO

     !  New RH.
     CALL qvtorh (q0,t0,press*100.,k00,ew,ns,kx,rh0,min_RH_value)
     call final_RH(rh2,rh0,rhmx,strmci,strmcj,rmax(nstrm),ew,ns,nz,k00,dx,ew_gcntr,ns_gcntr,r_vor2)



     ! adjust T0
     DO k=k00,kx
        DO j=1,ns-1
           DO i=1,ew-1
              theta(i,k,j) = t1(i,k,j)*(1000./press(i,k,j))**rovcp
           END DO
        END DO
     END DO


     ew_mvc = strmci(k00)
     ns_mvc = strmcj(k00)
     DO k=kfrm,kto
        DO j=1,ns-1
           DO i=1,ew-1
              rad = SQRT(REAL(i-ew_mvc)**2.+REAL(j-ns_mvc)**2.)*dx
              IF ( rad .LT. r_vor2 ) THEN
                  t_reduce(i,k,j) = theta(i,k85,j)-0.03*(press(i,k,j)-press(i,k85,j))
                  t0(i,k,j) = t00(i,k,j)*(rad/r_vor2) + (((press(i,k,j)/1000.)**rovcp)*t_reduce(i,k,j))*(1.-(rad/r_vor2))
              END IF
           END DO
        END DO
     END DO

    !  Geopotential perturbation
    DO k=1,kx
       DO j=1,ns-1
          DO i=1,ew-1
              tmp1(i,j)=psitc(i,k,j)
          END DO
       END DO
       CALL balance(cor,tmp1,ew,ns,dx,outold)
       DO j=1,ns-1
          DO i=1,ew-1
             ff(i,j)=outold(i,j)
             tmp1(i,j)=0.0
          END DO
       END DO
       epsilon = 1.e-3
       CALL relax (tmp1,ff,rd,ew,ns,dx,epsilon,alphar)
       DO j=1,ns-1
          DO i=1,ew-1
             phiptc(i,k,j) = tmp1(i,j)
          END DO
       END DO
    END DO     


!  New geopotential field.
   DO j=1,ns-1
      DO k=1,kx
         DO i=1,ew-1
            phi2(i,k,j)  = phi0(i,k,j) + phiptc(i,k,j)
         END DO
      END DO
   END DO


   !  New temperature field.
    DO j=1,ns-1
       DO k=k00,kx
          DO i=1,ew-1
             IF( k .EQ.  2 ) THEN
                 tptc(i,k,j)=(-1./rconst)*(phiptc(i,k+1,j)-phiptc(i,k,j  ))/LOG(press(i,k+1,j)/press(i,k,j))
             ELSE IF ( k .EQ. kx ) THEN
                 tptc(i,k,j)=(-1./rconst)*(phiptc(i,k,j  )-phiptc(i,k-1,j))/LOG(press(i,k,j)/press(i,k-1,j))
             ELSE
                 tptc(i,k,j)=(-1./rconst)*(phiptc(i,k+1,j)-phiptc(i,k-1,j))/LOG(press(i,k+1,j)/press(i,k-1,j))
             END IF
             t2(i,k,j) = t0(i,k,j) + tptc(i,k,j)
             if(t2(i,k,j) .gt. 400) then
                print *,"interesting temperature "
                print *,t2(i,k,j),i,k,j,tptc(i,k,j)
                stop
             end if
           END DO
        END DO
    END DO


   !  Sea level pressure change.
      DO j=1,ns-1
         DO i=1,ew-1
            dph = phi2(i,k00,j)-phi1(i,k00,j)
            delpx(i,j) = rho*dph*0.01
         END DO
      END DO


    !  New SLP.
!      print *,"new slp",nstrm
      DO j=1,ns-1
         DO i=1,ew-1
            pslx(i,j) = pslx(i,j)+delpx(i,j) 
            grid%pslv_gc(i,j) = pslx(i,j) * 100.
!            print *,pslx(i,j)
         END DO
      END DO

  !  Set new geopotential at surface to terrain elevation.
     DO j=1,ns-1
        DO i=1,ew-1
           z2(i,1,j) = terrain(i,j) 
        END DO
     END DO

  !  Geopotential back to height.

     DO j=1,ns-1
        DO k=k00,kx
           DO i=1,ew-1
               z2(i,k,j) = phi2(i,k,j)/9.81 
            END DO
         END DO
     END DO
     

     !  New surface temperature, assuming same theta as from 1000 mb.
!     print *,"new surface temperature"
     DO j=1,ns-1
        DO i=1,ew-1
           ps = pslx(i,j)
           t2(i,1,j) = t2(i,k00,j)*((ps/1000.)**rovcp)
           if(t2(i,1,j) .gt. 400) then
              print *,"Interesting surface temperature"
              print *,t2(i,1,j),t2(i,k00,j),ps,i,j
              stop
           end if
        END DO
     END DO


     !  Set surface RH to the value from 1000 mb.
     DO j=1,ns-1
        DO i=1,ew-1
           rh2(i,1,j) = rh2(i,k00,j)
        END DO
     END DO

    !  Modification of tropical storm complete.
    PRINT '(A,I3,A)'       ,'         Bogus storm number ',nstrm,' completed.'

   do j = 1,ns-1
      do k = 1,nz
         do i = 1,ew
            u1(i,k,j) =  u2(i,k,j)
            grid%u_gc(i,k,j) = u2(i,k,j)
         end do
      end do
   end do

   do j = 1,ns
      do k = 1,nz
         do i = 1,ew-1
            v1(i,k,j)   = v2(i,k,j)
            grid%v_gc(i,k,j) = v2(i,k,j)
         end do
      end do
   end do

    do j = 1,ns-1
      do k = 1,nz
         do i = 1,ew-1  
            t1(i,k,j)   = t2(i,k,j)
            grid%t_gc(i,k,j) = t2(i,k,j)
            rh1(i,k,j)  = rh2(i,k,j)
            grid%rh_gc(i,k,j)  = rh2(i,k,j)
            phi1(i,k,j) = phi2(i,k,j)
            grid%ght_gc(i,k,j) = z2(i,k,j)
         END DO
      END DO
   END DO


END DO all_storms
 deallocate(u11)
 deallocate(v11)
 deallocate(t11)
 deallocate(rh11)
 deallocate(phi11)
 deallocate(u1)
 deallocate(v1)
 deallocate(t1)
 deallocate(rh1)
 deallocate(phi1)

 do j = 1,ns-1
    do i = 1,ew-1
       if(grid%ht_gc(i,j) .gt. 1) then
         grid%p_gc(i,1,j)  = grid%p_gc(i,1,j)  + (pslx(i,j) * 100. - old_slp(i,j))
         grid%psfc(i,j) = grid%psfc(i,j) + (pslx(i,j) * 100. - old_slp(i,j))
       else 
         grid%p_gc(i,1,j)  = pslx(i,j) * 100.
         grid%psfc(i,j) = pslx(i,j) * 100.
       end if
    end do
 end do

END SUBROUTINE tc_bogus

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!


   SUBROUTINE rankine(dx,dy,ds,nlvl,vwgt,rmax,vmax,uu,vv,psi,vor) 1

   !  Define analytical bogus vortex

      IMPLICIT NONE

      INTEGER nlvl
      REAL , DIMENSION(nlvl) :: uu, vv, psi, vor
      REAL , DIMENSION(nlvl) :: vwgt
      REAL :: dx,dy,ds,rmax,vmax
 
      REAL , PARAMETER :: alpha1= 1.
      REAL , PARAMETER :: alpha2= -0.75
      real :: pi


      INTEGER :: k
      REAL :: vr , ang , rr , term1 , bb , term2 , alpha


      pi = 3.141592653589793
      !  Wind component

      DO k=1,nlvl
         rr = SQRT(dx**2+dy**2)*ds
         IF ( rr .LT. rmax ) THEN
            alpha = 1.
         ELSE IF ( rr .GE. rmax ) THEN
            alpha = alpha2
         END IF
         vr = vmax * (rr/rmax)**(alpha)
         IF ( dx.GE.0. ) THEN
            ang = (pi/2.) - ATAN2(dy,MAX(dx,1.e-6))
            uu(k) = vwgt(k)*(-vr*COS(ang))
            vv(k) = vwgt(k)*( vr*SIN(ang))
         ELSE IF ( dx.LT.0. ) THEN
            ang = ((3.*pi)/2.) + ATAN2(dy,dx)
            uu(k) = vwgt(k)*(-vr*COS(ang))
            vv(k) = vwgt(k)*(-vr*SIN(ang))
         END IF
      END DO

      !  psi
      
      DO k=1,nlvl
         rr = SQRT(dx**2+dy**2)*ds
         IF ( rr .LT. rmax ) THEN
            psi(k) = vwgt(k) * (vmax*rr*rr)/(2.*rmax)
         ELSE IF ( rr .GE. rmax ) THEN
            IF (alpha1.EQ.1.0 .AND. alpha2.eq.-1.0) THEN
               psi(k) = vwgt(k) * vmax*rmax*(0.5+LOG(rr/rmax))
            ELSE IF (alpha1.EQ.1.0 .AND. alpha2.NE.-1.0) THEN
               term1 = vmax/(rmax**alpha1)*(rmax**(alpha1+1)/(alpha1+1))
               bb    = (rr**(alpha2+1)/(alpha2+1))-(rmax**(alpha2+1))/(alpha2+1)
               term2 = vmax/(rmax**alpha2)*bb
               psi(k) = vwgt(k) * (term1 + term2)
            END IF
         END IF
      END DO

      ! vort

      DO k=1,nlvl
         rr = SQRT(dx**2+dy**2)*ds
         IF ( rr .LT. rmax ) THEN
            vor(k) = vwgt(k) * (2.*vmax)/rmax
         ELSE IF ( rr .GE. rmax ) THEN
            vor(k) = vwgt(k) * ( (vmax/rmax**alpha2)*(rr**(alpha2-1.))*(1.+alpha2) )
         END IF
      END DO

   END SUBROUTINE rankine

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!


   SUBROUTINE vor(uin,vin,msfu,msfv,msfm,ew,ns,nz,ds,vort) 2

!Here we assume that the U and V's are still on the WRF staggered grid.
!The vorticity is then calculated at the mass points on the WRF grid.


      IMPLICIT NONE

      INTEGER :: jp1,jm1,ip1,im1,i,j,k
      INTEGER :: ns, ew, nz, k1

      REAL , DIMENSION(ew,nz,ns-1)   :: uin   !u values on unstaggered U grid
      REAL , DIMENSION(ew-1,nz,ns)   :: vin   !v values on unstaggered V grid
      REAL , DIMENSION(ew-1,nz,ns-1) :: vort  !vort is defined on the mass points

      REAL , DIMENSION(ew,ns-1)    :: msfu  !map scale factors on U staggered grid
      REAL , DIMENSION(ew-1,ns)    :: msfv  !map scale factors on V staggered grid
      REAL , DIMENSION(ew-1,ns-1)  :: msfm  !map scale factors on unstaggered grid

      real :: u(ew,ns-1),v(ew-1,ns)
      

      REAL :: ds

      REAL :: dsx,dsy , u1 , u2 , u3 , u4 , v1 , v2 , v3 , v4
      real :: dudy,dvdx,mm

      
      vort(:,:,:) = -999.
      do k = 1,nz

         do j = 1,ns-1
            do i = 1,ew
               u(i,j) = uin(i,k,j)
            end do
         end do


         do j = 1,ns
            do i = 1,ew-1
               v(i,j) = vin(i,k,j)
            end do
         end do

!Our indicies are from 2 to ns-2 and ew-2.  This is because out
!map scale factors are not defined for the entire grid.
         do j = 2,ns-2
            do i = 2,ew-2
               mm = msfm(i,j) * msfm(i,j)
               u1 = u(i  ,j-1)/msfu(i  ,j-1)
               u2 = u(i+1,j-1)/msfu(i+1,j-1)
               u3 = u(i+1,j+1)/msfu(i+1,j+1)
               u4 = u(i  ,j+1)/msfu(i  ,j+1)
               dudy = mm * (u4 + u3 -(u1 + u2)) /(4*ds)

               v1 = v(i-1,j  )/msfv(i-1,j)
               v2 = v(i+1,j  )/msfv(i+1,j)
               v3 = v(i-1 ,j+1)/msfv(i-1,j+1)
               v4 = v(i+1,j+1)/msfv(i+1,j+1)
               dvdx = mm * (v4 + v2 - (v1 + v3))/(4*ds)

               vort(i,k,j) = dvdx - dudy
            end do
         end do
!Our vorticity array goes out to ew-1 and ns-1 which is the 
!mass point grid dimensions.  
         do i = 2,ew-2
            vort(i,k,1)    = vort(i,k,2)    !bottom not corners
            vort(i,k,ns-1) = vort(i,k,ns-2) !top not corners
         end do

         do j = 1,ns-1
            vort(ew-1,k,j) = vort(ew-2,k,j) !right side including corners
            vort(1,k,j)    = vort(2,k,j)    !left side including corners
         end do

     end do ! this is the k loop end 

   END SUBROUTINE 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!


   SUBROUTINE diverg(uin,vin,msfu,msfv,msfm,ew,ns,nz,ds,div) 1

   !  Computes divergence on unstaggered grid.  The divergence is calculated
   !  at the mass points on the WRF grid.
   !  div = m*m (du/dx + dv/dy)

      IMPLICIT NONE

      INTEGER :: jp1,jm1,ip1,im1,i,j,k
      INTEGER :: ns, ew, nz, k1

      REAL , DIMENSION(ew,nz,ns-1)   :: uin   !u values on unstaggered U grid
      REAL , DIMENSION(ew-1,nz,ns)   :: vin   !v values on unstaggered V grid
      REAL , DIMENSION(ew-1,nz,ns-1) :: div   !divergence is calculate on the mass points
      REAL , DIMENSION(ew,ns-1)    :: msfu  !map scale factors on U staggered grid
      REAL , DIMENSION(ew-1,ns)    :: msfv  !map scale factors on V staggered grid
      REAL , DIMENSION(ew-1,ns-1)  :: msfm  !map scale factors on unstaggered grid

      real :: u(ew,ns-1),v(ew-1,ns)
      

      REAL :: ds

      REAL :: dsr,u1,u2,v1,v2
      real :: dudx,dvdy,mm,arg1,arg2

      dsr = 1/ds
      do k = 1,nz

         do j = 1,ns-1
            do i = 1,ew
               u(i,j) = uin(i,k,j)
            end do
         end do


         do j = 1,ns
            do i = 1,ew-1
               v(i,j) = vin(i,k,j)
            end do
         end do
!Our indicies are from 2 to ns-2 and ew-2.  This is because out
!map scale factors are not defined for the entire grid.
         do j = 2,ns-2
            do i = 2,ew-2
               mm = msfm(i,j) * msfm(i,j)
               u1 = u(i+1,j)/msfu(i+1,j)
               u2 = u(i  ,j)/msfu(i  ,j)
       
               v1 = v(i,j+1)/msfv(i,j+1)
               v2 = v(i,j)  /msfv(i,j)

               div(i,k,j) = mm * (u1 - u2 + v1 - v2) * dsr
            end do
          end do

!Our divergence array is defined on the mass points. 
         do i = 2,ew-2
            div(i,k,1)    = div(i,k,2)    !bottom not corners
            div(i,k,ns-1) = div(i,k,ns-2) !top not corners
         end do

         do j = 1,ns-1
            div(ew-1,k,j) = div(ew-2,k,j) !right side including corners
            div(1,k,j)    = div(2,k,j)    !left side including corners
         end do

     end do !end for the k loop

   END SUBROUTINE diverg

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!


   SUBROUTINE mxratprs (rh, t, ppa, ew, ns, nz, q, min_RH_value) 1

      
      IMPLICIT NONE

      INTEGER   :: i , ew , j , ns , k , nz


      REAL      :: min_RH_value
      REAL      :: ppa(ew-1,nz,ns-1)
      REAL      :: p( ew-1,nz,ns-1 )
      REAL      :: q (ew-1,nz,ns-1),rh(ew-1,nz,ns-1),t(ew-1,nz,ns-1)

      REAL      :: es
      REAL      :: qs
      REAL      :: cp              = 1004.0
      REAL      :: svp1,svp2,svp3
      REAL      :: celkel
      REAL      :: eps
      

      !  This function is designed to compute (q) from basic variables
      !  p (mb), t(K) and rh(0-100%) to give (q) in (kg/kg).

      
      p = ppa * 0.01

      DO j = 1, ns - 1
         DO k = 1, nz
            DO i = 1, ew - 1
                  rh(i,k,j) = MIN ( MAX ( rh(i,k,j) ,min_RH_value ) , 100. ) 
            END DO
        END DO
     END DO

      svp3   =  29.65
      svp1   =  0.6112
      svp2   =  17.67
      celkel =  273.15
         eps =  0.622

      DO j = 1, ns-1
         DO k = 1, nz  
            DO i = 1,ew-1
               es = svp1 * 10. * EXP(svp2 * (t(i,k,j) - celkel ) / (t(i,k,j) - svp3 ))
               qs = eps * es / (p(i,k,j) - es)
               q(i,k,j) = MAX(0.01 * rh(i,k,j) * qs,0.0)
            END DO
         END DO
      END DO

   END SUBROUTINE mxratprs

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

SUBROUTINE mass2_Ustag(field,dim1,dim2,dim3)

   IMPLICIT NONE

   INTEGER :: dim1 , dim2 , dim3
   REAL , DIMENSION(dim1,dim2,dim3) :: field,dummy

   dummy = 0.0
   dummy(:,2:dim2-1,:)         = ( field(:,1:dim2-2,:) + &
                                   field(:,2:dim2-1,:) ) * 0.5
   dummy(:,1,:)                = field(:,1,:)
   dummy(:,dim2,:)             = field(:,dim2-1,:)

   field                       =   dummy

END SUBROUTINE mass2_Ustag

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

SUBROUTINE mass2_Vstag(field,dim1,dim2,dim3)

   IMPLICIT NONE

   INTEGER :: dim1 , dim2 , dim3
   REAL , DIMENSION(dim1,dim2,dim3) :: field,dummy

   dummy = 0.0
   dummy(2:dim1-1,:,:)         = ( field(1:dim1-2,:,:) + &
                                   field(2:dim1-1,:,:) ) * 0.5
   dummy(1,:,:)                = field(1,:,:)
   dummy(dim1,:,:)             = field(dim1-1,:,:)

   field                       =   dummy

END SUBROUTINE mass2_Vstag


!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!


   SUBROUTINE relax (chi, ff, rd, ew, ns, ds, smallres, alpha) 5

      IMPLICIT NONE

      INTEGER, PARAMETER    :: mm = 20000

      INTEGER               :: i
      INTEGER               :: ie
      INTEGER               :: ew  !ew direction
      INTEGER               :: iter
      INTEGER               :: j
      INTEGER               :: je
      INTEGER               :: jm
      INTEGER               :: ns  !ns direction
      INTEGER               :: mi

      REAL                  :: alpha
      REAL                  :: alphaov4
      REAL                  :: chi(ew-1,ns-1)
      REAL                  :: chimx(ns-1) 
      REAL                  :: ds
      REAL                  :: epx
      REAL                  :: fac
      REAL                  :: ff(ew-1,ns-1)
      REAL                  :: rd(ew-1,ns-1)
      REAL                  :: rdmax(ns-1)
      REAL                  :: smallres

      LOGICAL               :: converged = .FALSE.

      fac = ds * ds
      alphaov4 = alpha * 0.25

      ie=ew-2
      je=ns-2

      DO j = 1, ns-1
         DO i = 1, ew-1
            ff(i,j) = fac * ff(i,j)
            rd(i,j) = 0.0
         END DO
      END DO

      iter_loop : DO iter = 1, mm
         mi = iter
         chimx = 0.0


         DO j = 2, ns-1
            DO i = 2, ew-1
               chimx(j) = MAX(ABS(chi(i,j)),chimx(j))
            END DO
         END DO

         epx = MAXVAL(chimx) * SMALLRES * 4.0 / alpha

         DO j = 2, ns-2
            DO i = 2, ew-2
               rd(i,j) = chi(i,j+1) + chi(i,j-1) + chi(i+1,j) + chi(i-1,j) - 4.0 * chi(i,j) - ff(i,j)
               chi(i,j) = chi(i,j) + rd(i,j) * alphaov4
            END DO
         END DO

         rdmax = 0.0

         DO j = 2, ns-2
            DO i = 2, ew-2
               rdmax(j) = MAX(ABS(rd(i,j)),rdmax(j))
            END DO
         END DO


         IF (MAXVAL(rdmax) .lt. epx) THEN
            converged = .TRUE.
            EXIT iter_loop
         END IF

      END DO iter_loop

      IF (converged ) THEN
!        PRINT '(A,I5,A)','Relaxation converged in ',mi,' iterations.'
      ELSE
         PRINT '(A,I5,A)','Relaxation did not converge in',mm,' iterations.'
         STOP 'no_converge'
      END IF


      do i = 2,ew-2
            chi(i,ns-1) = chi(i,ns-2) !top not including corners
            chi(i,1)    = chi(i,2)    !bottom not including corners
      end do

      do j = 2,ns-2
            chi(ew-1,j) = chi(ew-2,j) !right side not including corners
            chi(1,j)    = chi(2,j)    !left side not including corners
      end do

 !Fill in the corners 
      chi(1,1)       = chi(2,1)
      chi(ew-1,1)    = chi(ew-2,1)
      chi(1,ns-1)    = chi(2,ns-1)
      chi(ew-1,ns-1) = chi(ew-2,ns-1)



   END SUBROUTINE relax
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

   SUBROUTINE geowind(height,ew,ns,nz,ds,ug,vg) 1

      IMPLICIT NONE

      !     input       height   geopotential on wrf mass grid points
      !                 ns       wrf staggered V dimension n-s
      !                 ew       wrf staggered U dimension e-w
      !                 nz       number of vertical levels
      !
      !     output      ug       u component of geo wind on wrf staggered V points
      !                 vg       v component of geo wind on wrf staggered U points  

      INTEGER :: ew , ns , nz
      REAL :: ds
      REAL , DIMENSION(ew-1,nz,ns-1) :: height
      REAL , DIMENSION(ew,nz,ns-1) :: ug 
      REAL , DIMENSION(ew-1,nz,ns) :: vg

      REAL :: ds2r , h1 , h2 , h3 , h4, ds4r
      INTEGER :: i , j , k

      ds4r=1./(4.*ds)

! The height field comes in on the WRF mass points.  



! ug is the derivative of height in the ns direction  ug = -dheight/dy 
      ug(:,:,:) = -999.
      do j=2,ns-2
         do k=1,nz
            do i=2,ew-1
              h1 = height(i,k,j+1)
              h2 = height(i-1,k,j+1)
              h3 = height(i  ,k,j-1)
              h4 = height(i-1,k,j-1)
              ug(i,k,j) = -( (h1 + h2) - ( h3 + h4) ) * ds4r
           end do
        end do
      end do

       do i = 2,ew-1
          ug(i,:,1)    = ug(i,:,2)    !bottom not including corner points
          ug(i,:,ns-1) = ug(i,:,ns-2) !top not including corner points
       end do

       do j = 2,ns-2
          ug(1,:,j)  = ug(2,:,j)    !left side 
          ug(ew,:,j) = ug(ew-1,:,j) !right side 
       end do  
     
       ug(1,:,1)     = ug(2,:,1)         !Lower left hand corner
       ug(1,:,ns-1)  = ug(2,:,ns-1)      !upper left hand corner 
       ug(ew,:,1)    = ug(ew-1,:,1)      !Lower right hand corner
       ug(ew,:,ns-1) = ug(ew-1,:,ns-1)   !upper right hand corner 


! ug is the derivative of height in the ns direction  vg = dheight/dx 
    vg(:,:,:) = -999.
    DO j=2,ns-1
       DO k=1,nz
          DO i=2,ew-2
              h1 = height(i+1,k,j)
              h2 = height(i-1,k,j)
              h3 = height(i+1,k,j-1)
              h4 = height(i-1,k,j-1)
              vg(i,k,j) = ( (h1 + h3) - ( h2 + h4) ) * ds4r
          end do
       end do
    end do

    do i = 2,ew-2
       vg(i,:,1)  = vg(i,:,2)    !bottom not including corner points
       vg(i,:,ns) = vg(i,:,ns-1) !top not including corner points
    end do   

    do j = 2,ns-1
       vg(1,:,j)    = vg(2,:,j)    !left side not including corner points
       vg(ew-1,:,j) = vg(ew-2,:,j) !right side not including corner points
   end do  
      
   vg(1,:,1)     = vg(2,:,1)        !Lower left hand corner
   vg(1,:,ns)    = vg(2,:,ns)       !upper left hand corner    
   vg(ew-1,:,1)  = vg(ew-2,:,1)     !Lower right hand corner
   vg(ew-1,:,ns) = vg(ew-2,:,ns)    !upper right hand corner 
   

   END SUBROUTINE geowind
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!


   SUBROUTINE balance (f,psi,ew,ns,ds,out) 1

   !  Calculates the forcing terms in balance equation

   IMPLICIT NONE

      !  f       coriolis force
      !  psi     stream function
      !  ew, ns  grid points in east west, north south direction, respectively
      !  ds      grid distance
      !  out     output array
  
      INTEGER :: ew , ns,nslast,ewlast,ifill
      REAL , DIMENSION(ew-1,ns-1) :: f,psi,out
      REAL :: ds

      REAL :: psixx , psiyy , psiy , psix, psixy 
      REAL :: dssq , ds2 , dssq4,arg1,arg2,arg3,arg4

      INTEGER :: i , j

      dssq  = ds * ds
      ds2   = ds * 2.
      dssq4 = ds * ds * 4.

!The forcing terms are calculated on the WRF mass points.
      out(:,:) = -999.0
      DO j=2,ns-2
         DO i=2,ew-2
            psiyy = ( psi(i,j+1) + psi(i,j-1) - 2.*psi(i,j) ) / dssq
            psixx = ( psi(i+1,j) + psi(i-1,j) - 2.*psi(i,j) ) / dssq
            psiy  = ( psi(i,j+1) - psi(i,j-1) ) / ds2
            psix  = ( psi(i+1,j) - psi(i-1,j) ) / ds2
            psixy = ( psi(i+1,j+1)+psi(i-1,j-1)-psi(i-1,j+1)-psi(i+1,j-1)) / dssq4

            arg1  = f(i,j)* (psixx+psiyy)
            arg2  = ( ( f(i,j+1) - f(i,j-1)) / ds2 ) * psiy
            arg3  = ( ( f(i+1,j) - f(i-1,j)) / ds2 ) * psix
            arg4  = 2 *(psixy*psixy-psixx*psiyy)
            out(i,j)= arg1 + arg2  + arg3 - arg4
         END DO
      END DO

      do i = 2,ew-2
            out(i,ns-1) = out(i,ns-2) !top not including corners
            out(i,1)    = out(i,2)    !bottom not including corners
      end do

      do j = 2,ns-2
            out(ew-1,j) = out(ew-2,j) !right side not including corners
            out(1,j)    = out(2,j)    !left side not including corners
      end do

 !Fill in the corners 
      out(1,1)       = out(2,1)
      out(ew-1,1)    = out(ew-2,1)
      out(1,ns-1)    = out(2,ns-1)
      out(ew-1,ns-1) = out(ew-2,ns-1)

   END SUBROUTINE balance

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!


   SUBROUTINE qvtorh ( q , t , p , k00, ew , ns , nz , rh, min_RH_value   ) 1

      IMPLICIT NONE

      INTEGER , INTENT(IN) :: ew , ns , nz , k00
      REAL , INTENT(IN) ,  DIMENSION(ew-1,nz,ns-1) :: q ,t, p
      REAL , INTENT(OUT) , DIMENSION(ew-1,nz,ns-1) :: rh

      real    min_RH_value

      !  Local variables.

      INTEGER :: i , j , k,fill
      REAL      :: es
      REAL      :: qs
      REAL      :: cp              = 1004.0
      REAL      :: svp1,svp2,svp3
      REAL      :: celkel
      REAL      :: eps
      svp3   =  29.65
      svp1   =  0.6112
      svp2   =  17.67
      celkel =  273.15
         eps =  0.622

      DO j = 1 , ns - 1
         DO k = k00 , nz
            DO i = 1 , ew -1
               es = svp1 * 10. * EXP(svp2 * (t(i,k,j) - celkel ) / (t(i,k,j) - svp3 ))
               qs = eps*es/(0.01*p(i,k,j) - es)
               rh(i,k,j) = MIN ( 100. , MAX ( 100.*q(i,k,j)/qs , min_RH_value ) )
            END DO
         END DO
      END DO

   END SUBROUTINE qvtorh

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!


   SUBROUTINE stagger_rankine_winds(utcp,vtcp,ew,ns,nz) 1


!utcp and vtcp are the output winds of the rankine subroutine
!The winds are calculated on the mass points of the WRF grid
!so they need to be staggered out to the WRF staggering. 
!The utcp is placed on the staggered ew wind grid.
!The vtcp is placed on the staggered ns wind grid.

!ew is the full grid dimension in the ew direction.
!ns is the full grid dimension in the ns direction.

!nz is the number of vertical levels.

 INTEGER :: ew, ns, nz, i,k,j
 REAL utcp(ew,nz,ns-1),  vtcp(ew-1,nz,ns)

!----------------------------------------------------
!Stagger UTCP
  DO j=1,ns-1
     DO i=2,ew-1
        DO k=1,nz
           utcp(i,k,j)  = ( utcp(i-1,k,j) + utcp(i,k,j) ) /2
        end do
    end do
  end do

!Fill in U's along the left and right side.
 do j = 1,ns
    utcp(1,:,j)  = utcp(2,:,j)
    utcp(ew,:,j) = utcp(ew-1,:,j)
 end do


!Stagger VTCP
  DO j=2,ns-1
     DO i=1,ew-1
        DO k=1,nz
           vtcp(i,k,j)  = ( vtcp(i,k,j+1) + vtcp(i,k,j-1) ) /2
        end do
    end do
  end do

!Fill in V's along the bottom and bottom.   
  do i = 1,ew
     vtcp(i,:,1)  = vtcp(i,:,2)
     vtcp(i,:,ns) = vtcp(i,:,ns-1)
  end do


   END SUBROUTINE stagger_rankine_winds

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!


  subroutine final_ew_velocity(u2,u1,chi,psi,utcr,dx,ew,ns,nz) 1,2
  

  integer :: ew,ns,nz,i,j,k
  real :: u1(ew,nz,ns-1),utcr(ew,nz,ns-1)
  real :: psi(ew-1,nz,ns-1),chi(ew-1,nz,ns-1)  
! input arrays: 
!       u1 is the original wind coming in from the metgrid file.
!       utcr is the rankine winds rotated to the map projection put on u WRF staggered grid points.

! psi comes in on the WRF mass points.  psi is the perturbation field
! calculated from the relaxation of the vorticity.

! chi is the relaxation of the divergent winds on WRF mass points.


! ew is the grid dimension of the WRF ew staggered wind
! ns is the grid dimension of the WRF ns staggered wind
! nz is the number of vertical levels
! dx is the grid spacing
!-------------------------------------------------------------------------------------------

  real :: u2(ew,nz,ns-1)
! output array u2 is the new wind in the ew direction. Is is on WRF staggering.
!------------------------------------------------------------------------------------------- 
  
  real upos(ew,nz,ns-1),u0(ew,nz,ns-1),uchi(ew,nz,ns-1) 
! upos is the derivative of psi in the ns direction  u = -dpsi/dy 
! u0 is the background ew velocity
! uchi is the array chi on the u staggered grid.

  real    :: dx,arg1,arg2

!-------------------------------------------------------------
!Take the derivative of chi in the ew direction.
   uchi(:,:,:) = -999.
   DO k=1,nz !start of k loop
      DO j=1,ns-1
         DO i=2,ew-1
            uchi(i,k,j) = ( chi(i,k,j) - chi(i-1,k,j) )/dx
         END DO
      END DO
     
      do j = 1,ns-1
       uchi(1,k,j)    = uchi(2,k,j)    !fill in the left side
       uchi(ew,k,j)   = uchi(ew-1,k,j) !fill in the right side  
      end do
   end do !k loop

!-----------------------------------------------------------------------------------------
! Take the derivative of psi in the ns direction.
    upos(:,:,:) = -999.
    DO k=1,nz

       DO j=2,ns-2
          DO i=2,ew-1
              arg1 = psi(i,k,j+1) + psi(i-1,k,j+1)
              arg2 = psi(i,k,j-1) + psi(i-1,k,j-1)
              upos(i,k,j) = -( arg1 - arg2 )/(4.*dx)
          END DO
       END DO

       do i = 2,ew-1
          upos(i,k,1)    = upos(i,k,2)    !bottom not including corner points
          upos(i,k,ns-1) = upos(i,k,ns-2) !top not including corner points
       end do

       do j = 1,ns-2
          upos(1,k,j)  = upos(2,k,j)    !left side not including corners
          upos(ew,k,j) = upos(ew-1,k,j) !right side not including corners
       end do       


       upos(1,k,1)     = upos(2,k,1)         !Lower left hand corner
       upos(1,k,ns-1)  = upos(2,k,ns-1)      !upper left hand corner 
       upos(ew,k,1)    = upos(ew-1,k,1)      !Lower right hand corner
       upos(ew,k,ns-1) = upos(ew-1,k,ns-1)   !upper right hand corner 

    end do  !k loop for dspi/dy



!-----------------------------------------------------------------------------------------

!  Background u field.
!  Subtract the first quess wind field from the original winds.
   do j=1,ns-1
      do k=1,nz
         do i=1,ew
            u0(i,k,j) = u1(i,k,j)-(upos(i,k,j)+uchi(i,k,j))
         end do
      end do
   end do
   

!   Calculate the final velocity
    do j=1,ns-1
       do k=1,nz
          do i=1,ew
             u2(i,k,j) = u0(i,k,j)+utcr(i,k,j)
          end do
       end do
    end do

 end subroutine final_ew_velocity

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!


  subroutine final_ns_velocity(v2,v1,chi,psi,vtcr,dx,ew,ns,nz) 1,2
  

  integer :: ew,ns,nz,i,j,k
  real :: v1(ew-1,nz,ns),vtcr(ew-1,nz,ns)
  real :: psi(ew-1,nz,ns-1),chi(ew-1,nz,ns-1)  
! input arrays: 
!       v1 is the original wind coming in from the metgrid file.
!       vtcr is the is the rankine winds rotated to the map projection put on v WRF staggered grid points.

! psi comes on the WRF mass points.  psi is the perturbation field
! calculated from the relaxation of the vorticity.

! chi is the relaxation of the divergent winds on WRF mass points.

! ew is the grid dimension of the WRF ew staggered wind
! ns is the grid dimension of the WRF ns staggered wind
! nz is the number of vertical levels


  real :: v2(ew-1,nz,ns)
! output array v2 is the new wind in the ns direction. Is is on WRF staggering.

  
  real vpos(ew-1,nz,ns),v0(ew-1,nz,ns),vchi(ew-1,nz,ns)
! vpos is the derivative of psi in the ew direction  v = dpsi/dx 
! v0 is the background ns velocity
! vchi is the relaxation of the divergent wind put on v WRF staggered grid points.

  real    :: dx,arg1,arg2


!-----------------------------------------------------------------------------------------
 vchi(:,:,:) = -999.0
!The derivative dchi in the ns direction.
    do k = 1,nz
       DO j=2,ns-1
          DO i=1,ew-1
              vchi(i,k,j) = ( chi(i,k,j) - chi(i,k,j-1))/dx
          END DO
       END DO

    do i = 1,ew-1
       vchi(i,k,1)  = vchi(i,k,2)
       vchi(i,k,ns) = vchi(i,k,ns-1)
    end do
       
    end do !end of k loop

!-----------------------------------------------------------------------------------------
!Take the derivative of psi in the ew direction.
    vpos(:,:,:) = -999.

    DO k=1,nz
       DO j=2,ns-1
          DO i=2,ew-2
              arg1 = psi(i+1,k,j) + psi(i+1,k,j-1)
              arg2 = psi(i-1,k,j) + psi(i-1,k,j-1)
              vpos(i,k,j) =  ( arg1 - arg2 )/(4.*dx)
          END DO
       END DO

       do i = 2,ew-2
          vpos(i,k,1)  = vpos(i,k,2)    !bottom not including corner points
          vpos(i,k,ns) = vpos(i,k,ns-1) !top not including corner points
      end do   

       do j = 1,ns
          vpos(1,k,j)    = vpos(2,k,j)    !left side not including corner points
          vpos(ew-1,k,j) = vpos(ew-2,k,j) !right side not including corner points
      end do  


      vpos(1,k,1)     = vpos(2,k,1)        !Lower left hand corner
      vpos(1,k,ns)    = vpos(2,k,ns)       !upper left hand corner    
      vpos(ew-1,k,1)  = vpos(ew-2,k,1)     !Lower right hand corner
      vpos(ew-1,k,ns) = vpos(ew-2,k,ns)    !upper right hand corner   
   
    END DO!k loop for dspi/dx
    

    do j=1,ns
       do k=1,nz
          do i=1,ew-1
              v0(i,k,j) = v1(i,k,j)-(vpos(i,k,j)+vchi(i,k,j))
              if( v0(i,k,j) .gt. 100.) then
                print *,vchi(i,k,j),i,k,j
                stop
              end if
          end do
       end do
    end do
    

!   Calculate the final velocity
    do j=1,ns
       do k=1,nz
          do i=1,ew-1
             v2(i,k,j) = v0(i,k,j)+vtcr(i,k,j)
          end do
       end do
    end do

    end subroutine final_ns_velocity
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!     

subroutine final_RH(rh2,rh0,rhmx,strmci,strmcj,rmax_nstrm,ew,ns,nz,k00, & 1
                    dx,ew_gcntr,ns_gcntr,r_vor2)



     integer :: ew,ns,nz
     real :: rh2(ew-1,nz,ns-1)  !The final output relative humidity.
     real :: rh0(ew-1,nz,ns-1)  !First quess rh read from the metgrid input file.
     real :: rhmx(nz)
     real :: ew_gcntr !ew grid center as returned from the map projection routines.
     real :: ns_gcntr !ns grid center as returned from the map projection routines.
     real :: dx       !grid spacing 
     real :: rmax_nstrm


!Local real variables
     real :: sum_rh,avg_rh,rh_min,rhbkg,rhbog,r_ratio
     real :: rad
     real :: rhtc(ew-1,nz,ns-1)

     integer :: nct,k00,i,j,k,ew_mvc,ns_mvc
     integer :: strmci(nz), strmcj(nz)


!-----------------------------------------------------------------------
     DO k=k00,nz
        rh_max= rhmx(k)
        ew_mvc = strmci(k)
        ns_mvc = strmcj(k)
   

        sum_rh = 0.
        nct = 0
        DO j=1,ns-1
           DO i=1,ew-1
              rad = SQRT(REAL(i-ew_mvc)**2.+REAL(j-ns_mvc)**2.)*dx
              IF ( (rad .LT. r_vor2).AND.(rad .GE. 0.8*r_vor2) ) THEN
                  sum_rh = sum_rh + rh0(i,k,j)
                  nct = nct + 1
              END IF
           END DO
        END DO
        avg_rh = sum_rh/MAX(REAL(nct),1.)
   
        DO j=1,ns-1
            DO i=1,ew-1
               rh_min = avg_rh 
               rad = SQRT((REAL(i)-ew_gcntr)**2.+(REAL(j)-ns_gcntr)**2.)*dx
               IF ( rad .LE. rmax_nstrm ) THEN
                  rhtc(i,k,j) = rh_max
               ELSE
                  rhtc(i,k,j) = (rmax_nstrm/rad)*rh_max+(1.-(rmax_nstrm/rad))*rh_min
               END IF
            END DO
         END DO
     END DO


     !  New RH.
     DO j=1,ns-1
        DO k=k00,nz
           DO i=1,ew-1
              rhbkg = rh0(i,k,j)
              rhbog = rhtc(i,k,j)
              rad = SQRT((REAL(i)-ew_mvc)**2.+(REAL(j)-ns_mvc)**2.)*dx
               IF ( (rad.GT.rmax_nstrm) .AND. (rad.LE.r_vor2) ) THEN
                    r_ratio = (rad-rmax_nstrm)/(r_vor2-rmax_nstrm)
                    rh2(i,k,j) = ((1.-r_ratio)*rhbog) + (r_ratio*rhbkg)
              ELSE IF (rad .LE. rmax_nstrm ) THEN
                    rh2(i,k,j) = rhbog
              ELSE
                    rh2(i,k,j) = rhbkg
              END IF

          END DO
        END DO
    END DO

 

    end subroutine final_RH

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!