!! MODULE module_cu_sas 2 CONTAINS !----------------------------------------------------------------- SUBROUTINE CU_SAS(DT,ITIMESTEP,STEPCU, & 1,7 RTHCUTEN,RQVCUTEN,RQCCUTEN,RQICUTEN, & RUCUTEN,RVCUTEN, & RAINCV,PRATEC,HTOP,HBOT, & U3D,V3D,W,T3D,QV3D,QC3D,QI3D,PI3D,RHO3D, & DZ8W,PCPS,P8W,XLAND,CU_ACT_FLAG, & P_QC, & MOMMIX, & ! gopal's doing PGCON,sas_mass_flux, & shalconv,shal_pgcon, & HPBL2D,EVAP2D,HEAT2D, & !Kwon for shallow convection P_QI,P_FIRST_SCALAR, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) !------------------------------------------------------------------- USE MODULE_GFS_MACHINE , ONLY : kind_phys USE MODULE_GFS_FUNCPHYS , ONLY : gfuncphys USE MODULE_GFS_PHYSCONS, grav => con_g, CP => con_CP, HVAP => con_HVAP & &, RV => con_RV, FV => con_fvirt, T0C => con_T0C & &, CVAP => con_CVAP, CLIQ => con_CLIQ & &, EPS => con_eps, EPSM1 => con_epsm1 & &, ROVCP => con_rocp, RD => con_rd !------------------------------------------------------------------- IMPLICIT NONE !------------------------------------------------------------------- !-- U3D 3D u-velocity interpolated to theta points (m/s) !-- V3D 3D v-velocity interpolated to theta points (m/s) !-- TH3D 3D potential temperature (K) !-- T3D temperature (K) !-- QV3D 3D water vapor mixing ratio (Kg/Kg) !-- QC3D 3D cloud mixing ratio (Kg/Kg) !-- QI3D 3D ice mixing ratio (Kg/Kg) !-- P8w 3D pressure at full levels (Pa) !-- Pcps 3D pressure (Pa) !-- PI3D 3D exner function (dimensionless) !-- rr3D 3D dry air density (kg/m^3) !-- RUBLTEN U tendency due to ! PBL parameterization (m/s^2) !-- RVBLTEN V tendency due to ! PBL parameterization (m/s^2) !-- RTHBLTEN Theta tendency due to ! PBL parameterization (K/s) !-- RQVBLTEN Qv tendency due to ! PBL parameterization (kg/kg/s) !-- RQCBLTEN Qc tendency due to ! PBL parameterization (kg/kg/s) !-- RQIBLTEN Qi tendency due to ! PBL parameterization (kg/kg/s) ! !-- MOMMIX MOMENTUM MIXING COEFFICIENT (can be set in the namelist) !-- RUCUTEN U tendency due to Cumulus Momentum Mixing (gopal's doing for SAS) !-- RVCUTEN V tendency due to Cumulus Momentum Mixing (gopal's doing for SAS) ! !-- CP heat capacity at constant pressure for dry air (J/kg/K) !-- GRAV acceleration due to gravity (m/s^2) !-- ROVCP R/CP !-- RD gas constant for dry air (J/kg/K) !-- ROVG R/G !-- P_QI species index for cloud ice !-- dz8w dz between full levels (m) !-- z height above sea level (m) !-- PSFC pressure at the surface (Pa) !-- UST u* in similarity theory (m/s) !-- PBL PBL height (m) !-- PSIM similarity stability function for momentum !-- PSIH similarity stability function for heat !-- HFX upward heat flux at the surface (W/m^2) !-- QFX upward moisture flux at the surface (kg/m^2/s) !-- TSK surface temperature (K) !-- GZ1OZ0 log(z/z0) where z0 is roughness length !-- WSPD wind speed at lowest model level (m/s) !-- BR bulk Richardson number in surface layer !-- DT time step (s) !-- rvovrd R_v divided by R_d (dimensionless) !-- EP1 constant for virtual temperature (R_v/R_d - 1) (dimensionless) !-- KARMAN Von Karman constant !-- ids start index for i in domain !-- ide end index for i in domain !-- jds start index for j in domain !-- jde end index for j in domain !-- kds start index for k in domain !-- kde end index for k in domain !-- ims start index for i in memory !-- ime end index for i in memory !-- jms start index for j in memory !-- jme end index for j in memory !-- kms start index for k in memory !-- kme end index for k in memory !-- its start index for i in tile !-- ite end index for i in tile !-- jts start index for j in tile !-- jte end index for j in tile !-- kts start index for k in tile !-- kte end index for k in tile !------------------------------------------------------------------- INTEGER :: ICLDCK INTEGER, INTENT(IN) :: ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte, & ITIMESTEP, & !NSTD P_FIRST_SCALAR, & P_QC, & P_QI, & STEPCU REAL, INTENT(IN) :: & DT REAL, OPTIONAL, INTENT(IN) :: PGCON,sas_mass_flux,shal_pgcon INTEGER, OPTIONAL, INTENT(IN) :: shalconv REAL(kind=kind_phys) :: PGCON_USE,SHAL_PGCON_USE,massf INTEGER :: shalconv_use REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(INOUT) :: & RQCCUTEN, & RQICUTEN, & RQVCUTEN, & RTHCUTEN REAL, DIMENSION(ims:ime, jms:jme, kms:kme), INTENT(INOUT) :: & RUCUTEN, & RVCUTEN REAL, OPTIONAL, INTENT(IN) :: MOMMIX REAL, DIMENSION( ims:ime , jms:jme ), OPTIONAL, & INTENT(IN) :: HPBL2D,EVAP2D,HEAT2D !Kwon for sha REAL, DIMENSION(ims:ime, jms:jme), INTENT(IN) :: & XLAND REAL, DIMENSION(ims:ime, jms:jme), INTENT(INOUT) :: & RAINCV, PRATEC REAL, DIMENSION(ims:ime, jms:jme), INTENT(OUT) :: & HBOT, & HTOP LOGICAL, DIMENSION(IMS:IME,JMS:JME), INTENT(INOUT) :: & CU_ACT_FLAG REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(IN) :: & DZ8W, & P8w, & Pcps, & PI3D, & QC3D, & QI3D, & QV3D, & RHO3D, & T3D, & U3D, & V3D, & W !--------------------------- LOCAL VARS ------------------------------ REAL, DIMENSION(ims:ime, jms:jme) :: & PSFC REAL, DIMENSION(its:ite, jts:jte) :: & RAINCV1, PRATEC1 REAL, DIMENSION(its:ite, jts:jte) :: & RAINCV2, PRATEC2 REAL (kind=kind_phys) :: & DELT, & DPSHC, & RDELT, & RSEED REAL (kind=kind_phys), DIMENSION(its:ite) :: & CLDWRK, & PS, & RCS, & RN, & SLIMSK, & HPBL,EVAP,HEAT !Kwon for shallow convection REAL (kind=kind_phys), DIMENSION(its:ite, kts:kte+1) :: & PRSI REAL (kind=kind_phys), DIMENSION(its:ite, kts:kte) :: & DEL, & DOT, & PHIL, & PRSL, & PRSLK, & Q1, & T1, & U1, & V1, & ZI, & ZL REAL (kind=kind_phys), DIMENSION(its:ite, kts:kte, 2) :: & QL INTEGER, DIMENSION(its:ite) :: & KBOT, & KTOP, & KCNV INTEGER :: & I, & IGPVS, & IM, & J, & JCAP, & K, & KM, & KP, & KX, & NCLOUD DATA IGPVS/0/ !----------------------------------------------------------------------- ! if(present(shalconv)) then shalconv_use=shalconv else #if (NMM_CORE==1) shalconv_use=0 #else #if (EM_CORE==1) shalconv_use=1 #else shalconv_use=0 #endif #endif endif if(present(pgcon)) then pgcon_use = pgcon else ! pgcon_use = 0.7 ! Gregory et al. (1997, QJRMS) pgcon_use = 0.55 ! Zhang & Wu (2003,JAS), used in GFS (25km res spectral) ! pgcon_use = 0.2 ! HWRF, for model tuning purposes ! pgcon_use = 0.3 ! GFDL, or so I am told ! For those attempting to tune pgcon: ! The value of 0.55 comes from an observational study of ! synoptic-scale deep convection and 0.7 came from an ! incorrect fit to the same data. That value is likely ! correct for deep convection at gridscales near that of GFS, ! but is questionable in shallow convection, or for scales ! much finer than synoptic scales. ! Then again, the assumptions of SAS break down when the ! gridscale is near the convection scale anyway. In a large ! storm such as a hurricane, there is often no environment to ! detrain into since adjancent gridsquares are also undergoing ! active convection. Each gridsquare will no longer have many ! updrafts and downdrafts. At sub-convective timescales, you ! will find unstable columns for many (say, 5 second length) ! timesteps in a real atmosphere during a convection cell's ! lifetime, so forcing it to be neutrally stable is unphysical. ! Hence, in scales near the convection scale (cells have ! ~0.5-4km diameter in hurricanes), this parameter is more of a ! tuning parameter to get a scheme that is inappropriate for ! that resolution to do a reasonable job. ! Your mileage might vary. ! - Sam Trahan endif if(present(sas_mass_flux)) then massf=sas_mass_flux ! Use this to reduce the fluxes added by SAS to prevent ! computational instability as a result of large fluxes. else massf=9e9 ! large number to disable check endif if(present(shal_pgcon)) then if(shal_pgcon>=0) then shal_pgcon_use = shal_pgcon else ! shal_pgcon<0 means use deep pgcon shal_pgcon_use = pgcon_use endif else ! Default: Same as deep convection pgcon shal_pgcon_use = pgcon_use ! Read the warning above though. It may be advisable for ! these to be different. endif DO J=JTS,JTE DO I=ITS,ITE CU_ACT_FLAG(I,J)=.TRUE. ENDDO ENDDO IM=ITE-ITS+1 KX=KTE-KTS+1 JCAP=126 DPSHC=30_kind_phys DELT=DT*STEPCU RDELT=1./DELT NCLOUD=1 DO J=jms,jme DO I=ims,ime PSFC(i,j)=P8w(i,kms,j) ENDDO ENDDO if(igpvs.eq.0) CALL GFUNCPHYS igpvs=1 !------------- J LOOP (OUTER) -------------------------------------------------- big_outer_j_loop: DO J=jts,jte ! --------------- compute zi and zl ----------------------------------------- DO i=its,ite ZI(I,KTS)=0.0 ENDDO DO k=kts+1,kte KM=K-1 DO i=its,ite ZI(I,K)=ZI(I,KM)+dz8w(i,km,j) ENDDO ENDDO DO k=kts+1,kte KM=K-1 DO i=its,ite ZL(I,KM)=(ZI(I,K)+ZI(I,KM))*0.5 ENDDO ENDDO DO i=its,ite ZL(I,KTE)=2.*ZI(I,KTE)-ZL(I,KTE-1) ENDDO ! --------------- end compute zi and zl ------------------------------------- DO i=its,ite PS(i)=PSFC(i,j)*.001 RCS(i)=1. SLIMSK(i)=ABS(XLAND(i,j)-2.) ENDDO #if (NMM_CORE == 1) if(shalconv_use==1) then DO i=its,ite HPBL(I) = HPBL2D(I,J) !kwon for shallow convection EVAP(I) = EVAP2D(I,J) !kwon for shallow convection HEAT(I) = HEAT2D(I,J) !kwon for shallow convection ENDDO endif #endif DO i=its,ite PRSI(i,kts)=PS(i) ENDDO DO k=kts,kte kp=k+1 DO i=its,ite PRSL(I,K)=Pcps(i,k,j)*.001 PHIL(I,K)=ZL(I,K)*GRAV DOT(i,k)=-5.0E-4*GRAV*rho3d(i,k,j)*(w(i,k,j)+w(i,kp,j)) ENDDO ENDDO DO k=kts,kte DO i=its,ite DEL(i,k)=PRSL(i,k)*GRAV/RD*dz8w(i,k,j)/T3D(i,k,j) U1(i,k)=U3D(i,k,j) V1(i,k)=V3D(i,k,j) Q1(i,k)=QV3D(i,k,j)/(1.+QV3D(i,k,j)) T1(i,k)=T3D(i,k,j) QL(i,k,1)=QI3D(i,k,j)/(1.+QI3D(i,k,j)) QL(i,k,2)=QC3D(i,k,j)/(1.+QC3D(i,k,j)) PRSLK(I,K)=(PRSL(i,k)*.01)**ROVCP ENDDO ENDDO DO k=kts+1,kte+1 km=k-1 DO i=its,ite PRSI(i,k)=PRSI(i,km)-del(i,km) ENDDO ENDDO CALL SASCNVN(IM,IM,KX,JCAP,DELT,DEL,PRSL,PS,PHIL, & QL,Q1,T1,U1,V1,RCS,CLDWRK,RN,KBOT, & KTOP,KCNV,SLIMSK,DOT,NCLOUD,PGCON_USE,massf) ! do i=its,ite RAINCV1(I,J)=RN(I)*1000./STEPCU PRATEC1(I,J)=RN(I)*1000./(STEPCU * DT) enddo ! do i=its,ite RAINCV2(I,J)=0. PRATEC2(I,J)=0. enddo ! if_shallow_conv: if(shalconv_use==1) then #if (NMM_CORE == 1) ! NMM calls the new shallow convection developed by J Han ! (Added to WRF by Y.Kwon) call shalcnv(im,im,kx,jcap,delt,del,prsl,ps,phil,ql, & & q1,t1,u1,v1,rcs,rn,kbot,ktop,kcnv,slimsk, & & dot,ncloud,hpbl,heat,evap,shal_pgcon_use) ! DO I=ITS,ITE RAINCV2(I,J)=RN(I)*1000./STEPCU PRATEC2(I,J)=RN(I)*1000./(STEPCU * DT) ENDDO ! #else #if (EM_CORE == 1) ! NOTE: ARW should be able to call the new shalcnv here, but ! they need to add the three new variables, so I'm leaving the ! old shallow convection call here - Sam Trahan CALL OLD_ARW_SHALCV(IM,IM,KX,DELT,DEL,PRSI,PRSL,PRSLK,KCNV,Q1,T1,DPSHC) #else ! Shallow convection is untested for other cores. #endif #endif endif if_shallow_conv DO I=ITS,ITE RAINCV(I,J)= RAINCV1(I,J) + RAINCV2(I,J) PRATEC(I,J)= PRATEC1(I,J) + PRATEC2(I,J) HBOT(I,J)=KBOT(I) HTOP(I,J)=KTOP(I) ENDDO DO K=KTS,KTE DO I=ITS,ITE RTHCUTEN(I,K,J)=(T1(I,K)-T3D(I,K,J))/PI3D(I,K,J)*RDELT RQVCUTEN(I,K,J)=(Q1(I,K)/(1.-q1(i,k))-QV3D(I,K,J))*RDELT ENDDO ENDDO !=============================================================================== ! ADD MOMENTUM MIXING TERM AS TENDENCIES. This is gopal's doing for SAS ! MOMMIX is the reduction factor set to 0.7 by default. Because NMM has ! divergence damping term, a reducion factor for cumulum mixing may be ! required otherwise storms were too weak. !=============================================================================== ! #if (NMM_CORE == 1) DO K=KTS,KTE DO I=ITS,ITE ! RUCUTEN(I,J,K)=MOMMIX*(U1(I,K)-U3D(I,K,J))*RDELT ! RVCUTEN(I,J,K)=MOMMIX*(V1(I,K)-V3D(I,K,J))*RDELT RUCUTEN(I,J,K)=(U1(I,K)-U3D(I,K,J))*RDELT RVCUTEN(I,J,K)=(V1(I,K)-V3D(I,K,J))*RDELT ENDDO ENDDO #endif IF(P_QC .ge. P_FIRST_SCALAR)THEN DO K=KTS,KTE DO I=ITS,ITE RQCCUTEN(I,K,J)=(QL(I,K,2)/(1.-ql(i,k,2))-QC3D(I,K,J))*RDELT ENDDO ENDDO ENDIF IF(P_QI .ge. P_FIRST_SCALAR)THEN DO K=KTS,KTE DO I=ITS,ITE RQICUTEN(I,K,J)=(QL(I,K,1)/(1.-ql(i,k,1))-QI3D(I,K,J))*RDELT ENDDO ENDDO ENDIF ENDDO big_outer_j_loop ! Outer most J loop END SUBROUTINE CU_SAS !==================================================================== SUBROUTINE sasinit(RTHCUTEN,RQVCUTEN,RQCCUTEN,RQICUTEN, & 1 RUCUTEN,RVCUTEN, & RESTART,P_QC,P_QI,P_FIRST_SCALAR, & allowed_to_read, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) !-------------------------------------------------------------------- IMPLICIT NONE !-------------------------------------------------------------------- LOGICAL , INTENT(IN) :: allowed_to_read,restart INTEGER , INTENT(IN) :: ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte INTEGER , INTENT(IN) :: P_FIRST_SCALAR, P_QI, P_QC REAL, DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(OUT) :: & RTHCUTEN, & RQVCUTEN, & RQCCUTEN, & RQICUTEN REAL, DIMENSION( ims:ime , jms:jme , kms:kme ) , INTENT(OUT) :: & RUCUTEN, & ! gopal's doing for SAS RVCUTEN INTEGER :: i, j, k, itf, jtf, ktf jtf=min0(jte,jde-1) ktf=min0(kte,kde-1) itf=min0(ite,ide-1) #ifdef HWRF !zhang's doing IF(.not.restart .or. .not.allowed_to_read)THEN !end of zhang's doing #else IF(.not.restart)THEN #endif DO j=jts,jtf DO k=kts,ktf DO i=its,itf RTHCUTEN(i,k,j)=0. RQVCUTEN(i,k,j)=0. RUCUTEN(i,j,k)=0. RVCUTEN(i,j,k)=0. ENDDO ENDDO ENDDO IF (P_QC .ge. P_FIRST_SCALAR) THEN DO j=jts,jtf DO k=kts,ktf DO i=its,itf RQCCUTEN(i,k,j)=0. ENDDO ENDDO ENDDO ENDIF IF (P_QI .ge. P_FIRST_SCALAR) THEN DO j=jts,jtf DO k=kts,ktf DO i=its,itf RQICUTEN(i,k,j)=0. ENDDO ENDDO ENDDO ENDIF ENDIF END SUBROUTINE sasinit ! ------------------------------------------------------------------------ SUBROUTINE SASCNV(IM,IX,KM,JCAP,DELT,DEL,PRSL,PS,PHIL,QL, &,3 ! SUBROUTINE SASCNV(IM,IX,KM,JCAP,DLT,DEL,PRSL,PHIL,QL, & & Q1,T1,U1,V1,RCS,CLDWRK,RN,KBOT,KTOP,KUO,SLIMSK, & & DOT,XKT2,ncloud) ! for cloud water version ! parameter(ncloud=0) ! SUBROUTINE SASCNV(KM,JCAP,DELT,DEL,SL,SLK,PS,QL, ! & Q1,T1,U1,V1,RCS,CLDWRK,RN,KBOT,KTOP,KUO,SLIMSK, ! & DOT,xkt2,ncloud) ! USE MODULE_GFS_MACHINE , ONLY : kind_phys USE MODULE_GFS_FUNCPHYS ,ONLY : fpvs USE MODULE_GFS_PHYSCONS, grav => con_g, CP => con_CP, HVAP => con_HVAP & &, RV => con_RV, FV => con_fvirt, T0C => con_T0C & &, CVAP => con_CVAP, CLIQ => con_CLIQ & &, EPS => con_eps, EPSM1 => con_epsm1 implicit none ! ! include 'constant.h' ! integer IM, IX, KM, JCAP, ncloud, & & KBOT(IM), KTOP(IM), KUO(IM), J real(kind=kind_phys) DELT real(kind=kind_phys) PS(IM), DEL(IX,KM), PRSL(IX,KM), & ! real(kind=kind_phys) DEL(IX,KM), PRSL(IX,KM), & QL(IX,KM,2), Q1(IX,KM), T1(IX,KM), & & U1(IX,KM), V1(IX,KM), RCS(IM), & & CLDWRK(IM), RN(IM), SLIMSK(IM), & & DOT(IX,KM), XKT2(IM), PHIL(IX,KM) ! integer I, INDX, jmn, k, knumb, latd, lond, km1 ! real(kind=kind_phys) adw, alpha, alphal, alphas, & & aup, beta, betal, betas, & & c0, cpoel, dellat, delta, & & desdt, deta, detad, dg, & & dh, dhh, dlnsig, dp, & & dq, dqsdp, dqsdt, dt, & & dt2, dtmax, dtmin, dv1, & & dv1q, dv2, dv2q, dv1u, & & dv1v, dv2u, dv2v, dv3u, & & dv3v, dv3, dv3q, dvq1, & & dz, dz1, e1, edtmax, & & edtmaxl, edtmaxs, el2orc, elocp, & & es, etah, & & evef, evfact, evfactl, fact1, & & fact2, factor, fjcap, fkm, & & fuv, g, gamma, onemf, & & onemfu, pdetrn, pdpdwn, pprime, & & qc, qlk, qrch, qs, & & rain, rfact, shear, tem1, & & tem2, terr, val, val1, & & val2, w1, w1l, w1s, & & w2, w2l, w2s, w3, & & w3l, w3s, w4, w4l, & & w4s, xdby, xpw, xpwd, & & xqc, xqrch, xlambu, mbdt, & & tem ! ! integer JMIN(IM), KB(IM), KBCON(IM), KBDTR(IM), & & KT2(IM), KTCON(IM), LMIN(IM), & & kbm(IM), kbmax(IM), kmax(IM) ! real(kind=kind_phys) AA1(IM), ACRT(IM), ACRTFCT(IM), & & DELHBAR(IM), DELQ(IM), DELQ2(IM), & & DELQBAR(IM), DELQEV(IM), DELTBAR(IM), & & DELTV(IM), DTCONV(IM), EDT(IM), & & EDTO(IM), EDTX(IM), FLD(IM), & & HCDO(IM), HKBO(IM), HMAX(IM), & & HMIN(IM), HSBAR(IM), UCDO(IM), & & UKBO(IM), VCDO(IM), VKBO(IM), & & PBCDIF(IM), PDOT(IM), PO(IM,KM), & & PWAVO(IM), PWEVO(IM), & ! & PSFC(IM), PWAVO(IM), PWEVO(IM), & & QCDO(IM), QCOND(IM), QEVAP(IM), & & QKBO(IM), RNTOT(IM), VSHEAR(IM), & & XAA0(IM), XHCD(IM), XHKB(IM), & & XK(IM), XLAMB(IM), XLAMD(IM), & & XMB(IM), XMBMAX(IM), XPWAV(IM), & & XPWEV(IM), XQCD(IM), XQKB(IM) ! ! PHYSICAL PARAMETERS PARAMETER(G=grav) PARAMETER(CPOEL=CP/HVAP,ELOCP=HVAP/CP, & & EL2ORC=HVAP*HVAP/(RV*CP)) PARAMETER(TERR=0.,C0=.002,DELTA=fv) PARAMETER(FACT1=(CVAP-CLIQ)/RV,FACT2=HVAP/RV-FACT1*T0C) ! LOCAL VARIABLES AND ARRAYS real(kind=kind_phys) PFLD(IM,KM), TO(IM,KM), QO(IM,KM), & & UO(IM,KM), VO(IM,KM), QESO(IM,KM) ! cloud water real(kind=kind_phys) QLKO_KTCON(IM), DELLAL(IM), TVO(IM,KM), & & DBYO(IM,KM), ZO(IM,KM), SUMZ(IM,KM), & & SUMH(IM,KM), HEO(IM,KM), HESO(IM,KM), & & QRCD(IM,KM), DELLAH(IM,KM), DELLAQ(IM,KM),& & DELLAU(IM,KM), DELLAV(IM,KM), HCKO(IM,KM), & & UCKO(IM,KM), VCKO(IM,KM), QCKO(IM,KM), & & ETA(IM,KM), ETAU(IM,KM), ETAD(IM,KM), & & QRCDO(IM,KM), PWO(IM,KM), PWDO(IM,KM), & & RHBAR(IM), TX1(IM) ! LOGICAL TOTFLG, CNVFLG(IM), DWNFLG(IM), DWNFLG2(IM), FLG(IM) ! real(kind=kind_phys) PCRIT(15), ACRITT(15), ACRIT(15) ! SAVE PCRIT, ACRITT DATA PCRIT/850.,800.,750.,700.,650.,600.,550.,500.,450.,400., & & 350.,300.,250.,200.,150./ DATA ACRITT/.0633,.0445,.0553,.0664,.075,.1082,.1521,.2216, & & .3151,.3677,.41,.5255,.7663,1.1686,1.6851/ ! GDAS DERIVED ACRIT ! DATA ACRITT/.203,.515,.521,.566,.625,.665,.659,.688, & ! & .743,.813,.886,.947,1.138,1.377,1.896/ ! real(kind=kind_phys) TF, TCR, TCRF, RZERO, RONE parameter (TF=233.16, TCR=263.16, TCRF=1.0/(TCR-TF)) parameter (RZERO=0.0,RONE=1.0) !----------------------------------------------------------------------- ! km1 = km - 1 ! INITIALIZE ARRAYS ! DO I=1,IM RN(I)=0. KBOT(I)=KM+1 KTOP(I)=0 KUO(I)=0 CNVFLG(I) = .TRUE. DTCONV(I) = 3600. CLDWRK(I) = 0. PDOT(I) = 0. KT2(I) = 0 QLKO_KTCON(I) = 0. DELLAL(I) = 0. ENDDO !! DO K = 1, 15 ACRIT(K) = ACRITT(K) * (975. - PCRIT(K)) ENDDO DT2 = DELT !cmr dtmin = max(dt2,1200.) val = 1200. dtmin = max(dt2, val ) !cmr dtmax = max(dt2,3600.) val = 3600. dtmax = max(dt2, val ) ! MODEL TUNABLE PARAMETERS ARE ALL HERE MBDT = 10. EDTMAXl = .3 EDTMAXs = .3 ALPHAl = .5 ALPHAs = .5 BETAl = .15 betas = .15 BETAl = .05 betas = .05 ! change for hurricane model BETAl = .5 betas = .5 ! EVEF = 0.07 evfact = 0.3 evfactl = 0.3 ! change for hurricane model evfact = 0.6 evfactl = .6 #if ( EM_CORE == 1 ) ! HAWAII TEST - ZCX ALPHAl = .5 ALPHAs = .75 BETAl = .05 betas = .05 evfact = 0.5 evfactl = 0.5 #endif PDPDWN = 0. PDETRN = 200. xlambu = 1.e-4 fjcap = (float(jcap) / 126.) ** 2 !cmr fjcap = max(fjcap,1.) val = 1. fjcap = max(fjcap,val) fkm = (float(km) / 28.) ** 2 !cmr fkm = max(fkm,1.) fkm = max(fkm,val) W1l = -8.E-3 W2l = -4.E-2 W3l = -5.E-3 W4l = -5.E-4 W1s = -2.E-4 W2s = -2.E-3 W3s = -1.E-3 W4s = -2.E-5 !CCCC IF(IM.EQ.384) THEN LATD = 92 lond = 189 !CCCC ELSEIF(IM.EQ.768) THEN !CCCC LATD = 80 !CCCC ELSE !CCCC LATD = 0 !CCCC ENDIF ! ! DEFINE TOP LAYER FOR SEARCH OF THE DOWNDRAFT ORIGINATING LAYER ! AND THE MAXIMUM THETAE FOR UPDRAFT ! DO I=1,IM KBMAX(I) = KM KBM(I) = KM KMAX(I) = KM TX1(I) = 1.0 / PS(I) ENDDO ! DO K = 1, KM DO I=1,IM IF (prSL(I,K)*tx1(I) .GT. 0.45) KBMAX(I) = K + 1 IF (prSL(I,K)*tx1(I) .GT. 0.70) KBM(I) = K + 1 IF (prSL(I,K)*tx1(I) .GT. 0.04) KMAX(I) = MIN(KM,K + 1) ENDDO ENDDO DO I=1,IM KBMAX(I) = MIN(KBMAX(I),KMAX(I)) KBM(I) = MIN(KBM(I),KMAX(I)) ENDDO ! ! CONVERT SURFACE PRESSURE TO MB FROM CB ! !! DO K = 1, KM DO I=1,IM if (K .le. kmax(i)) then PFLD(I,k) = PRSL(I,K) * 10.0 PWO(I,k) = 0. PWDO(I,k) = 0. TO(I,k) = T1(I,k) QO(I,k) = Q1(I,k) UO(I,k) = U1(I,k) VO(I,k) = V1(I,k) DBYO(I,k) = 0. SUMZ(I,k) = 0. SUMH(I,k) = 0. endif ENDDO ENDDO ! ! COLUMN VARIABLES ! P IS PRESSURE OF THE LAYER (MB) ! T IS TEMPERATURE AT T-DT (K)..TN ! Q IS MIXING RATIO AT T-DT (KG/KG)..QN ! TO IS TEMPERATURE AT T+DT (K)... THIS IS AFTER ADVECTION AND TURBULAN ! QO IS MIXING RATIO AT T+DT (KG/KG)..Q1 ! DO K = 1, KM DO I=1,IM if (k .le. kmax(i)) then !jfe QESO(I,k) = 10. * FPVS(T1(I,k)) ! QESO(I,k) = 0.01 * fpvs(T1(I,K)) ! fpvs is in Pa ! QESO(I,k) = EPS * QESO(I,k) / (PFLD(I,k) + EPSM1*QESO(I,k)) !cmr QESO(I,k) = MAX(QESO(I,k),1.E-8) val1 = 1.E-8 QESO(I,k) = MAX(QESO(I,k), val1) !cmr QO(I,k) = max(QO(I,k),1.e-10) val2 = 1.e-10 QO(I,k) = max(QO(I,k), val2 ) ! QO(I,k) = MIN(QO(I,k),QESO(I,k)) TVO(I,k) = TO(I,k) + DELTA * TO(I,k) * QO(I,k) endif ENDDO ENDDO ! ! HYDROSTATIC HEIGHT ASSUME ZERO TERR ! DO K = 1, KM DO I=1,IM ZO(I,k) = PHIL(I,k) / G ENDDO ENDDO ! COMPUTE MOIST STATIC ENERGY DO K = 1, KM DO I=1,IM if (K .le. kmax(i)) then ! tem = G * ZO(I,k) + CP * TO(I,k) tem = PHIL(I,k) + CP * TO(I,k) HEO(I,k) = tem + HVAP * QO(I,k) HESO(I,k) = tem + HVAP * QESO(I,k) ! HEO(I,k) = MIN(HEO(I,k),HESO(I,k)) endif ENDDO ENDDO ! ! DETERMINE LEVEL WITH LARGEST MOIST STATIC ENERGY ! THIS IS THE LEVEL WHERE UPDRAFT STARTS ! DO I=1,IM HMAX(I) = HEO(I,1) KB(I) = 1 ENDDO !! DO K = 2, KM DO I=1,IM if (k .le. kbm(i)) then IF(HEO(I,k).GT.HMAX(I).AND.CNVFLG(I)) THEN KB(I) = K HMAX(I) = HEO(I,k) ENDIF endif ENDDO ENDDO ! DO K = 1, KMAX - 1 ! TOL(k) = .5 * (TO(I,k) + TO(I,k+1)) ! QOL(k) = .5 * (QO(I,k) + QO(I,k+1)) ! QESOL(I,k) = .5 * (QESO(I,k) + QESO(I,k+1)) ! HEOL(I,k) = .5 * (HEO(I,k) + HEO(I,k+1)) ! HESOL(I,k) = .5 * (HESO(I,k) + HESO(I,k+1)) ! ENDDO DO K = 1, KM1 DO I=1,IM if (k .le. kmax(i)-1) then DZ = .5 * (ZO(I,k+1) - ZO(I,k)) DP = .5 * (PFLD(I,k+1) - PFLD(I,k)) !jfe ES = 10. * FPVS(TO(I,k+1)) ! ES = 0.01 * fpvs(TO(I,K+1)) ! fpvs is in Pa ! PPRIME = PFLD(I,k+1) + EPSM1 * ES QS = EPS * ES / PPRIME DQSDP = - QS / PPRIME DESDT = ES * (FACT1 / TO(I,k+1) + FACT2 / (TO(I,k+1)**2)) DQSDT = QS * PFLD(I,k+1) * DESDT / (ES * PPRIME) GAMMA = EL2ORC * QESO(I,k+1) / (TO(I,k+1)**2) DT = (G * DZ + HVAP * DQSDP * DP) / (CP * (1. + GAMMA)) DQ = DQSDT * DT + DQSDP * DP TO(I,k) = TO(I,k+1) + DT QO(I,k) = QO(I,k+1) + DQ PO(I,k) = .5 * (PFLD(I,k) + PFLD(I,k+1)) endif ENDDO ENDDO ! DO K = 1, KM1 DO I=1,IM if (k .le. kmax(I)-1) then !jfe QESO(I,k) = 10. * FPVS(TO(I,k)) ! QESO(I,k) = 0.01 * fpvs(TO(I,K)) ! fpvs is in Pa ! QESO(I,k) = EPS * QESO(I,k) / (PO(I,k) + EPSM1*QESO(I,k)) !cmr QESO(I,k) = MAX(QESO(I,k),1.E-8) val1 = 1.E-8 QESO(I,k) = MAX(QESO(I,k), val1) !cmr QO(I,k) = max(QO(I,k),1.e-10) val2 = 1.e-10 QO(I,k) = max(QO(I,k), val2 ) ! QO(I,k) = MIN(QO(I,k),QESO(I,k)) HEO(I,k) = .5 * G * (ZO(I,k) + ZO(I,k+1)) + & & CP * TO(I,k) + HVAP * QO(I,k) HESO(I,k) = .5 * G * (ZO(I,k) + ZO(I,k+1)) + & & CP * TO(I,k) + HVAP * QESO(I,k) UO(I,k) = .5 * (UO(I,k) + UO(I,k+1)) VO(I,k) = .5 * (VO(I,k) + VO(I,k+1)) endif ENDDO ENDDO ! k = kmax ! HEO(I,k) = HEO(I,k) ! hesol(k) = HESO(I,k) ! IF(LAT.EQ.LATD.AND.lon.eq.lond.and.CNVFLG(I)) THEN ! PRINT *, ' HEO =' ! PRINT 6001, (HEO(I,K),K=1,KMAX) ! PRINT *, ' HESO =' ! PRINT 6001, (HESO(I,K),K=1,KMAX) ! PRINT *, ' TO =' ! PRINT 6002, (TO(I,K)-273.16,K=1,KMAX) ! PRINT *, ' QO =' ! PRINT 6003, (QO(I,K),K=1,KMAX) ! PRINT *, ' QSO =' ! PRINT 6003, (QESO(I,K),K=1,KMAX) ! ENDIF ! ! LOOK FOR CONVECTIVE CLOUD BASE AS THE LEVEL OF FREE CONVECTION ! DO I=1,IM IF(CNVFLG(I)) THEN INDX = KB(I) HKBO(I) = HEO(I,INDX) QKBO(I) = QO(I,INDX) UKBO(I) = UO(I,INDX) VKBO(I) = VO(I,INDX) ENDIF FLG(I) = CNVFLG(I) KBCON(I) = KMAX(I) ENDDO !! DO K = 1, KM DO I=1,IM if (k .le. kbmax(i)) then IF(FLG(I).AND.K.GT.KB(I)) THEN HSBAR(I) = HESO(I,k) IF(HKBO(I).GT.HSBAR(I)) THEN FLG(I) = .FALSE. KBCON(I) = K ENDIF ENDIF endif ENDDO ENDDO DO I=1,IM IF(CNVFLG(I)) THEN PBCDIF(I) = -PFLD(I,KBCON(I)) + PFLD(I,KB(I)) PDOT(I) = 10.* DOT(I,KBCON(I)) IF(PBCDIF(I).GT.150.) CNVFLG(I) = .FALSE. IF(KBCON(I).EQ.KMAX(I)) CNVFLG(I) = .FALSE. ENDIF ENDDO !! TOTFLG = .TRUE. DO I=1,IM TOTFLG = TOTFLG .AND. (.NOT. CNVFLG(I)) ENDDO IF(TOTFLG) RETURN ! FOUND LFC, CAN DEFINE REST OF VARIABLES 6001 FORMAT(2X,-2P10F12.2) 6002 FORMAT(2X,10F12.2) 6003 FORMAT(2X,3P10F12.2) ! ! DETERMINE ENTRAINMENT RATE BETWEEN KB AND KBCON ! DO I = 1, IM alpha = alphas if(SLIMSK(I).eq.1.) alpha = alphal IF(CNVFLG(I)) THEN IF(KB(I).EQ.1) THEN DZ = .5 * (ZO(I,KBCON(I)) + ZO(I,KBCON(I)-1)) - ZO(I,1) ELSE DZ = .5 * (ZO(I,KBCON(I)) + ZO(I,KBCON(I)-1)) & & - .5 * (ZO(I,KB(I)) + ZO(I,KB(I)-1)) ENDIF IF(KBCON(I).NE.KB(I)) THEN !cmr XLAMB(I) = -ALOG(ALPHA) / DZ XLAMB(I) = - LOG(ALPHA) / DZ ELSE XLAMB(I) = 0. ENDIF ENDIF ENDDO ! DETERMINE UPDRAFT MASS FLUX DO K = 1, KM DO I = 1, IM if (k .le. kmax(i) .and. CNVFLG(I)) then ETA(I,k) = 1. ETAU(I,k) = 1. ENDIF ENDDO ENDDO DO K = KM1, 2, -1 DO I = 1, IM if (k .le. kbmax(i)) then IF(CNVFLG(I).AND.K.LT.KBCON(I).AND.K.GE.KB(I)) THEN DZ = .5 * (ZO(I,k+1) - ZO(I,k-1)) ETA(I,k) = ETA(I,k+1) * EXP(-XLAMB(I) * DZ) ETAU(I,k) = ETA(I,k) ENDIF endif ENDDO ENDDO DO I = 1, IM IF(CNVFLG(I).AND.KB(I).EQ.1.AND.KBCON(I).GT.1) THEN DZ = .5 * (ZO(I,2) - ZO(I,1)) ETA(I,1) = ETA(I,2) * EXP(-XLAMB(I) * DZ) ETAU(I,1) = ETA(I,1) ENDIF ENDDO ! ! WORK UP UPDRAFT CLOUD PROPERTIES ! DO I = 1, IM IF(CNVFLG(I)) THEN INDX = KB(I) HCKO(I,INDX) = HKBO(I) QCKO(I,INDX) = QKBO(I) UCKO(I,INDX) = UKBO(I) VCKO(I,INDX) = VKBO(I) PWAVO(I) = 0. ENDIF ENDDO ! ! CLOUD PROPERTY BELOW CLOUD BASE IS MODIFIED BY THE ENTRAINMENT PROCES ! DO K = 2, KM1 DO I = 1, IM if (k .le. kmax(i)-1) then IF(CNVFLG(I).AND.K.GT.KB(I).AND.K.LE.KBCON(I)) THEN FACTOR = ETA(I,k-1) / ETA(I,k) ONEMF = 1. - FACTOR HCKO(I,k) = FACTOR * HCKO(I,k-1) + ONEMF * & & .5 * (HEO(I,k) + HEO(I,k+1)) UCKO(I,k) = FACTOR * UCKO(I,k-1) + ONEMF * & & .5 * (UO(I,k) + UO(I,k+1)) VCKO(I,k) = FACTOR * VCKO(I,k-1) + ONEMF * & & .5 * (VO(I,k) + VO(I,k+1)) DBYO(I,k) = HCKO(I,k) - HESO(I,k) ENDIF IF(CNVFLG(I).AND.K.GT.KBCON(I)) THEN HCKO(I,k) = HCKO(I,k-1) UCKO(I,k) = UCKO(I,k-1) VCKO(I,k) = VCKO(I,k-1) DBYO(I,k) = HCKO(I,k) - HESO(I,k) ENDIF endif ENDDO ENDDO ! DETERMINE CLOUD TOP DO I = 1, IM FLG(I) = CNVFLG(I) KTCON(I) = 1 ENDDO ! DO K = 2, KMAX ! KK = KMAX - K + 1 ! IF(DBYO(I,kK).GE.0..AND.FLG(I).AND.KK.GT.KBCON(I)) THEN ! KTCON(I) = KK + 1 ! FLG(I) = .FALSE. ! ENDIF ! ENDDO DO K = 2, KM DO I = 1, IM if (k .le. kmax(i)) then IF(DBYO(I,k).LT.0..AND.FLG(I).AND.K.GT.KBCON(I)) THEN KTCON(I) = K FLG(I) = .FALSE. ENDIF endif ENDDO ENDDO DO I = 1, IM IF(CNVFLG(I).AND.(PFLD(I,KBCON(I)) - PFLD(I,KTCON(I))).LT.150.) & & CNVFLG(I) = .FALSE. ENDDO TOTFLG = .TRUE. DO I = 1, IM TOTFLG = TOTFLG .AND. (.NOT. CNVFLG(I)) ENDDO IF(TOTFLG) RETURN ! ! SEARCH FOR DOWNDRAFT ORIGINATING LEVEL ABOVE THETA-E MINIMUM ! DO I = 1, IM HMIN(I) = HEO(I,KBCON(I)) LMIN(I) = KBMAX(I) JMIN(I) = KBMAX(I) ENDDO DO I = 1, IM DO K = KBCON(I), KBMAX(I) IF(HEO(I,k).LT.HMIN(I).AND.CNVFLG(I)) THEN LMIN(I) = K + 1 HMIN(I) = HEO(I,k) ENDIF ENDDO ENDDO ! ! Make sure that JMIN(I) is within the cloud ! DO I = 1, IM IF(CNVFLG(I)) THEN JMIN(I) = MIN(LMIN(I),KTCON(I)-1) XMBMAX(I) = .1 JMIN(I) = MAX(JMIN(I),KBCON(I)+1) ENDIF ENDDO ! ! ENTRAINING CLOUD ! do k = 2, km1 DO I = 1, IM if (k .le. kmax(i)-1) then if(CNVFLG(I).and.k.gt.JMIN(I).and.k.le.KTCON(I)) THEN SUMZ(I,k) = SUMZ(I,k-1) + .5 * (ZO(I,k+1) - ZO(I,k-1)) SUMH(I,k) = SUMH(I,k-1) + .5 * (ZO(I,k+1) - ZO(I,k-1)) & & * HEO(I,k) ENDIF endif enddo enddo !! DO I = 1, IM IF(CNVFLG(I)) THEN ! call random_number(XKT2) ! call srand(fhour) ! XKT2(I) = rand() KT2(I) = nint(XKT2(I)*float(KTCON(I)-JMIN(I))-.5)+JMIN(I)+1 ! KT2(I) = nint(sqrt(XKT2(I))*float(KTCON(I)-JMIN(I))-.5) + JMIN(I) + 1 ! KT2(I) = nint(ranf() *float(KTCON(I)-JMIN(I))-.5) + JMIN(I) + 1 tem1 = (HCKO(I,JMIN(I)) - HESO(I,KT2(I))) tem2 = (SUMZ(I,KT2(I)) * HESO(I,KT2(I)) - SUMH(I,KT2(I))) if (abs(tem2) .gt. 0.000001) THEN XLAMB(I) = tem1 / tem2 else CNVFLG(I) = .false. ENDIF ! XLAMB(I) = (HCKO(I,JMIN(I)) - HESO(I,KT2(I))) ! & / (SUMZ(I,KT2(I)) * HESO(I,KT2(I)) - SUMH(I,KT2(I))) XLAMB(I) = max(XLAMB(I),RZERO) XLAMB(I) = min(XLAMB(I),2.3/SUMZ(I,KT2(I))) ENDIF ENDDO !! DO I = 1, IM DWNFLG(I) = CNVFLG(I) DWNFLG2(I) = CNVFLG(I) IF(CNVFLG(I)) THEN if(KT2(I).ge.KTCON(I)) DWNFLG(I) = .false. if(XLAMB(I).le.1.e-30.or.HCKO(I,JMIN(I))-HESO(I,KT2(I)).le.1.e-30)& & DWNFLG(I) = .false. do k = JMIN(I), KT2(I) if(DWNFLG(I).and.HEO(I,k).gt.HESO(I,KT2(I))) DWNFLG(I)=.false. enddo ! IF(CNVFLG(I).AND.(PFLD(KBCON(I))-PFLD(KTCON(I))).GT.PDETRN) ! & DWNFLG(I)=.FALSE. IF(CNVFLG(I).AND.(PFLD(I,KBCON(I))-PFLD(I,KTCON(I))).LT.PDPDWN) & & DWNFLG2(I)=.FALSE. ENDIF ENDDO !! DO K = 2, KM1 DO I = 1, IM if (k .le. kmax(i)-1) then IF(DWNFLG(I).AND.K.GT.JMIN(I).AND.K.LE.KT2(I)) THEN DZ = .5 * (ZO(I,k+1) - ZO(I,k-1)) ! ETA(I,k) = ETA(I,k-1) * EXP( XLAMB(I) * DZ) ! to simplify matter, we will take the linear approach here ! ETA(I,k) = ETA(I,k-1) * (1. + XLAMB(I) * dz) ETAU(I,k) = ETAU(I,k-1) * (1. + (XLAMB(I)+xlambu) * dz) ENDIF endif ENDDO ENDDO !! DO K = 2, KM1 DO I = 1, IM if (k .le. kmax(i)-1) then ! IF(.NOT.DWNFLG(I).AND.K.GT.JMIN(I).AND.K.LE.KT2(I)) THEN IF(.NOT.DWNFLG(I).AND.K.GT.JMIN(I).AND.K.LE.KTCON(I)) THEN DZ = .5 * (ZO(I,k+1) - ZO(I,k-1)) ETAU(I,k) = ETAU(I,k-1) * (1. + xlambu * dz) ENDIF endif ENDDO ENDDO ! IF(LAT.EQ.LATD.AND.lon.eq.lond.and.CNVFLG(I)) THEN ! PRINT *, ' LMIN(I), KT2(I)=', LMIN(I), KT2(I) ! PRINT *, ' KBOT, KTOP, JMIN(I) =', KBCON(I), KTCON(I), JMIN(I) ! ENDIF ! IF(LAT.EQ.LATD.AND.lon.eq.lond) THEN ! print *, ' xlamb =', xlamb ! print *, ' eta =', (eta(k),k=1,KT2(I)) ! print *, ' ETAU =', (ETAU(I,k),k=1,KT2(I)) ! print *, ' HCKO =', (HCKO(I,k),k=1,KT2(I)) ! print *, ' SUMZ =', (SUMZ(I,k),k=1,KT2(I)) ! print *, ' SUMH =', (SUMH(I,k),k=1,KT2(I)) ! ENDIF DO I = 1, IM if(DWNFLG(I)) THEN KTCON(I) = KT2(I) ENDIF ENDDO ! ! CLOUD PROPERTY ABOVE CLOUD Base IS MODIFIED BY THE DETRAINMENT PROCESS ! DO K = 2, KM1 DO I = 1, IM if (k .le. kmax(i)-1) then !jfe IF(CNVFLG(I).AND.K.GT.KBCON(I).AND.K.LE.KTCON(I)) THEN !jfe IF(K.GT.KBCON(I).AND.K.LE.KTCON(I)) THEN FACTOR = ETA(I,k-1) / ETA(I,k) ONEMF = 1. - FACTOR fuv = ETAU(I,k-1) / ETAU(I,k) onemfu = 1. - fuv HCKO(I,k) = FACTOR * HCKO(I,k-1) + ONEMF * & & .5 * (HEO(I,k) + HEO(I,k+1)) UCKO(I,k) = fuv * UCKO(I,k-1) + ONEMFu * & & .5 * (UO(I,k) + UO(I,k+1)) VCKO(I,k) = fuv * VCKO(I,k-1) + ONEMFu * & & .5 * (VO(I,k) + VO(I,k+1)) DBYO(I,k) = HCKO(I,k) - HESO(I,k) ENDIF endif ENDDO ENDDO ! IF(LAT.EQ.LATD.AND.lon.eq.lond.and.CNVFLG(I)) THEN ! PRINT *, ' UCKO=', (UCKO(I,k),k=KBCON(I)+1,KTCON(I)) ! PRINT *, ' uenv=', (.5*(UO(I,k)+UO(I,k-1)),k=KBCON(I)+1,KTCON(I)) ! ENDIF DO I = 1, IM if(CNVFLG(I).and.DWNFLG2(I).and.JMIN(I).le.KBCON(I)) & & THEN CNVFLG(I) = .false. DWNFLG(I) = .false. DWNFLG2(I) = .false. ENDIF ENDDO !! TOTFLG = .TRUE. DO I = 1, IM TOTFLG = TOTFLG .AND. (.NOT. CNVFLG(I)) ENDDO IF(TOTFLG) RETURN !! ! ! COMPUTE CLOUD MOISTURE PROPERTY AND PRECIPITATION ! DO I = 1, IM AA1(I) = 0. RHBAR(I) = 0. ENDDO DO K = 1, KM DO I = 1, IM if (k .le. kmax(i)) then IF(CNVFLG(I).AND.K.GT.KB(I).AND.K.LT.KTCON(I)) THEN DZ = .5 * (ZO(I,k+1) - ZO(I,k-1)) DZ1 = (ZO(I,k) - ZO(I,k-1)) GAMMA = EL2ORC * QESO(I,k) / (TO(I,k)**2) QRCH = QESO(I,k) & & + GAMMA * DBYO(I,k) / (HVAP * (1. + GAMMA)) FACTOR = ETA(I,k-1) / ETA(I,k) ONEMF = 1. - FACTOR QCKO(I,k) = FACTOR * QCKO(I,k-1) + ONEMF * & & .5 * (QO(I,k) + QO(I,k+1)) DQ = ETA(I,k) * QCKO(I,k) - ETA(I,k) * QRCH RHBAR(I) = RHBAR(I) + QO(I,k) / QESO(I,k) ! ! BELOW LFC CHECK IF THERE IS EXCESS MOISTURE TO RELEASE LATENT HEAT ! IF(DQ.GT.0.) THEN ETAH = .5 * (ETA(I,k) + ETA(I,k-1)) QLK = DQ / (ETA(I,k) + ETAH * C0 * DZ) AA1(I) = AA1(I) - DZ1 * G * QLK QC = QLK + QRCH PWO(I,k) = ETAH * C0 * DZ * QLK QCKO(I,k) = QC PWAVO(I) = PWAVO(I) + PWO(I,k) ENDIF ENDIF endif ENDDO ENDDO DO I = 1, IM RHBAR(I) = RHBAR(I) / float(KTCON(I) - KB(I) - 1) ENDDO ! ! this section is ready for cloud water ! if(ncloud.gt.0) THEN ! ! compute liquid and vapor separation at cloud top ! DO I = 1, IM k = KTCON(I) IF(CNVFLG(I)) THEN GAMMA = EL2ORC * QESO(I,K) / (TO(I,K)**2) QRCH = QESO(I,K) & & + GAMMA * DBYO(I,K) / (HVAP * (1. + GAMMA)) DQ = QCKO(I,K-1) - QRCH ! ! CHECK IF THERE IS EXCESS MOISTURE TO RELEASE LATENT HEAT ! IF(DQ.GT.0.) THEN QLKO_KTCON(I) = dq QCKO(I,K-1) = QRCH ENDIF ENDIF ENDDO ENDIF ! ! CALCULATE CLOUD WORK FUNCTION AT T+DT ! DO K = 1, KM DO I = 1, IM if (k .le. kmax(i)) then IF(CNVFLG(I).AND.K.GT.KBCON(I).AND.K.LE.KTCON(I)) THEN DZ1 = ZO(I,k) - ZO(I,k-1) GAMMA = EL2ORC * QESO(I,k-1) / (TO(I,k-1)**2) RFACT = 1. + DELTA * CP * GAMMA & & * TO(I,k-1) / HVAP AA1(I) = AA1(I) + & & DZ1 * (G / (CP * TO(I,k-1))) & & * DBYO(I,k-1) / (1. + GAMMA) & & * RFACT val = 0. AA1(I)=AA1(I)+ & & DZ1 * G * DELTA * & !cmr & MAX( 0.,(QESO(I,k-1) - QO(I,k-1))) & & MAX(val,(QESO(I,k-1) - QO(I,k-1))) ENDIF endif ENDDO ENDDO DO I = 1, IM IF(CNVFLG(I).AND.AA1(I).LE.0.) DWNFLG(I) = .FALSE. IF(CNVFLG(I).AND.AA1(I).LE.0.) DWNFLG2(I) = .FALSE. IF(CNVFLG(I).AND.AA1(I).LE.0.) CNVFLG(I) = .FALSE. ENDDO !! TOTFLG = .TRUE. DO I = 1, IM TOTFLG = TOTFLG .AND. (.NOT. CNVFLG(I)) ENDDO IF(TOTFLG) RETURN !! !cccc IF(LAT.EQ.LATD.AND.lon.eq.lond.and.CNVFLG(I)) THEN !cccc PRINT *, ' AA1(I) BEFORE DWNDRFT =', AA1(I) !cccc ENDIF ! !------- DOWNDRAFT CALCULATIONS ! ! !--- DETERMINE DOWNDRAFT STRENGTH IN TERMS OF WINDSHEAR ! DO I = 1, IM IF(CNVFLG(I)) THEN VSHEAR(I) = 0. ENDIF ENDDO DO K = 1, KM DO I = 1, IM if (k .le. kmax(i)) then IF(K.GE.KB(I).AND.K.LE.KTCON(I).AND.CNVFLG(I)) THEN shear=rcs(I) * sqrt((UO(I,k+1)-UO(I,k)) ** 2 & & + (VO(I,k+1)-VO(I,k)) ** 2) VSHEAR(I) = VSHEAR(I) + SHEAR ENDIF endif ENDDO ENDDO DO I = 1, IM EDT(I) = 0. IF(CNVFLG(I)) THEN KNUMB = KTCON(I) - KB(I) + 1 KNUMB = MAX(KNUMB,1) VSHEAR(I) = 1.E3 * VSHEAR(I) / (ZO(I,KTCON(I))-ZO(I,KB(I))) E1=1.591-.639*VSHEAR(I) & & +.0953*(VSHEAR(I)**2)-.00496*(VSHEAR(I)**3) EDT(I)=1.-E1 !cmr EDT(I) = MIN(EDT(I),.9) val = .9 EDT(I) = MIN(EDT(I),val) !cmr EDT(I) = MAX(EDT(I),.0) val = .0 EDT(I) = MAX(EDT(I),val) EDTO(I)=EDT(I) EDTX(I)=EDT(I) ENDIF ENDDO ! DETERMINE DETRAINMENT RATE BETWEEN 1 AND KBDTR DO I = 1, IM KBDTR(I) = KBCON(I) beta = betas if(SLIMSK(I).eq.1.) beta = betal IF(CNVFLG(I)) THEN KBDTR(I) = KBCON(I) KBDTR(I) = MAX(KBDTR(I),1) XLAMD(I) = 0. IF(KBDTR(I).GT.1) THEN DZ = .5 * ZO(I,KBDTR(I)) + .5 * ZO(I,KBDTR(I)-1) & & - ZO(I,1) XLAMD(I) = LOG(BETA) / DZ ENDIF ENDIF ENDDO ! DETERMINE DOWNDRAFT MASS FLUX DO K = 1, KM DO I = 1, IM IF(k .le. kmax(i)) then IF(CNVFLG(I)) THEN ETAD(I,k) = 1. ENDIF QRCDO(I,k) = 0. endif ENDDO ENDDO DO K = KM1, 2, -1 DO I = 1, IM if (k .le. kbmax(i)) then IF(CNVFLG(I).AND.K.LT.KBDTR(I)) THEN DZ = .5 * (ZO(I,k+1) - ZO(I,k-1)) ETAD(I,k) = ETAD(I,k+1) * EXP(XLAMD(I) * DZ) ENDIF endif ENDDO ENDDO K = 1 DO I = 1, IM IF(CNVFLG(I).AND.KBDTR(I).GT.1) THEN DZ = .5 * (ZO(I,2) - ZO(I,1)) ETAD(I,k) = ETAD(I,k+1) * EXP(XLAMD(I) * DZ) ENDIF ENDDO ! !--- DOWNDRAFT MOISTURE PROPERTIES ! DO I = 1, IM PWEVO(I) = 0. FLG(I) = CNVFLG(I) ENDDO DO I = 1, IM IF(CNVFLG(I)) THEN JMN = JMIN(I) HCDO(I) = HEO(I,JMN) QCDO(I) = QO(I,JMN) QRCDO(I,JMN) = QESO(I,JMN) UCDO(I) = UO(I,JMN) VCDO(I) = VO(I,JMN) ENDIF ENDDO DO K = KM1, 1, -1 DO I = 1, IM if (k .le. kmax(i)-1) then IF(CNVFLG(I).AND.K.LT.JMIN(I)) THEN DQ = QESO(I,k) DT = TO(I,k) GAMMA = EL2ORC * DQ / DT**2 DH = HCDO(I) - HESO(I,k) QRCDO(I,k) = DQ+(1./HVAP)*(GAMMA/(1.+GAMMA))*DH DETAD = ETAD(I,k+1) - ETAD(I,k) PWDO(I,k) = ETAD(I,k+1) * QCDO(I) - & & ETAD(I,k) * QRCDO(I,k) PWDO(I,k) = PWDO(I,k) - DETAD * & & .5 * (QRCDO(I,k) + QRCDO(I,k+1)) QCDO(I) = QRCDO(I,k) PWEVO(I) = PWEVO(I) + PWDO(I,k) ENDIF endif ENDDO ENDDO ! IF(LAT.EQ.LATD.AND.lon.eq.lond.and.DWNFLG(I)) THEN ! PRINT *, ' PWAVO(I), PWEVO(I) =', PWAVO(I), PWEVO(I) ! ENDIF ! !--- FINAL DOWNDRAFT STRENGTH DEPENDENT ON PRECIP !--- EFFICIENCY (EDT), NORMALIZED CONDENSATE (PWAV), AND !--- EVAPORATE (PWEV) ! DO I = 1, IM edtmax = edtmaxl if(SLIMSK(I).eq.0.) edtmax = edtmaxs IF(DWNFLG2(I)) THEN IF(PWEVO(I).LT.0.) THEN EDTO(I) = -EDTO(I) * PWAVO(I) / PWEVO(I) EDTO(I) = MIN(EDTO(I),EDTMAX) ELSE EDTO(I) = 0. ENDIF ELSE EDTO(I) = 0. ENDIF ENDDO ! ! !--- DOWNDRAFT CLOUDWORK FUNCTIONS ! ! DO K = KM1, 1, -1 DO I = 1, IM if (k .le. kmax(i)-1) then IF(DWNFLG2(I).AND.K.LT.JMIN(I)) THEN GAMMA = EL2ORC * QESO(I,k+1) / TO(I,k+1)**2 DHH=HCDO(I) DT=TO(I,k+1) DG=GAMMA DH=HESO(I,k+1) DZ=-1.*(ZO(I,k+1)-ZO(I,k)) AA1(I)=AA1(I)+EDTO(I)*DZ*(G/(CP*DT))*((DHH-DH)/(1.+DG)) & & *(1.+DELTA*CP*DG*DT/HVAP) val=0. AA1(I)=AA1(I)+EDTO(I)* & !cmr & DZ*G*DELTA*MAX( 0.,(QESO(I,k+1)-QO(I,k+1))) & & DZ*G*DELTA*MAX(val,(QESO(I,k+1)-QO(I,k+1))) ENDIF endif ENDDO ENDDO !cccc IF(LAT.EQ.LATD.AND.lon.eq.lond.and.DWNFLG2(I)) THEN !cccc PRINT *, ' AA1(I) AFTER DWNDRFT =', AA1(I) !cccc ENDIF DO I = 1, IM IF(AA1(I).LE.0.) CNVFLG(I) = .FALSE. IF(AA1(I).LE.0.) DWNFLG(I) = .FALSE. IF(AA1(I).LE.0.) DWNFLG2(I) = .FALSE. ENDDO !! TOTFLG = .TRUE. DO I = 1, IM TOTFLG = TOTFLG .AND. (.NOT. CNVFLG(I)) ENDDO IF(TOTFLG) RETURN !! ! ! !--- WHAT WOULD THE CHANGE BE, THAT A CLOUD WITH UNIT MASS !--- WILL DO TO THE ENVIRONMENT? ! DO K = 1, KM DO I = 1, IM IF(k .le. kmax(i) .and. CNVFLG(I)) THEN DELLAH(I,k) = 0. DELLAQ(I,k) = 0. DELLAU(I,k) = 0. DELLAV(I,k) = 0. ENDIF ENDDO ENDDO DO I = 1, IM IF(CNVFLG(I)) THEN DP = 1000. * DEL(I,1) DELLAH(I,1) = EDTO(I) * ETAD(I,1) * (HCDO(I) & & - HEO(I,1)) * G / DP DELLAQ(I,1) = EDTO(I) * ETAD(I,1) * (QCDO(I) & & - QO(I,1)) * G / DP DELLAU(I,1) = EDTO(I) * ETAD(I,1) * (UCDO(I) & & - UO(I,1)) * G / DP DELLAV(I,1) = EDTO(I) * ETAD(I,1) * (VCDO(I) & & - VO(I,1)) * G / DP ENDIF ENDDO ! !--- CHANGED DUE TO SUBSIDENCE AND ENTRAINMENT ! DO K = 2, KM1 DO I = 1, IM if (k .le. kmax(i)-1) then IF(CNVFLG(I).AND.K.LT.KTCON(I)) THEN AUP = 1. IF(K.LE.KB(I)) AUP = 0. ADW = 1. IF(K.GT.JMIN(I)) ADW = 0. DV1= HEO(I,k) DV2 = .5 * (HEO(I,k) + HEO(I,k+1)) DV3= HEO(I,k-1) DV1Q= QO(I,k) DV2Q = .5 * (QO(I,k) + QO(I,k+1)) DV3Q= QO(I,k-1) DV1U= UO(I,k) DV2U = .5 * (UO(I,k) + UO(I,k+1)) DV3U= UO(I,k-1) DV1V= VO(I,k) DV2V = .5 * (VO(I,k) + VO(I,k+1)) DV3V= VO(I,k-1) DP = 1000. * DEL(I,K) DZ = .5 * (ZO(I,k+1) - ZO(I,k-1)) DETA = ETA(I,k) - ETA(I,k-1) DETAD = ETAD(I,k) - ETAD(I,k-1) DELLAH(I,k) = DELLAH(I,k) + & & ((AUP * ETA(I,k) - ADW * EDTO(I) * ETAD(I,k)) * DV1 & & - (AUP * ETA(I,k-1) - ADW * EDTO(I) * ETAD(I,k-1))* DV3 & & - AUP * DETA * DV2 & & + ADW * EDTO(I) * DETAD * HCDO(I)) * G / DP DELLAQ(I,k) = DELLAQ(I,k) + & & ((AUP * ETA(I,k) - ADW * EDTO(I) * ETAD(I,k)) * DV1Q & & - (AUP * ETA(I,k-1) - ADW * EDTO(I) * ETAD(I,k-1))* DV3Q & & - AUP * DETA * DV2Q & & +ADW*EDTO(I)*DETAD*.5*(QRCDO(I,k)+QRCDO(I,k-1))) * G / DP DELLAU(I,k) = DELLAU(I,k) + & & ((AUP * ETA(I,k) - ADW * EDTO(I) * ETAD(I,k)) * DV1U & & - (AUP * ETA(I,k-1) - ADW * EDTO(I) * ETAD(I,k-1))* DV3U & & - AUP * DETA * DV2U & & + ADW * EDTO(I) * DETAD * UCDO(I) & & ) * G / DP DELLAV(I,k) = DELLAV(I,k) + & & ((AUP * ETA(I,k) - ADW * EDTO(I) * ETAD(I,k)) * DV1V & & - (AUP * ETA(I,k-1) - ADW * EDTO(I) * ETAD(I,k-1))* DV3V & & - AUP * DETA * DV2V & & + ADW * EDTO(I) * DETAD * VCDO(I) & & ) * G / DP ENDIF endif ENDDO ENDDO ! !------- CLOUD TOP ! DO I = 1, IM IF(CNVFLG(I)) THEN INDX = KTCON(I) DP = 1000. * DEL(I,INDX) DV1 = HEO(I,INDX-1) DELLAH(I,INDX) = ETA(I,INDX-1) * & & (HCKO(I,INDX-1) - DV1) * G / DP DVQ1 = QO(I,INDX-1) DELLAQ(I,INDX) = ETA(I,INDX-1) * & & (QCKO(I,INDX-1) - DVQ1) * G / DP DV1U = UO(I,INDX-1) DELLAU(I,INDX) = ETA(I,INDX-1) * & & (UCKO(I,INDX-1) - DV1U) * G / DP DV1V = VO(I,INDX-1) DELLAV(I,INDX) = ETA(I,INDX-1) * & & (VCKO(I,INDX-1) - DV1V) * G / DP ! ! cloud water ! DELLAL(I) = ETA(I,INDX-1) * QLKO_KTCON(I) * g / dp ENDIF ENDDO ! !------- FINAL CHANGED VARIABLE PER UNIT MASS FLUX ! DO K = 1, KM DO I = 1, IM if (k .le. kmax(i)) then IF(CNVFLG(I).and.k.gt.KTCON(I)) THEN QO(I,k) = Q1(I,k) TO(I,k) = T1(I,k) UO(I,k) = U1(I,k) VO(I,k) = V1(I,k) ENDIF IF(CNVFLG(I).AND.K.LE.KTCON(I)) THEN QO(I,k) = DELLAQ(I,k) * MBDT + Q1(I,k) DELLAT = (DELLAH(I,k) - HVAP * DELLAQ(I,k)) / CP TO(I,k) = DELLAT * MBDT + T1(I,k) !cmr QO(I,k) = max(QO(I,k),1.e-10) val = 1.e-10 QO(I,k) = max(QO(I,k), val ) ENDIF endif ENDDO ENDDO !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! !--- THE ABOVE CHANGED ENVIRONMENT IS NOW USED TO CALULATE THE !--- EFFECT THE ARBITRARY CLOUD (WITH UNIT MASS FLUX) !--- WOULD HAVE ON THE STABILITY, !--- WHICH THEN IS USED TO CALCULATE THE REAL MASS FLUX, !--- NECESSARY TO KEEP THIS CHANGE IN BALANCE WITH THE LARGE-SCALE !--- DESTABILIZATION. ! !--- ENVIRONMENTAL CONDITIONS AGAIN, FIRST HEIGHTS ! DO K = 1, KM DO I = 1, IM IF(k .le. kmax(i) .and. CNVFLG(I)) THEN !jfe QESO(I,k) = 10. * FPVS(TO(I,k)) ! QESO(I,k) = 0.01 * fpvs(TO(I,K)) ! fpvs is in Pa ! QESO(I,k) = EPS * QESO(I,k) / (PFLD(I,k)+EPSM1*QESO(I,k)) !cmr QESO(I,k) = MAX(QESO(I,k),1.E-8) val = 1.E-8 QESO(I,k) = MAX(QESO(I,k), val ) TVO(I,k) = TO(I,k) + DELTA * TO(I,k) * QO(I,k) ENDIF ENDDO ENDDO DO I = 1, IM IF(CNVFLG(I)) THEN XAA0(I) = 0. XPWAV(I) = 0. ENDIF ENDDO ! ! HYDROSTATIC HEIGHT ASSUME ZERO TERR ! ! DO I = 1, IM ! IF(CNVFLG(I)) THEN ! DLNSIG = LOG(PRSL(I,1)/PS(I)) ! ZO(I,1) = TERR - DLNSIG * RD / G * TVO(I,1) ! ENDIF ! ENDDO ! DO K = 2, KM ! DO I = 1, IM ! IF(k .le. kmax(i) .and. CNVFLG(I)) THEN ! DLNSIG = LOG(PRSL(I,K) / PRSL(I,K-1)) ! ZO(I,k) = ZO(I,k-1) - DLNSIG * RD / G ! & * .5 * (TVO(I,k) + TVO(I,k-1)) ! ENDIF ! ENDDO ! ENDDO ! !--- MOIST STATIC ENERGY ! DO K = 1, KM1 DO I = 1, IM IF(k .le. kmax(i)-1 .and. CNVFLG(I)) THEN DZ = .5 * (ZO(I,k+1) - ZO(I,k)) DP = .5 * (PFLD(I,k+1) - PFLD(I,k)) !jfe ES = 10. * FPVS(TO(I,k+1)) ! ES = 0.01 * fpvs(TO(I,K+1)) ! fpvs is in Pa ! PPRIME = PFLD(I,k+1) + EPSM1 * ES QS = EPS * ES / PPRIME DQSDP = - QS / PPRIME DESDT = ES * (FACT1 / TO(I,k+1) + FACT2 / (TO(I,k+1)**2)) DQSDT = QS * PFLD(I,k+1) * DESDT / (ES * PPRIME) GAMMA = EL2ORC * QESO(I,k+1) / (TO(I,k+1)**2) DT = (G * DZ + HVAP * DQSDP * DP) / (CP * (1. + GAMMA)) DQ = DQSDT * DT + DQSDP * DP TO(I,k) = TO(I,k+1) + DT QO(I,k) = QO(I,k+1) + DQ PO(I,k) = .5 * (PFLD(I,k) + PFLD(I,k+1)) ENDIF ENDDO ENDDO DO K = 1, KM1 DO I = 1, IM IF(k .le. kmax(i)-1 .and. CNVFLG(I)) THEN !jfe QESO(I,k) = 10. * FPVS(TO(I,k)) ! QESO(I,k) = 0.01 * fpvs(TO(I,K)) ! fpvs is in Pa ! QESO(I,k) = EPS * QESO(I,k) / (PO(I,k) + EPSM1 * QESO(I,k)) !cmr QESO(I,k) = MAX(QESO(I,k),1.E-8) val1 = 1.E-8 QESO(I,k) = MAX(QESO(I,k), val1) !cmr QO(I,k) = max(QO(I,k),1.e-10) val2 = 1.e-10 QO(I,k) = max(QO(I,k), val2 ) ! QO(I,k) = MIN(QO(I,k),QESO(I,k)) HEO(I,k) = .5 * G * (ZO(I,k) + ZO(I,k+1)) + & & CP * TO(I,k) + HVAP * QO(I,k) HESO(I,k) = .5 * G * (ZO(I,k) + ZO(I,k+1)) + & & CP * TO(I,k) + HVAP * QESO(I,k) ENDIF ENDDO ENDDO DO I = 1, IM k = kmax(i) IF(CNVFLG(I)) THEN HEO(I,k) = G * ZO(I,k) + CP * TO(I,k) + HVAP * QO(I,k) HESO(I,k) = G * ZO(I,k) + CP * TO(I,k) + HVAP * QESO(I,k) ! HEO(I,k) = MIN(HEO(I,k),HESO(I,k)) ENDIF ENDDO DO I = 1, IM IF(CNVFLG(I)) THEN INDX = KB(I) XHKB(I) = HEO(I,INDX) XQKB(I) = QO(I,INDX) HCKO(I,INDX) = XHKB(I) QCKO(I,INDX) = XQKB(I) ENDIF ENDDO ! ! !**************************** STATIC CONTROL ! ! !------- MOISTURE AND CLOUD WORK FUNCTIONS ! DO K = 2, KM1 DO I = 1, IM if (k .le. kmax(i)-1) then ! IF(CNVFLG(I).AND.K.GT.KB(I).AND.K.LE.KBCON(I)) THEN IF(CNVFLG(I).AND.K.GT.KB(I).AND.K.LE.KTCON(I)) THEN FACTOR = ETA(I,k-1) / ETA(I,k) ONEMF = 1. - FACTOR HCKO(I,k) = FACTOR * HCKO(I,k-1) + ONEMF * & & .5 * (HEO(I,k) + HEO(I,k+1)) ENDIF ! IF(CNVFLG(I).AND.K.GT.KBCON(I)) THEN ! HEO(I,k) = HEO(I,k-1) ! ENDIF endif ENDDO ENDDO DO K = 2, KM1 DO I = 1, IM if (k .le. kmax(i)-1) then IF(CNVFLG(I).AND.K.GT.KB(I).AND.K.LT.KTCON(I)) THEN DZ = .5 * (ZO(I,k+1) - ZO(I,k-1)) GAMMA = EL2ORC * QESO(I,k) / (TO(I,k)**2) XDBY = HCKO(I,k) - HESO(I,k) !cmr XDBY = MAX(XDBY,0.) val = 0. XDBY = MAX(XDBY,val) XQRCH = QESO(I,k) & & + GAMMA * XDBY / (HVAP * (1. + GAMMA)) FACTOR = ETA(I,k-1) / ETA(I,k) ONEMF = 1. - FACTOR QCKO(I,k) = FACTOR * QCKO(I,k-1) + ONEMF * & & .5 * (QO(I,k) + QO(I,k+1)) DQ = ETA(I,k) * QCKO(I,k) - ETA(I,k) * XQRCH IF(DQ.GT.0.) THEN ETAH = .5 * (ETA(I,k) + ETA(I,k-1)) QLK = DQ / (ETA(I,k) + ETAH * C0 * DZ) XAA0(I) = XAA0(I) - (ZO(I,k) - ZO(I,k-1)) * G * QLK XQC = QLK + XQRCH XPW = ETAH * C0 * DZ * QLK QCKO(I,k) = XQC XPWAV(I) = XPWAV(I) + XPW ENDIF ENDIF ! IF(CNVFLG(I).AND.K.GT.KBCON(I).AND.K.LT.KTCON(I)) THEN IF(CNVFLG(I).AND.K.GT.KBCON(I).AND.K.LE.KTCON(I)) THEN DZ1 = ZO(I,k) - ZO(I,k-1) GAMMA = EL2ORC * QESO(I,k-1) / (TO(I,k-1)**2) RFACT = 1. + DELTA * CP * GAMMA & & * TO(I,k-1) / HVAP XDBY = HCKO(I,k-1) - HESO(I,k-1) XAA0(I) = XAA0(I) & & + DZ1 * (G / (CP * TO(I,k-1))) & & * XDBY / (1. + GAMMA) & & * RFACT val=0. XAA0(I)=XAA0(I)+ & & DZ1 * G * DELTA * & !cmr & MAX( 0.,(QESO(I,k-1) - QO(I,k-1))) & & MAX(val,(QESO(I,k-1) - QO(I,k-1))) ENDIF endif ENDDO ENDDO !cccc IF(LAT.EQ.LATD.AND.lon.eq.lond.and.CNVFLG(I)) THEN !cccc PRINT *, ' XAA BEFORE DWNDRFT =', XAA0(I) !cccc ENDIF ! !------- DOWNDRAFT CALCULATIONS ! ! !--- DOWNDRAFT MOISTURE PROPERTIES ! DO I = 1, IM XPWEV(I) = 0. ENDDO DO I = 1, IM IF(DWNFLG2(I)) THEN JMN = JMIN(I) XHCD(I) = HEO(I,JMN) XQCD(I) = QO(I,JMN) QRCD(I,JMN) = QESO(I,JMN) ENDIF ENDDO DO K = KM1, 1, -1 DO I = 1, IM if (k .le. kmax(i)-1) then IF(DWNFLG2(I).AND.K.LT.JMIN(I)) THEN DQ = QESO(I,k) DT = TO(I,k) GAMMA = EL2ORC * DQ / DT**2 DH = XHCD(I) - HESO(I,k) QRCD(I,k)=DQ+(1./HVAP)*(GAMMA/(1.+GAMMA))*DH DETAD = ETAD(I,k+1) - ETAD(I,k) XPWD = ETAD(I,k+1) * QRCD(I,k+1) - & & ETAD(I,k) * QRCD(I,k) XPWD = XPWD - DETAD * & & .5 * (QRCD(I,k) + QRCD(I,k+1)) XPWEV(I) = XPWEV(I) + XPWD ENDIF endif ENDDO ENDDO ! DO I = 1, IM edtmax = edtmaxl if(SLIMSK(I).eq.0.) edtmax = edtmaxs IF(DWNFLG2(I)) THEN IF(XPWEV(I).GE.0.) THEN EDTX(I) = 0. ELSE EDTX(I) = -EDTX(I) * XPWAV(I) / XPWEV(I) EDTX(I) = MIN(EDTX(I),EDTMAX) ENDIF ELSE EDTX(I) = 0. ENDIF ENDDO ! ! ! !--- DOWNDRAFT CLOUDWORK FUNCTIONS ! ! DO K = KM1, 1, -1 DO I = 1, IM if (k .le. kmax(i)-1) then IF(DWNFLG2(I).AND.K.LT.JMIN(I)) THEN GAMMA = EL2ORC * QESO(I,k+1) / TO(I,k+1)**2 DHH=XHCD(I) DT= TO(I,k+1) DG= GAMMA DH= HESO(I,k+1) DZ=-1.*(ZO(I,k+1)-ZO(I,k)) XAA0(I)=XAA0(I)+EDTX(I)*DZ*(G/(CP*DT))*((DHH-DH)/(1.+DG)) & & *(1.+DELTA*CP*DG*DT/HVAP) val=0. XAA0(I)=XAA0(I)+EDTX(I)* & !cmr & DZ*G*DELTA*MAX( 0.,(QESO(I,k+1)-QO(I,k+1))) & & DZ*G*DELTA*MAX(val,(QESO(I,k+1)-QO(I,k+1))) ENDIF endif ENDDO ENDDO !cccc IF(LAT.EQ.LATD.AND.lon.eq.lond.and.DWNFLG2(I)) THEN !cccc PRINT *, ' XAA AFTER DWNDRFT =', XAA0(I) !cccc ENDIF ! ! CALCULATE CRITICAL CLOUD WORK FUNCTION ! DO I = 1, IM ACRT(I) = 0. IF(CNVFLG(I)) THEN ! IF(CNVFLG(I).AND.SLIMSK(I).NE.1.) THEN IF(PFLD(I,KTCON(I)).LT.PCRIT(15))THEN ACRT(I)=ACRIT(15)*(975.-PFLD(I,KTCON(I))) & & /(975.-PCRIT(15)) ELSE IF(PFLD(I,KTCON(I)).GT.PCRIT(1))THEN ACRT(I)=ACRIT(1) ELSE !cmr K = IFIX((850. - PFLD(I,KTCON(I)))/50.) + 2 K = int((850. - PFLD(I,KTCON(I)))/50.) + 2 K = MIN(K,15) K = MAX(K,2) ACRT(I)=ACRIT(K)+(ACRIT(K-1)-ACRIT(K))* & & (PFLD(I,KTCON(I))-PCRIT(K))/(PCRIT(K-1)-PCRIT(K)) ENDIF ! ELSE ! ACRT(I) = .5 * (PFLD(I,KBCON(I)) - PFLD(I,KTCON(I))) ENDIF ENDDO DO I = 1, IM ACRTFCT(I) = 1. IF(CNVFLG(I)) THEN if(SLIMSK(I).eq.1.) THEN w1 = w1l w2 = w2l w3 = w3l w4 = w4l else w1 = w1s w2 = w2s w3 = w3s w4 = w4s ENDIF !C IF(CNVFLG(I).AND.SLIMSK(I).EQ.1.) THEN ! ACRTFCT(I) = PDOT(I) / W3 ! ! modify critical cloud workfunction by cloud base vertical velocity ! IF(PDOT(I).LE.W4) THEN ACRTFCT(I) = (PDOT(I) - W4) / (W3 - W4) ELSEIF(PDOT(I).GE.-W4) THEN ACRTFCT(I) = - (PDOT(I) + W4) / (W4 - W3) ELSE ACRTFCT(I) = 0. ENDIF !cmr ACRTFCT(I) = MAX(ACRTFCT(I),-1.) val1 = -1. ACRTFCT(I) = MAX(ACRTFCT(I),val1) !cmr ACRTFCT(I) = MIN(ACRTFCT(I),1.) val2 = 1. ACRTFCT(I) = MIN(ACRTFCT(I),val2) ACRTFCT(I) = 1. - ACRTFCT(I) ! ! modify ACRTFCT(I) by colume mean rh if RHBAR(I) is greater than 80 percent ! ! if(RHBAR(I).ge..8) THEN ! ACRTFCT(I) = ACRTFCT(I) * (.9 - min(RHBAR(I),.9)) * 10. ! ENDIF ! ! modify adjustment time scale by cloud base vertical velocity ! DTCONV(I) = DT2 + max((1800. - DT2),RZERO) * & & (PDOT(I) - W2) / (W1 - W2) ! DTCONV(I) = MAX(DTCONV(I), DT2) ! DTCONV(I) = 1800. * (PDOT(I) - w2) / (w1 - w2) DTCONV(I) = max(DTCONV(I),dtmin) DTCONV(I) = min(DTCONV(I),dtmax) ENDIF ENDDO ! !--- LARGE SCALE FORCING ! DO I= 1, IM FLG(I) = CNVFLG(I) IF(CNVFLG(I)) THEN ! F = AA1(I) / DTCONV(I) FLD(I) = (AA1(I) - ACRT(I) * ACRTFCT(I)) / DTCONV(I) IF(FLD(I).LE.0.) FLG(I) = .FALSE. ENDIF CNVFLG(I) = FLG(I) IF(CNVFLG(I)) THEN ! XAA0(I) = MAX(XAA0(I),0.) XK(I) = (XAA0(I) - AA1(I)) / MBDT IF(XK(I).GE.0.) FLG(I) = .FALSE. ENDIF ! !--- KERNEL, CLOUD BASE MASS FLUX ! CNVFLG(I) = FLG(I) IF(CNVFLG(I)) THEN XMB(I) = -FLD(I) / XK(I) XMB(I) = MIN(XMB(I),XMBMAX(I)) ENDIF ENDDO ! IF(LAT.EQ.LATD.AND.lon.eq.lond.and.CNVFLG(I)) THEN ! print *, ' RHBAR(I), ACRTFCT(I) =', RHBAR(I), ACRTFCT(I) ! PRINT *, ' A1, XA =', AA1(I), XAA0(I) ! PRINT *, ' XMB(I), ACRT =', XMB(I), ACRT ! ENDIF TOTFLG = .TRUE. DO I = 1, IM TOTFLG = TOTFLG .AND. (.NOT. CNVFLG(I)) ENDDO IF(TOTFLG) RETURN ! ! restore t0 and QO to t1 and q1 in case convection stops ! do k = 1, km DO I = 1, IM if (k .le. kmax(i)) then TO(I,k) = T1(I,k) QO(I,k) = Q1(I,k) !jfe QESO(I,k) = 10. * FPVS(T1(I,k)) ! QESO(I,k) = 0.01 * fpvs(T1(I,K)) ! fpvs is in Pa ! QESO(I,k) = EPS * QESO(I,k) / (PFLD(I,k) + EPSM1*QESO(I,k)) !cmr QESO(I,k) = MAX(QESO(I,k),1.E-8) val = 1.E-8 QESO(I,k) = MAX(QESO(I,k), val ) endif enddo enddo !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! !--- FEEDBACK: SIMPLY THE CHANGES FROM THE CLOUD WITH UNIT MASS FLUX !--- MULTIPLIED BY THE MASS FLUX NECESSARY TO KEEP THE !--- EQUILIBRIUM WITH THE LARGER-SCALE. ! DO I = 1, IM DELHBAR(I) = 0. DELQBAR(I) = 0. DELTBAR(I) = 0. QCOND(I) = 0. ENDDO DO K = 1, KM DO I = 1, IM if (k .le. kmax(i)) then IF(CNVFLG(I).AND.K.LE.KTCON(I)) THEN AUP = 1. IF(K.Le.KB(I)) AUP = 0. ADW = 1. IF(K.GT.JMIN(I)) ADW = 0. DELLAT = (DELLAH(I,k) - HVAP * DELLAQ(I,k)) / CP T1(I,k) = T1(I,k) + DELLAT * XMB(I) * DT2 Q1(I,k) = Q1(I,k) + DELLAQ(I,k) * XMB(I) * DT2 U1(I,k) = U1(I,k) + DELLAU(I,k) * XMB(I) * DT2 V1(I,k) = V1(I,k) + DELLAV(I,k) * XMB(I) * DT2 DP = 1000. * DEL(I,K) DELHBAR(I) = DELHBAR(I) + DELLAH(I,k)*XMB(I)*DP/G DELQBAR(I) = DELQBAR(I) + DELLAQ(I,k)*XMB(I)*DP/G DELTBAR(I) = DELTBAR(I) + DELLAT*XMB(I)*DP/G ENDIF endif ENDDO ENDDO DO K = 1, KM DO I = 1, IM if (k .le. kmax(i)) then IF(CNVFLG(I).AND.K.LE.KTCON(I)) THEN !jfe QESO(I,k) = 10. * FPVS(T1(I,k)) ! QESO(I,k) = 0.01 * fpvs(T1(I,K)) ! fpvs is in Pa ! QESO(I,k) = EPS * QESO(I,k)/(PFLD(I,k) + EPSM1*QESO(I,k)) !cmr QESO(I,k) = MAX(QESO(I,k),1.E-8) val = 1.E-8 QESO(I,k) = MAX(QESO(I,k), val ) ! ! cloud water ! if(ncloud.gt.0.and.CNVFLG(I).and.k.eq.KTCON(I)) THEN tem = DELLAL(I) * XMB(I) * dt2 tem1 = MAX(RZERO, MIN(RONE, (TCR-t1(I,K))*TCRF)) if (QL(I,k,2) .gt. -999.0) then QL(I,k,1) = QL(I,k,1) + tem * tem1 ! Ice QL(I,k,2) = QL(I,k,2) + tem *(1.0-tem1) ! Water else tem2 = QL(I,k,1) + tem QL(I,k,1) = tem2 * tem1 ! Ice QL(I,k,2) = tem2 - QL(I,k,1) ! Water endif ! QL(I,k) = QL(I,k) + DELLAL(I) * XMB(I) * dt2 dp = 1000. * del(i,k) DELLAL(I) = DELLAL(I) * XMB(I) * dp / g ENDIF ENDIF endif ENDDO ENDDO ! IF(LAT.EQ.LATD.AND.lon.eq.lond.and.CNVFLG(I) ) THEN ! PRINT *, ' DELHBAR, DELQBAR, DELTBAR =' ! PRINT *, DELHBAR, HVAP*DELQBAR, CP*DELTBAR ! PRINT *, ' DELLBAR =' ! PRINT 6003, HVAP*DELLbar ! PRINT *, ' DELLAQ =' ! PRINT 6003, (HVAP*DELLAQ(I,k)*XMB(I),K=1,KMAX) ! PRINT *, ' DELLAT =' ! PRINT 6003, (DELLAH(i,k)*XMB(I)-HVAP*DELLAQ(I,k)*XMB(I), & ! & K=1,KMAX) ! ENDIF DO I = 1, IM RNTOT(I) = 0. DELQEV(I) = 0. DELQ2(I) = 0. FLG(I) = CNVFLG(I) ENDDO DO K = KM, 1, -1 DO I = 1, IM if (k .le. kmax(i)) then IF(CNVFLG(I).AND.K.LE.KTCON(I)) THEN AUP = 1. IF(K.Le.KB(I)) AUP = 0. ADW = 1. IF(K.GT.JMIN(I)) ADW = 0. rain = AUP * PWO(I,k) + ADW * EDTO(I) * PWDO(I,k) RNTOT(I) = RNTOT(I) + rain * XMB(I) * .001 * dt2 ENDIF endif ENDDO ENDDO DO K = KM, 1, -1 DO I = 1, IM if (k .le. kmax(i)) then DELTV(I) = 0. DELQ(I) = 0. QEVAP(I) = 0. IF(CNVFLG(I).AND.K.LE.KTCON(I)) THEN AUP = 1. IF(K.Le.KB(I)) AUP = 0. ADW = 1. IF(K.GT.JMIN(I)) ADW = 0. rain = AUP * PWO(I,k) + ADW * EDTO(I) * PWDO(I,k) RN(I) = RN(I) + rain * XMB(I) * .001 * dt2 ENDIF IF(FLG(I).AND.K.LE.KTCON(I)) THEN evef = EDT(I) * evfact if(SLIMSK(I).eq.1.) evef=EDT(I) * evfactl ! if(SLIMSK(I).eq.1.) evef=.07 ! if(SLIMSK(I).ne.1.) evef = 0. QCOND(I) = EVEF * (Q1(I,k) - QESO(I,k)) & & / (1. + EL2ORC * QESO(I,k) / T1(I,k)**2) DP = 1000. * DEL(I,K) IF(RN(I).GT.0..AND.QCOND(I).LT.0.) THEN QEVAP(I) = -QCOND(I) * (1.-EXP(-.32*SQRT(DT2*RN(I)))) QEVAP(I) = MIN(QEVAP(I), RN(I)*1000.*G/DP) DELQ2(I) = DELQEV(I) + .001 * QEVAP(I) * dp / g ENDIF if(RN(I).gt.0..and.QCOND(I).LT.0..and. & & DELQ2(I).gt.RNTOT(I)) THEN QEVAP(I) = 1000.* g * (RNTOT(I) - DELQEV(I)) / dp FLG(I) = .false. ENDIF IF(RN(I).GT.0..AND.QEVAP(I).gt.0.) THEN Q1(I,k) = Q1(I,k) + QEVAP(I) T1(I,k) = T1(I,k) - ELOCP * QEVAP(I) RN(I) = RN(I) - .001 * QEVAP(I) * DP / G DELTV(I) = - ELOCP*QEVAP(I)/DT2 DELQ(I) = + QEVAP(I)/DT2 DELQEV(I) = DELQEV(I) + .001*dp*QEVAP(I)/g ENDIF DELLAQ(I,k) = DELLAQ(I,k) + DELQ(I) / XMB(I) DELQBAR(I) = DELQBAR(I) + DELQ(I)*DP/G DELTBAR(I) = DELTBAR(I) + DELTV(I)*DP/G ENDIF endif ENDDO ENDDO ! IF(LAT.EQ.LATD.AND.lon.eq.lond.and.CNVFLG(I) ) THEN ! PRINT *, ' DELLAH =' ! PRINT 6003, (DELLAH(k)*XMB(I),K=1,KMAX) ! PRINT *, ' DELLAQ =' ! PRINT 6003, (HVAP*DELLAQ(I,k)*XMB(I),K=1,KMAX) ! PRINT *, ' DELHBAR, DELQBAR, DELTBAR =' ! PRINT *, DELHBAR, HVAP*DELQBAR, CP*DELTBAR ! PRINT *, ' PRECIP =', HVAP*RN(I)*1000./DT2 !CCCC PRINT *, ' DELLBAR =' !CCCC PRINT *, HVAP*DELLbar ! ENDIF ! ! PRECIPITATION RATE CONVERTED TO ACTUAL PRECIP ! IN UNIT OF M INSTEAD OF KG ! DO I = 1, IM IF(CNVFLG(I)) THEN ! ! IN THE EVENT OF UPPER LEVEL RAIN EVAPORATION AND LOWER LEVEL DOWNDRAF ! MOISTENING, RN CAN BECOME NEGATIVE, IN THIS CASE, WE BACK OUT OF TH ! HEATING AND THE MOISTENING ! if(RN(I).lt.0..and..not.FLG(I)) RN(I) = 0. IF(RN(I).LE.0.) THEN RN(I) = 0. ELSE KTOP(I) = KTCON(I) KBOT(I) = KBCON(I) KUO(I) = 1 CLDWRK(I) = AA1(I) ENDIF ENDIF ENDDO DO K = 1, KM DO I = 1, IM if (k .le. kmax(i)) then IF(CNVFLG(I).AND.RN(I).LE.0.) THEN T1(I,k) = TO(I,k) Q1(I,k) = QO(I,k) ENDIF endif ENDDO ENDDO !! RETURN END SUBROUTINE SASCNV ! ------------------------------------------------------------------------ SUBROUTINE OLD_ARW_SHALCV(IM,IX,KM,DT,DEL,PRSI,PRSL,PRSLK,KUO,Q,T,DPSHC) 1,4 ! USE MODULE_GFS_MACHINE , ONLY : kind_phys USE MODULE_GFS_PHYSCONS, grav => con_g, CP => con_CP, HVAP => con_HVAP & &, RD => con_RD implicit none ! ! include 'constant.h' ! integer IM, IX, KM, KUO(IM) real(kind=kind_phys) DEL(IX,KM), PRSI(IX,KM+1), PRSL(IX,KM), & & PRSLK(IX,KM), & & Q(IX,KM), T(IX,KM), DT, DPSHC ! ! Locals ! real(kind=kind_phys) ck, cpdt, dmse, dsdz1, dsdz2, & & dsig, dtodsl, dtodsu, eldq, g, & & gocp, rtdls ! integer k,k1,k2,kliftl,kliftu,kt,N2,I,iku,ik1,ik,ii integer INDEX2(IM), KLCL(IM), KBOT(IM), KTOP(IM),kk & &, KTOPM(IM) !! ! PHYSICAL PARAMETERS PARAMETER(G=GRAV, GOCP=G/CP) ! BOUNDS OF PARCEL ORIGIN PARAMETER(KLIFTL=2,KLIFTU=2) LOGICAL LSHC(IM) real(kind=kind_phys) Q2(IM*KM), T2(IM*KM), & & PRSL2(IM*KM), PRSLK2(IM*KM), & & AL(IM*(KM-1)), AD(IM*KM), AU(IM*(KM-1)) !----------------------------------------------------------------------- ! COMPRESS FIELDS TO POINTS WITH NO DEEP CONVECTION ! AND MOIST STATIC INSTABILITY. DO I=1,IM LSHC(I)=.FALSE. ENDDO DO K=1,KM-1 DO I=1,IM IF(KUO(I).EQ.0) THEN ELDQ = HVAP*(Q(I,K)-Q(I,K+1)) CPDT = CP*(T(I,K)-T(I,K+1)) RTDLS = (PRSL(I,K)-PRSL(I,K+1)) / & & PRSI(I,K+1)*RD*0.5*(T(I,K)+T(I,K+1)) DMSE = ELDQ+CPDT-RTDLS LSHC(I) = LSHC(I).OR.DMSE.GT.0. ENDIF ENDDO ENDDO N2 = 0 DO I=1,IM IF(LSHC(I)) THEN N2 = N2 + 1 INDEX2(N2) = I ENDIF ENDDO IF(N2.EQ.0) RETURN DO K=1,KM KK = (K-1)*N2 DO I=1,N2 IK = KK + I ii = index2(i) Q2(IK) = Q(II,K) T2(IK) = T(II,K) PRSL2(IK) = PRSL(II,K) PRSLK2(IK) = PRSLK(II,K) ENDDO ENDDO do i=1,N2 ktopm(i) = KM enddo do k=2,KM do i=1,N2 ii = index2(i) if (prsi(ii,1)-prsi(ii,k) .le. dpshc) ktopm(i) = k enddo enddo !----------------------------------------------------------------------- ! COMPUTE MOIST ADIABAT AND DETERMINE LIMITS OF SHALLOW CONVECTION. ! CHECK FOR MOIST STATIC INSTABILITY AGAIN WITHIN CLOUD. CALL MSTADBT3(N2,KM-1,KLIFTL,KLIFTU,PRSL2,PRSLK2,T2,Q2, & & KLCL,KBOT,KTOP,AL,AU) DO I=1,N2 KBOT(I) = min(KLCL(I)-1, ktopm(i)-1) KTOP(I) = min(KTOP(I)+1, ktopm(i)) LSHC(I) = .FALSE. ENDDO DO K=1,KM-1 KK = (K-1)*N2 DO I=1,N2 IF(K.GE.KBOT(I).AND.K.LT.KTOP(I)) THEN IK = KK + I IKU = IK + N2 ELDQ = HVAP * (Q2(IK)-Q2(IKU)) CPDT = CP * (T2(IK)-T2(IKU)) RTDLS = (PRSL2(IK)-PRSL2(IKU)) / & & PRSI(index2(i),K+1)*RD*0.5*(T2(IK)+T2(IKU)) DMSE = ELDQ + CPDT - RTDLS LSHC(I) = LSHC(I).OR.DMSE.GT.0. AU(IK) = G/RTDLS ENDIF ENDDO ENDDO K1=KM+1 K2=0 DO I=1,N2 IF(.NOT.LSHC(I)) THEN KBOT(I) = KM+1 KTOP(I) = 0 ENDIF K1 = MIN(K1,KBOT(I)) K2 = MAX(K2,KTOP(I)) ENDDO KT = K2-K1+1 IF(KT.LT.2) RETURN !----------------------------------------------------------------------- ! SET EDDY VISCOSITY COEFFICIENT CKU AT SIGMA INTERFACES. ! COMPUTE DIAGONALS AND RHS FOR TRIDIAGONAL MATRIX SOLVER. ! EXPAND FINAL FIELDS. KK = (K1-1) * N2 DO I=1,N2 IK = KK + I AD(IK) = 1. ENDDO ! ! DTODSU=DT/DEL(K1) DO K=K1,K2-1 ! DTODSL=DTODSU ! DTODSU= DT/DEL(K+1) ! DSIG=SL(K)-SL(K+1) KK = (K-1) * N2 DO I=1,N2 ii = index2(i) DTODSL = DT/DEL(II,K) DTODSU = DT/DEL(II,K+1) DSIG = PRSL(II,K) - PRSL(II,K+1) IK = KK + I IKU = IK + N2 IF(K.EQ.KBOT(I)) THEN CK=1.5 ELSEIF(K.EQ.KTOP(I)-1) THEN CK=1. ELSEIF(K.EQ.KTOP(I)-2) THEN CK=3. ELSEIF(K.GT.KBOT(I).AND.K.LT.KTOP(I)-2) THEN CK=5. ELSE CK=0. ENDIF DSDZ1 = CK*DSIG*AU(IK)*GOCP DSDZ2 = CK*DSIG*AU(IK)*AU(IK) AU(IK) = -DTODSL*DSDZ2 AL(IK) = -DTODSU*DSDZ2 AD(IK) = AD(IK)-AU(IK) AD(IKU) = 1.-AL(IK) T2(IK) = T2(IK)+DTODSL*DSDZ1 T2(IKU) = T2(IKU)-DTODSU*DSDZ1 ENDDO ENDDO IK1=(K1-1)*N2+1 CALL TRIDI2T3(N2,KT,AL(IK1),AD(IK1),AU(IK1),Q2(IK1),T2(IK1), & & AU(IK1),Q2(IK1),T2(IK1)) DO K=K1,K2 KK = (K-1)*N2 DO I=1,N2 IK = KK + I Q(INDEX2(I),K) = Q2(IK) T(INDEX2(I),K) = T2(IK) ENDDO ENDDO !----------------------------------------------------------------------- RETURN END SUBROUTINE OLD_ARW_SHALCV !----------------------------------------------------------------------- SUBROUTINE TRIDI2T3(L,N,CL,CM,CU,R1,R2,AU,A1,A2) 2,2 !yt INCLUDE DBTRIDI2; !! USE MODULE_GFS_MACHINE , ONLY : kind_phys implicit none integer k,n,l,i real(kind=kind_phys) fk !! real(kind=kind_phys) & & CL(L,2:N),CM(L,N),CU(L,N-1),R1(L,N),R2(L,N), & & AU(L,N-1),A1(L,N),A2(L,N) !----------------------------------------------------------------------- DO I=1,L FK=1./CM(I,1) AU(I,1)=FK*CU(I,1) A1(I,1)=FK*R1(I,1) A2(I,1)=FK*R2(I,1) ENDDO DO K=2,N-1 DO I=1,L FK=1./(CM(I,K)-CL(I,K)*AU(I,K-1)) AU(I,K)=FK*CU(I,K) A1(I,K)=FK*(R1(I,K)-CL(I,K)*A1(I,K-1)) A2(I,K)=FK*(R2(I,K)-CL(I,K)*A2(I,K-1)) ENDDO ENDDO DO I=1,L FK=1./(CM(I,N)-CL(I,N)*AU(I,N-1)) A1(I,N)=FK*(R1(I,N)-CL(I,N)*A1(I,N-1)) A2(I,N)=FK*(R2(I,N)-CL(I,N)*A2(I,N-1)) ENDDO DO K=N-1,1,-1 DO I=1,L A1(I,K)=A1(I,K)-AU(I,K)*A1(I,K+1) A2(I,K)=A2(I,K)-AU(I,K)*A2(I,K+1) ENDDO ENDDO !----------------------------------------------------------------------- RETURN END SUBROUTINE TRIDI2T3 !----------------------------------------------------------------------- SUBROUTINE MSTADBT3(IM,KM,K1,K2,PRSL,PRSLK,TENV,QENV, & 2,12 & KLCL,KBOT,KTOP,TCLD,QCLD) !yt INCLUDE DBMSTADB; !! USE MODULE_GFS_MACHINE, ONLY : kind_phys USE MODULE_GFS_FUNCPHYS, ONLY : FTDP, FTHE, FTLCL, STMA USE MODULE_GFS_PHYSCONS, EPS => con_eps, EPSM1 => con_epsm1, FV => con_FVirt implicit none !! ! include 'constant.h' !! integer k,k1,k2,km,i,im real(kind=kind_phys) pv,qma,slklcl,tdpd,thelcl,tlcl real(kind=kind_phys) tma,tvcld,tvenv !! real(kind=kind_phys) PRSL(IM,KM), PRSLK(IM,KM), TENV(IM,KM), & & QENV(IM,KM), TCLD(IM,KM), QCLD(IM,KM) INTEGER KLCL(IM), KBOT(IM), KTOP(IM) ! LOCAL ARRAYS real(kind=kind_phys) SLKMA(IM), THEMA(IM) !----------------------------------------------------------------------- ! DETERMINE WARMEST POTENTIAL WET-BULB TEMPERATURE BETWEEN K1 AND K2. ! COMPUTE ITS LIFTING CONDENSATION LEVEL. ! DO I=1,IM SLKMA(I) = 0. THEMA(I) = 0. ENDDO DO K=K1,K2 DO I=1,IM PV = 1000.0 * PRSL(I,K)*QENV(I,K)/(EPS-EPSM1*QENV(I,K)) TDPD = TENV(I,K)-FTDP(PV) IF(TDPD.GT.0.) THEN TLCL = FTLCL(TENV(I,K),TDPD) SLKLCL = PRSLK(I,K)*TLCL/TENV(I,K) ELSE TLCL = TENV(I,K) SLKLCL = PRSLK(I,K) ENDIF THELCL=FTHE(TLCL,SLKLCL) IF(THELCL.GT.THEMA(I)) THEN SLKMA(I) = SLKLCL THEMA(I) = THELCL ENDIF ENDDO ENDDO !----------------------------------------------------------------------- ! SET CLOUD TEMPERATURES AND HUMIDITIES WHEREVER THE PARCEL LIFTED UP ! THE MOIST ADIABAT IS BUOYANT WITH RESPECT TO THE ENVIRONMENT. DO I=1,IM KLCL(I)=KM+1 KBOT(I)=KM+1 KTOP(I)=0 ENDDO DO K=1,KM DO I=1,IM TCLD(I,K)=0. QCLD(I,K)=0. ENDDO ENDDO DO K=K1,KM DO I=1,IM IF(PRSLK(I,K).LE.SLKMA(I)) THEN KLCL(I)=MIN(KLCL(I),K) CALL STMA(THEMA(I),PRSLK(I,K),TMA,QMA) ! TMA=FTMA(THEMA(I),PRSLK(I,K),QMA) TVCLD=TMA*(1.+FV*QMA) TVENV=TENV(I,K)*(1.+FV*QENV(I,K)) IF(TVCLD.GT.TVENV) THEN KBOT(I)=MIN(KBOT(I),K) KTOP(I)=MAX(KTOP(I),K) TCLD(I,K)=TMA-TENV(I,K) QCLD(I,K)=QMA-QENV(I,K) ENDIF ENDIF ENDDO ENDDO !----------------------------------------------------------------------- RETURN END SUBROUTINE MSTADBT3 subroutine sascnvn(im,ix,km,jcap,delt,del,prsl,ps,phil,ql, & 1,3 & q1,t1,u1,v1,rcs,cldwrk,rn,kbot,ktop,kcnv,slimsk, & & dot,ncloud,pgcon,sas_mass_flux) ! & dot,ncloud,ud_mf,dd_mf,dt_mf) ! & dot,ncloud,ud_mf,dd_mf,dt_mf,me) ! ! use machine , only : kind_phys ! use funcphys , only : fpvs ! use physcons, grav => con_g, cp => con_cp, hvap => con_hvap & USE MODULE_GFS_MACHINE, ONLY : kind_phys USE MODULE_GFS_FUNCPHYS, ONLY : fpvs USE MODULE_GFS_PHYSCONS, grav => con_g, cp => con_cp & &, hvap => con_hvap & &, rv => con_rv, fv => con_fvirt, t0c => con_t0c & &, cvap => con_cvap, cliq => con_cliq & &, eps => con_eps, epsm1 => con_epsm1 implicit none ! integer im, ix, km, jcap, ncloud, & & kbot(im), ktop(im), kcnv(im) ! &, me real(kind=kind_phys) delt,sas_mass_flux real(kind=kind_phys) ps(im), del(ix,km), prsl(ix,km), & & ql(ix,km,2),q1(ix,km), t1(ix,km), & & u1(ix,km), v1(ix,km), rcs(im), & & cldwrk(im), rn(im), slimsk(im), & & dot(ix,km), phil(ix,km) ! hchuang code change mass flux output ! &, ud_mf(im,km),dd_mf(im,km),dt_mf(im,km) ! integer i, j, indx, jmn, k, kk, latd, lond, km1 ! real(kind=kind_phys) clam, cxlamu, xlamde, xlamdd ! real(kind=kind_phys) adw, aup, aafac, & & beta, betal, betas, & & c0, cpoel, dellat, delta, & & desdt, deta, detad, dg, & & dh, dhh, dlnsig, dp, & & dq, dqsdp, dqsdt, dt, & & dt2, dtmax, dtmin, dv1h, & & dv1q, dv2h, dv2q, dv1u, & & dv1v, dv2u, dv2v, dv3q, & & dv3h, dv3u, dv3v, & & dz, dz1, e1, edtmax, & & edtmaxl, edtmaxs, el2orc, elocp, & & es, etah, cthk, dthk, & & evef, evfact, evfactl, fact1, & & fact2, factor, fjcap, fkm, & & g, gamma, pprime, & & qlk, qrch, qs, c1, & & rain, rfact, shear, tem1, & & tem2, terr, val, val1, & & val2, w1, w1l, w1s, & & w2, w2l, w2s, w3, & & w3l, w3s, w4, w4l, & & w4s, xdby, xpw, xpwd, & & xqrch, mbdt, tem, & & ptem, ptem1 ! real(kind=kind_phys), intent(in) :: pgcon integer kb(im), kbcon(im), kbcon1(im), & & ktcon(im), ktcon1(im), & & jmin(im), lmin(im), kbmax(im), & & kbm(im), kmax(im) ! real(kind=kind_phys) aa1(im), acrt(im), acrtfct(im), & & delhbar(im), delq(im), delq2(im), & & delqbar(im), delqev(im), deltbar(im), & & deltv(im), dtconv(im), edt(im), & & edto(im), edtx(im), fld(im), & & hcdo(im,km), hmax(im), hmin(im), & & ucdo(im,km), vcdo(im,km),aa2(im), & & pbcdif(im), pdot(im), po(im,km), & & pwavo(im), pwevo(im), xlamud(im), & & qcdo(im,km), qcond(im), qevap(im), & & rntot(im), vshear(im), xaa0(im), & & xk(im), xlamd(im), & & xmb(im), xmbmax(im), xpwav(im), & & xpwev(im), delubar(im),delvbar(im) !cj real(kind=kind_phys) cincr, cincrmax, cincrmin real(kind=kind_phys) xmbmx1 !cj !c physical parameters parameter(g=grav) parameter(cpoel=cp/hvap,elocp=hvap/cp, & & el2orc=hvap*hvap/(rv*cp)) parameter(terr=0.,c0=.002,c1=.002,delta=fv) parameter(fact1=(cvap-cliq)/rv,fact2=hvap/rv-fact1*t0c) parameter(cthk=150.,cincrmax=180.,cincrmin=120.,dthk=25.) !c local variables and arrays real(kind=kind_phys) pfld(im,km),to(im,km), qo(im,km), & & uo(im,km), vo(im,km), qeso(im,km) !c cloud water real(kind=kind_phys)qlko_ktcon(im),dellal(im,km),tvo(im,km), & & dbyo(im,km), zo(im,km), xlamue(im,km), & & fent1(im,km),fent2(im,km), frh(im,km), & & heo(im,km), heso(im,km), & & qrcd(im,km), dellah(im,km), dellaq(im,km), & & dellau(im,km),dellav(im,km), hcko(im,km), & & ucko(im,km), vcko(im,km), qcko(im,km), & & eta(im,km), etad(im,km), zi(im,km), & & qrcdo(im,km),pwo(im,km), pwdo(im,km), & & tx1(im), sumx(im) ! &, rhbar(im) ! logical totflg, cnvflg(im), flg(im) ! real(kind=kind_phys) pcrit(15), acritt(15), acrit(15) ! save pcrit, acritt data pcrit/850.,800.,750.,700.,650.,600.,550.,500.,450.,400.,& & 350.,300.,250.,200.,150./ data acritt/.0633,.0445,.0553,.0664,.075,.1082,.1521,.2216, & & .3151,.3677,.41,.5255,.7663,1.1686,1.6851/ !c gdas derived acrit !c data acritt/.203,.515,.521,.566,.625,.665,.659,.688, !c & .743,.813,.886,.947,1.138,1.377,1.896/ real(kind=kind_phys) tf, tcr, tcrf parameter (tf=233.16, tcr=263.16, tcrf=1.0/(tcr-tf)) ! !c----------------------------------------------------------------------- ! km1 = km - 1 !c !c initialize arrays !c do i=1,im kcnv(i)=0 cnvflg(i) = .true. rn(i)=0. kbot(i)=km+1 ktop(i)=0 kbcon(i)=km ktcon(i)=1 dtconv(i) = 3600. cldwrk(i) = 0. pdot(i) = 0. pbcdif(i)= 0. lmin(i) = 1 jmin(i) = 1 qlko_ktcon(i) = 0. edt(i) = 0. edto(i) = 0. edtx(i) = 0. acrt(i) = 0. acrtfct(i) = 1. aa1(i) = 0. aa2(i) = 0. xaa0(i) = 0. pwavo(i)= 0. pwevo(i)= 0. xpwav(i)= 0. xpwev(i)= 0. vshear(i) = 0. enddo ! hchuang code change ! do k = 1, km ! do i = 1, im ! ud_mf(i,k) = 0. ! dd_mf(i,k) = 0. ! dt_mf(i,k) = 0. ! enddo ! enddo !c do k = 1, 15 acrit(k) = acritt(k) * (975. - pcrit(k)) enddo dt2 = delt val = 1200. dtmin = max(dt2, val ) val = 3600. dtmax = max(dt2, val ) !c model tunable parameters are all here mbdt = 10. edtmaxl = .3 edtmaxs = .3 clam = .1 aafac = .1 ! betal = .15 ! betas = .15 betal = .05 betas = .05 !c evef = 0.07 evfact = 0.3 evfactl = 0.3 #if ( EM_CORE == 1 ) ! HAWAII TEST - ZCX BETAl = .05 betas = .05 evfact = 0.5 evfactl = 0.5 #endif ! cxlamu = 1.0e-4 xlamde = 1.0e-4 xlamdd = 1.0e-4 ! fjcap = (float(jcap) / 126.) ** 2 val = 1. fjcap = max(fjcap,val) fkm = (float(km) / 28.) ** 2 fkm = max(fkm,val) w1l = -8.e-3 w2l = -4.e-2 w3l = -5.e-3 w4l = -5.e-4 w1s = -2.e-4 w2s = -2.e-3 w3s = -1.e-3 w4s = -2.e-5 !c !c define top layer for search of the downdraft originating layer !c and the maximum thetae for updraft !c do i=1,im kbmax(i) = km kbm(i) = km kmax(i) = km tx1(i) = 1.0 / ps(i) enddo ! do k = 1, km do i=1,im IF (prSL(I,K)*tx1(I) .GT. 0.04) KMAX(I) = MIN(KM,K + 1) !2011bugfix if (prsl(i,k)*tx1(i) .gt. 0.04) kmax(i) = k + 1 if (prsl(i,k)*tx1(i) .gt. 0.45) kbmax(i) = k + 1 if (prsl(i,k)*tx1(i) .gt. 0.70) kbm(i) = k + 1 enddo enddo do i=1,im kbmax(i) = min(kbmax(i),kmax(i)) kbm(i) = min(kbm(i),kmax(i)) enddo !c !c hydrostatic height assume zero terr and initially assume !c updraft entrainment rate as an inverse function of height !c do k = 1, km do i=1,im zo(i,k) = phil(i,k) / g enddo enddo do k = 1, km1 do i=1,im zi(i,k) = 0.5*(zo(i,k)+zo(i,k+1)) xlamue(i,k) = clam / zi(i,k) enddo enddo !c !c!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !c convert surface pressure to mb from cb !c do k = 1, km do i = 1, im if (k .le. kmax(i)) then pfld(i,k) = prsl(i,k) * 10.0 eta(i,k) = 1. fent1(i,k)= 1. fent2(i,k)= 1. frh(i,k) = 0. hcko(i,k) = 0. qcko(i,k) = 0. ucko(i,k) = 0. vcko(i,k) = 0. etad(i,k) = 1. hcdo(i,k) = 0. qcdo(i,k) = 0. ucdo(i,k) = 0. vcdo(i,k) = 0. qrcd(i,k) = 0. qrcdo(i,k)= 0. dbyo(i,k) = 0. pwo(i,k) = 0. pwdo(i,k) = 0. dellal(i,k) = 0. to(i,k) = t1(i,k) qo(i,k) = q1(i,k) uo(i,k) = u1(i,k) * rcs(i) vo(i,k) = v1(i,k) * rcs(i) endif enddo enddo !c !c column variables !c p is pressure of the layer (mb) !c t is temperature at t-dt (k)..tn !c q is mixing ratio at t-dt (kg/kg)..qn !c to is temperature at t+dt (k)... this is after advection and turbulan !c qo is mixing ratio at t+dt (kg/kg)..q1 !c do k = 1, km do i=1,im if (k .le. kmax(i)) then qeso(i,k) = 0.01 * fpvs(to(i,k)) ! fpvs is in pa qeso(i,k) = eps * qeso(i,k) / (pfld(i,k) + epsm1*qeso(i,k)) val1 = 1.e-8 qeso(i,k) = max(qeso(i,k), val1) val2 = 1.e-10 qo(i,k) = max(qo(i,k), val2 ) ! qo(i,k) = min(qo(i,k),qeso(i,k)) ! tvo(i,k) = to(i,k) + delta * to(i,k) * qo(i,k) endif enddo enddo !c !c compute moist static energy !c do k = 1, km do i=1,im if (k .le. kmax(i)) then ! tem = g * zo(i,k) + cp * to(i,k) tem = phil(i,k) + cp * to(i,k) heo(i,k) = tem + hvap * qo(i,k) heso(i,k) = tem + hvap * qeso(i,k) !c heo(i,k) = min(heo(i,k),heso(i,k)) endif enddo enddo !c !c determine level with largest moist static energy !c this is the level where updraft starts !c do i=1,im hmax(i) = heo(i,1) kb(i) = 1 enddo do k = 2, km do i=1,im if (k .le. kbm(i)) then if(heo(i,k).gt.hmax(i)) then kb(i) = k hmax(i) = heo(i,k) endif endif enddo enddo !c do k = 1, km1 do i=1,im if (k .le. kmax(i)-1) then dz = .5 * (zo(i,k+1) - zo(i,k)) dp = .5 * (pfld(i,k+1) - pfld(i,k)) es = 0.01 * fpvs(to(i,k+1)) ! fpvs is in pa pprime = pfld(i,k+1) + epsm1 * es qs = eps * es / pprime dqsdp = - qs / pprime desdt = es * (fact1 / to(i,k+1) + fact2 / (to(i,k+1)**2)) dqsdt = qs * pfld(i,k+1) * desdt / (es * pprime) gamma = el2orc * qeso(i,k+1) / (to(i,k+1)**2) dt = (g * dz + hvap * dqsdp * dp) / (cp * (1. + gamma)) dq = dqsdt * dt + dqsdp * dp to(i,k) = to(i,k+1) + dt qo(i,k) = qo(i,k+1) + dq po(i,k) = .5 * (pfld(i,k) + pfld(i,k+1)) endif enddo enddo ! do k = 1, km1 do i=1,im if (k .le. kmax(i)-1) then qeso(i,k) = 0.01 * fpvs(to(i,k)) ! fpvs is in pa qeso(i,k) = eps * qeso(i,k) / (po(i,k) + epsm1*qeso(i,k)) val1 = 1.e-8 qeso(i,k) = max(qeso(i,k), val1) val2 = 1.e-10 qo(i,k) = max(qo(i,k), val2 ) ! qo(i,k) = min(qo(i,k),qeso(i,k)) val1 = 1.0 frh(i,k) = 1. - min(qo(i,k)/qeso(i,k), val1) heo(i,k) = .5 * g * (zo(i,k) + zo(i,k+1)) + & & cp * to(i,k) + hvap * qo(i,k) heso(i,k) = .5 * g * (zo(i,k) + zo(i,k+1)) + & & cp * to(i,k) + hvap * qeso(i,k) uo(i,k) = .5 * (uo(i,k) + uo(i,k+1)) vo(i,k) = .5 * (vo(i,k) + vo(i,k+1)) endif enddo enddo !c !c look for the level of free convection as cloud base !c do i=1,im flg(i) = .true. kbcon(i) = kmax(i) enddo do k = 1, km1 do i=1,im if (flg(i).and.k.le.kbmax(i)) then if(k.gt.kb(i).and.heo(i,kb(i)).gt.heso(i,k)) then kbcon(i) = k flg(i) = .false. endif endif enddo enddo !c do i=1,im if(kbcon(i).eq.kmax(i)) cnvflg(i) = .false. enddo !! totflg = .true. do i=1,im totflg = totflg .and. (.not. cnvflg(i)) enddo if(totflg) return !! !c !c determine critical convective inhibition !c as a function of vertical velocity at cloud base. !c do i=1,im if(cnvflg(i)) then pdot(i) = 10.* dot(i,kbcon(i)) endif enddo do i=1,im if(cnvflg(i)) then if(slimsk(i).eq.1.) then w1 = w1l w2 = w2l w3 = w3l w4 = w4l else w1 = w1s w2 = w2s w3 = w3s w4 = w4s endif if(pdot(i).le.w4) then tem = (pdot(i) - w4) / (w3 - w4) elseif(pdot(i).ge.-w4) then tem = - (pdot(i) + w4) / (w4 - w3) else tem = 0. endif val1 = -1. tem = max(tem,val1) val2 = 1. tem = min(tem,val2) tem = 1. - tem tem1= .5*(cincrmax-cincrmin) cincr = cincrmax - tem * tem1 pbcdif(i) = pfld(i,kb(i)) - pfld(i,kbcon(i)) if(pbcdif(i).gt.cincr) then cnvflg(i) = .false. endif endif enddo !! totflg = .true. do i=1,im totflg = totflg .and. (.not. cnvflg(i)) enddo if(totflg) return !! !c !c assume that updraft entrainment rate above cloud base is !c same as that at cloud base !c do k = 2, km1 do i=1,im if(cnvflg(i).and. & & (k.gt.kbcon(i).and.k.lt.kmax(i))) then xlamue(i,k) = xlamue(i,kbcon(i)) endif enddo enddo !c !c assume the detrainment rate for the updrafts to be same as !c the entrainment rate at cloud base !c do i = 1, im if(cnvflg(i)) then xlamud(i) = xlamue(i,kbcon(i)) endif enddo !c !c functions rapidly decreasing with height, mimicking a cloud ensemble !c (Bechtold et al., 2008) !c do k = 2, km1 do i=1,im if(cnvflg(i).and. & & (k.gt.kbcon(i).and.k.lt.kmax(i))) then tem = qeso(i,k)/qeso(i,kbcon(i)) fent1(i,k) = tem**2 fent2(i,k) = tem**3 endif enddo enddo !c !c final entrainment rate as the sum of turbulent part and organized entrainment !c depending on the environmental relative humidity !c (Bechtold et al., 2008) !c do k = 2, km1 do i=1,im if(cnvflg(i).and. & & (k.ge.kbcon(i).and.k.lt.kmax(i))) then tem = cxlamu * frh(i,k) * fent2(i,k) xlamue(i,k) = xlamue(i,k)*fent1(i,k) + tem endif enddo enddo !c !c determine updraft mass flux for the subcloud layers !c do k = km1, 1, -1 do i = 1, im if (cnvflg(i)) then if(k.lt.kbcon(i).and.k.ge.kb(i)) then dz = zi(i,k+1) - zi(i,k) ptem = 0.5*(xlamue(i,k)+xlamue(i,k+1))-xlamud(i) eta(i,k) = eta(i,k+1) / (1. + ptem * dz) endif endif enddo enddo !c !c compute mass flux above cloud base !c do k = 2, km1 do i = 1, im if(cnvflg(i))then if(k.gt.kbcon(i).and.k.lt.kmax(i)) then dz = zi(i,k) - zi(i,k-1) ptem = 0.5*(xlamue(i,k)+xlamue(i,k-1))-xlamud(i) eta(i,k) = eta(i,k-1) * (1 + ptem * dz) endif endif enddo enddo !c !c compute updraft cloud properties !c do i = 1, im if(cnvflg(i)) then indx = kb(i) hcko(i,indx) = heo(i,indx) ucko(i,indx) = uo(i,indx) vcko(i,indx) = vo(i,indx) pwavo(i) = 0. endif enddo !c !c cloud property is modified by the entrainment process !c do k = 2, km1 do i = 1, im if (cnvflg(i)) then if(k.gt.kb(i).and.k.lt.kmax(i)) then dz = zi(i,k) - zi(i,k-1) tem = 0.5 * (xlamue(i,k)+xlamue(i,k-1)) * dz tem1 = 0.5 * xlamud(i) * dz factor = 1. + tem - tem1 ptem = 0.5 * tem + pgcon ptem1= 0.5 * tem - pgcon hcko(i,k) = ((1.-tem1)*hcko(i,k-1)+tem*0.5* & & (heo(i,k)+heo(i,k-1)))/factor ucko(i,k) = ((1.-tem1)*ucko(i,k-1)+ptem*uo(i,k) & & +ptem1*uo(i,k-1))/factor vcko(i,k) = ((1.-tem1)*vcko(i,k-1)+ptem*vo(i,k) & & +ptem1*vo(i,k-1))/factor dbyo(i,k) = hcko(i,k) - heso(i,k) endif endif enddo enddo !c !c taking account into convection inhibition due to existence of !c dry layers below cloud base !c do i=1,im flg(i) = cnvflg(i) kbcon1(i) = kmax(i) enddo do k = 2, km1 do i=1,im if (flg(i).and.k.lt.kmax(i)) then if(k.ge.kbcon(i).and.dbyo(i,k).gt.0.) then kbcon1(i) = k flg(i) = .false. endif endif enddo enddo do i=1,im if(cnvflg(i)) then if(kbcon1(i).eq.kmax(i)) cnvflg(i) = .false. endif enddo do i=1,im if(cnvflg(i)) then tem = pfld(i,kbcon(i)) - pfld(i,kbcon1(i)) if(tem.gt.dthk) then cnvflg(i) = .false. endif endif enddo !! totflg = .true. do i = 1, im totflg = totflg .and. (.not. cnvflg(i)) enddo if(totflg) return !! !c !c determine first guess cloud top as the level of zero buoyancy !c do i = 1, im flg(i) = cnvflg(i) ktcon(i) = 1 enddo do k = 2, km1 do i = 1, im if (flg(i).and.k .lt. kmax(i)) then if(k.gt.kbcon1(i).and.dbyo(i,k).lt.0.) then ktcon(i) = k flg(i) = .false. endif endif enddo enddo !c do i = 1, im if(cnvflg(i)) then tem = pfld(i,kbcon(i))-pfld(i,ktcon(i)) if(tem.lt.cthk) cnvflg(i) = .false. endif enddo !! totflg = .true. do i = 1, im totflg = totflg .and. (.not. cnvflg(i)) enddo if(totflg) return !! !c !c search for downdraft originating level above theta-e minimum !c do i = 1, im if(cnvflg(i)) then hmin(i) = heo(i,kbcon1(i)) lmin(i) = kbmax(i) jmin(i) = kbmax(i) endif enddo do k = 2, km1 do i = 1, im if (cnvflg(i) .and. k .le. kbmax(i)) then if(k.gt.kbcon1(i).and.heo(i,k).lt.hmin(i)) then lmin(i) = k + 1 hmin(i) = heo(i,k) endif endif enddo enddo !c !c make sure that jmin(i) is within the cloud !c do i = 1, im if(cnvflg(i)) then jmin(i) = min(lmin(i),ktcon(i)-1) jmin(i) = max(jmin(i),kbcon1(i)+1) if(jmin(i).ge.ktcon(i)) cnvflg(i) = .false. endif enddo !c !c specify upper limit of mass flux at cloud base !c do i = 1, im if(cnvflg(i)) then ! xmbmax(i) = .1 ! k = kbcon(i) dp = 1000. * del(i,k) xmbmax(i) = dp / (g * dt2) xmbmax(i) = min(sas_mass_flux,xmbmax(i)) ! ! tem = dp / (g * dt2) ! xmbmax(i) = min(tem, xmbmax(i)) endif enddo !c !c compute cloud moisture property and precipitation !c do i = 1, im if (cnvflg(i)) then aa1(i) = 0. qcko(i,kb(i)) = qo(i,kb(i)) ! rhbar(i) = 0. endif enddo do k = 2, km1 do i = 1, im if (cnvflg(i)) then if(k.gt.kb(i).and.k.lt.ktcon(i)) then dz = zi(i,k) - zi(i,k-1) gamma = el2orc * qeso(i,k) / (to(i,k)**2) qrch = qeso(i,k) & & + gamma * dbyo(i,k) / (hvap * (1. + gamma)) !cj tem = 0.5 * (xlamue(i,k)+xlamue(i,k-1)) * dz tem1 = 0.5 * xlamud(i) * dz factor = 1. + tem - tem1 qcko(i,k) = ((1.-tem1)*qcko(i,k-1)+tem*0.5* & & (qo(i,k)+qo(i,k-1)))/factor !cj dq = eta(i,k) * (qcko(i,k) - qrch) !c ! rhbar(i) = rhbar(i) + qo(i,k) / qeso(i,k) !c !c check if there is excess moisture to release latent heat !c if(k.ge.kbcon(i).and.dq.gt.0.) then etah = .5 * (eta(i,k) + eta(i,k-1)) if(ncloud.gt.0..and.k.gt.jmin(i)) then dp = 1000. * del(i,k) qlk = dq / (eta(i,k) + etah * (c0 + c1) * dz) dellal(i,k) = etah * c1 * dz * qlk * g / dp else qlk = dq / (eta(i,k) + etah * c0 * dz) endif aa1(i) = aa1(i) - dz * g * qlk qcko(i,k) = qlk + qrch pwo(i,k) = etah * c0 * dz * qlk pwavo(i) = pwavo(i) + pwo(i,k) endif endif endif enddo enddo !c ! do i = 1, im ! if(cnvflg(i)) then ! indx = ktcon(i) - kb(i) - 1 ! rhbar(i) = rhbar(i) / float(indx) ! endif ! enddo !c !c calculate cloud work function !c do k = 2, km1 do i = 1, im if (cnvflg(i)) then if(k.ge.kbcon(i).and.k.lt.ktcon(i)) then dz1 = zo(i,k+1) - zo(i,k) gamma = el2orc * qeso(i,k) / (to(i,k)**2) rfact = 1. + delta * cp * gamma & & * to(i,k) / hvap aa1(i) = aa1(i) + & & dz1 * (g / (cp * to(i,k))) & & * dbyo(i,k) / (1. + gamma) & & * rfact val = 0. aa1(i)=aa1(i)+ & & dz1 * g * delta * & & max(val,(qeso(i,k) - qo(i,k))) endif endif enddo enddo do i = 1, im if(cnvflg(i).and.aa1(i).le.0.) cnvflg(i) = .false. enddo !! totflg = .true. do i=1,im totflg = totflg .and. (.not. cnvflg(i)) enddo if(totflg) return !! !c !c estimate the onvective overshooting as the level !c where the [aafac * cloud work function] becomes zero, !c which is the final cloud top !c do i = 1, im if (cnvflg(i)) then aa2(i) = aafac * aa1(i) endif enddo !c do i = 1, im flg(i) = cnvflg(i) ktcon1(i) = kmax(i) - 1 enddo do k = 2, km1 do i = 1, im if (flg(i)) then if(k.ge.ktcon(i).and.k.lt.kmax(i)) then dz1 = zo(i,k+1) - zo(i,k) gamma = el2orc * qeso(i,k) / (to(i,k)**2) rfact = 1. + delta * cp * gamma & & * to(i,k) / hvap aa2(i) = aa2(i) + & & dz1 * (g / (cp * to(i,k))) & & * dbyo(i,k) / (1. + gamma) & & * rfact if(aa2(i).lt.0.) then ktcon1(i) = k flg(i) = .false. endif endif endif enddo enddo !c !c compute cloud moisture property, detraining cloud water !c and precipitation in overshooting layers !c do k = 2, km1 do i = 1, im if (cnvflg(i)) then if(k.ge.ktcon(i).and.k.lt.ktcon1(i)) then dz = zi(i,k) - zi(i,k-1) gamma = el2orc * qeso(i,k) / (to(i,k)**2) qrch = qeso(i,k) & & + gamma * dbyo(i,k) / (hvap * (1. + gamma)) !cj tem = 0.5 * (xlamue(i,k)+xlamue(i,k-1)) * dz tem1 = 0.5 * xlamud(i) * dz factor = 1. + tem - tem1 qcko(i,k) = ((1.-tem1)*qcko(i,k-1)+tem*0.5* & & (qo(i,k)+qo(i,k-1)))/factor !cj dq = eta(i,k) * (qcko(i,k) - qrch) !c !c check if there is excess moisture to release latent heat !c if(dq.gt.0.) then etah = .5 * (eta(i,k) + eta(i,k-1)) if(ncloud.gt.0.) then dp = 1000. * del(i,k) qlk = dq / (eta(i,k) + etah * (c0 + c1) * dz) dellal(i,k) = etah * c1 * dz * qlk * g / dp else qlk = dq / (eta(i,k) + etah * c0 * dz) endif qcko(i,k) = qlk + qrch pwo(i,k) = etah * c0 * dz * qlk pwavo(i) = pwavo(i) + pwo(i,k) endif endif endif enddo enddo !c !c exchange ktcon with ktcon1 !c do i = 1, im if(cnvflg(i)) then kk = ktcon(i) ktcon(i) = ktcon1(i) ktcon1(i) = kk endif enddo !c !c this section is ready for cloud water !c if(ncloud.gt.0) then !c !c compute liquid and vapor separation at cloud top !c do i = 1, im if(cnvflg(i)) then k = ktcon(i) - 1 gamma = el2orc * qeso(i,k) / (to(i,k)**2) qrch = qeso(i,k) & & + gamma * dbyo(i,k) / (hvap * (1. + gamma)) dq = qcko(i,k) - qrch !c !c check if there is excess moisture to release latent heat !c if(dq.gt.0.) then qlko_ktcon(i) = dq qcko(i,k) = qrch endif endif enddo endif !c !ccccc if(lat.eq.latd.and.lon.eq.lond.and.cnvflg(i)) then !ccccc print *, ' aa1(i) before dwndrft =', aa1(i) !ccccc endif !c !c------- downdraft calculations !c !c--- compute precipitation efficiency in terms of windshear !c do i = 1, im if(cnvflg(i)) then vshear(i) = 0. endif enddo do k = 2, km do i = 1, im if (cnvflg(i)) then if(k.gt.kb(i).and.k.le.ktcon(i)) then shear= sqrt((uo(i,k)-uo(i,k-1)) ** 2 & & + (vo(i,k)-vo(i,k-1)) ** 2) vshear(i) = vshear(i) + shear endif endif enddo enddo do i = 1, im if(cnvflg(i)) then vshear(i) = 1.e3 * vshear(i) / (zi(i,ktcon(i))-zi(i,kb(i))) e1=1.591-.639*vshear(i) & & +.0953*(vshear(i)**2)-.00496*(vshear(i)**3) edt(i)=1.-e1 val = .9 edt(i) = min(edt(i),val) val = .0 edt(i) = max(edt(i),val) edto(i)=edt(i) edtx(i)=edt(i) endif enddo !c !c determine detrainment rate between 1 and kbcon !c do i = 1, im if(cnvflg(i)) then sumx(i) = 0. endif enddo do k = 1, km1 do i = 1, im if(cnvflg(i).and.k.ge.1.and.k.lt.kbcon(i)) then dz = zi(i,k+1) - zi(i,k) sumx(i) = sumx(i) + dz endif enddo enddo do i = 1, im beta = betas if(slimsk(i).eq.1.) beta = betal if(cnvflg(i)) then dz = (sumx(i)+zi(i,1))/float(kbcon(i)) tem = 1./float(kbcon(i)) xlamd(i) = (1.-beta**tem)/dz endif enddo !c !c determine downdraft mass flux !c do k = km1, 1, -1 do i = 1, im if (cnvflg(i) .and. k .le. kmax(i)-1) then if(k.lt.jmin(i).and.k.ge.kbcon(i)) then dz = zi(i,k+1) - zi(i,k) ptem = xlamdd - xlamde etad(i,k) = etad(i,k+1) * (1. - ptem * dz) else if(k.lt.kbcon(i)) then dz = zi(i,k+1) - zi(i,k) ptem = xlamd(i) + xlamdd - xlamde etad(i,k) = etad(i,k+1) * (1. - ptem * dz) endif endif enddo enddo !c !c--- downdraft moisture properties !c do i = 1, im if(cnvflg(i)) then jmn = jmin(i) hcdo(i,jmn) = heo(i,jmn) qcdo(i,jmn) = qo(i,jmn) qrcdo(i,jmn)= qeso(i,jmn) ucdo(i,jmn) = uo(i,jmn) vcdo(i,jmn) = vo(i,jmn) pwevo(i) = 0. endif enddo !cj do k = km1, 1, -1 do i = 1, im if (cnvflg(i) .and. k.lt.jmin(i)) then dz = zi(i,k+1) - zi(i,k) if(k.ge.kbcon(i)) then tem = xlamde * dz tem1 = 0.5 * xlamdd * dz else tem = xlamde * dz tem1 = 0.5 * (xlamd(i)+xlamdd) * dz endif factor = 1. + tem - tem1 ptem = 0.5 * tem - pgcon ptem1= 0.5 * tem + pgcon hcdo(i,k) = ((1.-tem1)*hcdo(i,k+1)+tem*0.5* & & (heo(i,k)+heo(i,k+1)))/factor ucdo(i,k) = ((1.-tem1)*ucdo(i,k+1)+ptem*uo(i,k+1) & & +ptem1*uo(i,k))/factor vcdo(i,k) = ((1.-tem1)*vcdo(i,k+1)+ptem*vo(i,k+1) & & +ptem1*vo(i,k))/factor dbyo(i,k) = hcdo(i,k) - heso(i,k) endif enddo enddo !c do k = km1, 1, -1 do i = 1, im if (cnvflg(i).and.k.lt.jmin(i)) then gamma = el2orc * qeso(i,k) / (to(i,k)**2) qrcdo(i,k) = qeso(i,k)+ & & (1./hvap)*(gamma/(1.+gamma))*dbyo(i,k) ! detad = etad(i,k+1) - etad(i,k) !cj dz = zi(i,k+1) - zi(i,k) if(k.ge.kbcon(i)) then tem = xlamde * dz tem1 = 0.5 * xlamdd * dz else tem = xlamde * dz tem1 = 0.5 * (xlamd(i)+xlamdd) * dz endif factor = 1. + tem - tem1 qcdo(i,k) = ((1.-tem1)*qcdo(i,k+1)+tem*0.5* & & (qo(i,k)+qo(i,k+1)))/factor !cj ! pwdo(i,k) = etad(i,k+1) * qcdo(i,k+1) - ! & etad(i,k) * qrcdo(i,k) ! pwdo(i,k) = pwdo(i,k) - detad * ! & .5 * (qrcdo(i,k) + qrcdo(i,k+1)) !cj pwdo(i,k) = etad(i,k+1) * (qcdo(i,k) - qrcdo(i,k)) qcdo(i,k) = qrcdo(i,k) pwevo(i) = pwevo(i) + pwdo(i,k) endif enddo enddo !c !c--- final downdraft strength dependent on precip !c--- efficiency (edt), normalized condensate (pwav), and !c--- evaporate (pwev) !c do i = 1, im edtmax = edtmaxl if(slimsk(i).eq.0.) edtmax = edtmaxs if(cnvflg(i)) then if(pwevo(i).lt.0.) then edto(i) = -edto(i) * pwavo(i) / pwevo(i) edto(i) = min(edto(i),edtmax) else edto(i) = 0. endif endif enddo !c !c--- downdraft cloudwork functions !c do k = km1, 1, -1 do i = 1, im if (cnvflg(i) .and. k .lt. jmin(i)) then gamma = el2orc * qeso(i,k) / to(i,k)**2 dhh=hcdo(i,k) dt=to(i,k) dg=gamma dh=heso(i,k) dz=-1.*(zo(i,k+1)-zo(i,k)) aa1(i)=aa1(i)+edto(i)*dz*(g/(cp*dt))*((dhh-dh)/(1.+dg)) & & *(1.+delta*cp*dg*dt/hvap) val=0. aa1(i)=aa1(i)+edto(i)* & & dz*g*delta*max(val,(qeso(i,k)-qo(i,k))) endif enddo enddo do i = 1, im if(cnvflg(i).and.aa1(i).le.0.) then cnvflg(i) = .false. endif enddo !! totflg = .true. do i=1,im totflg = totflg .and. (.not. cnvflg(i)) enddo if(totflg) return !! !c !c--- what would the change be, that a cloud with unit mass !c--- will do to the environment? !c do k = 1, km do i = 1, im if(cnvflg(i) .and. k .le. kmax(i)) then dellah(i,k) = 0. dellaq(i,k) = 0. dellau(i,k) = 0. dellav(i,k) = 0. endif enddo enddo do i = 1, im if(cnvflg(i)) then dp = 1000. * del(i,1) dellah(i,1) = edto(i) * etad(i,1) * (hcdo(i,1) & & - heo(i,1)) * g / dp dellaq(i,1) = edto(i) * etad(i,1) * (qcdo(i,1) & & - qo(i,1)) * g / dp dellau(i,1) = edto(i) * etad(i,1) * (ucdo(i,1) & & - uo(i,1)) * g / dp dellav(i,1) = edto(i) * etad(i,1) * (vcdo(i,1) & & - vo(i,1)) * g / dp endif enddo !c !c--- changed due to subsidence and entrainment !c do k = 2, km1 do i = 1, im if (cnvflg(i).and.k.lt.ktcon(i)) then aup = 1. if(k.le.kb(i)) aup = 0. adw = 1. if(k.gt.jmin(i)) adw = 0. dp = 1000. * del(i,k) dz = zi(i,k) - zi(i,k-1) !c dv1h = heo(i,k) dv2h = .5 * (heo(i,k) + heo(i,k-1)) dv3h = heo(i,k-1) dv1q = qo(i,k) dv2q = .5 * (qo(i,k) + qo(i,k-1)) dv3q = qo(i,k-1) dv1u = uo(i,k) dv2u = .5 * (uo(i,k) + uo(i,k-1)) dv3u = uo(i,k-1) dv1v = vo(i,k) dv2v = .5 * (vo(i,k) + vo(i,k-1)) dv3v = vo(i,k-1) !c tem = 0.5 * (xlamue(i,k)+xlamue(i,k-1)) tem1 = xlamud(i) !c if(k.le.kbcon(i)) then ptem = xlamde ptem1 = xlamd(i)+xlamdd else ptem = xlamde ptem1 = xlamdd endif !cj dellah(i,k) = dellah(i,k) + & & ((aup*eta(i,k)-adw*edto(i)*etad(i,k))*dv1h & & - (aup*eta(i,k-1)-adw*edto(i)*etad(i,k-1))*dv3h & & - (aup*tem*eta(i,k-1)+adw*edto(i)*ptem*etad(i,k))*dv2h*dz & & + aup*tem1*eta(i,k-1)*.5*(hcko(i,k)+hcko(i,k-1))*dz & & + adw*edto(i)*ptem1*etad(i,k)*.5*(hcdo(i,k)+hcdo(i,k-1)) & & *dz) *g/dp !cj dellaq(i,k) = dellaq(i,k) + & & ((aup*eta(i,k)-adw*edto(i)*etad(i,k))*dv1q & & - (aup*eta(i,k-1)-adw*edto(i)*etad(i,k-1))*dv3q & & - (aup*tem*eta(i,k-1)+adw*edto(i)*ptem*etad(i,k))*dv2q*dz & & + aup*tem1*eta(i,k-1)*.5*(qcko(i,k)+qcko(i,k-1))*dz & & + adw*edto(i)*ptem1*etad(i,k)*.5*(qrcdo(i,k)+qrcdo(i,k-1)) & & *dz) *g/dp !23456789012345678901234567890123456789012345678901234567890123456789012 !cj dellau(i,k) = dellau(i,k) + & & ((aup*eta(i,k)-adw*edto(i)*etad(i,k))*dv1u & & - (aup*eta(i,k-1)-adw*edto(i)*etad(i,k-1))*dv3u & & - (aup*tem*eta(i,k-1)+adw*edto(i)*ptem*etad(i,k))*dv2u*dz & & + aup*tem1*eta(i,k-1)*.5*(ucko(i,k)+ucko(i,k-1))*dz & & + adw*edto(i)*ptem1*etad(i,k)*.5*(ucdo(i,k)+ucdo(i,k-1))*dz & & - pgcon*(aup*eta(i,k-1)-adw*edto(i)*etad(i,k))*(dv1u-dv3u) & & ) *g/dp !cj dellav(i,k) = dellav(i,k) + & & ((aup*eta(i,k)-adw*edto(i)*etad(i,k))*dv1v & & - (aup*eta(i,k-1)-adw*edto(i)*etad(i,k-1))*dv3v & & - (aup*tem*eta(i,k-1)+adw*edto(i)*ptem*etad(i,k))*dv2v*dz & & + aup*tem1*eta(i,k-1)*.5*(vcko(i,k)+vcko(i,k-1))*dz & & + adw*edto(i)*ptem1*etad(i,k)*.5*(vcdo(i,k)+vcdo(i,k-1))*dz & & - pgcon*(aup*eta(i,k-1)-adw*edto(i)*etad(i,k))*(dv1v-dv3v) & & ) *g/dp !cj endif enddo enddo !c !c------- cloud top !c do i = 1, im if(cnvflg(i)) then indx = ktcon(i) dp = 1000. * del(i,indx) dv1h = heo(i,indx-1) dellah(i,indx) = eta(i,indx-1) * & & (hcko(i,indx-1) - dv1h) * g / dp dv1q = qo(i,indx-1) dellaq(i,indx) = eta(i,indx-1) * & & (qcko(i,indx-1) - dv1q) * g / dp dv1u = uo(i,indx-1) dellau(i,indx) = eta(i,indx-1) * & & (ucko(i,indx-1) - dv1u) * g / dp dv1v = vo(i,indx-1) dellav(i,indx) = eta(i,indx-1) * & & (vcko(i,indx-1) - dv1v) * g / dp !c !c cloud water !c dellal(i,indx) = eta(i,indx-1) * & & qlko_ktcon(i) * g / dp endif enddo !c !c------- final changed variable per unit mass flux !c do k = 1, km do i = 1, im if (cnvflg(i).and.k .le. kmax(i)) then if(k.gt.ktcon(i)) then qo(i,k) = q1(i,k) to(i,k) = t1(i,k) endif if(k.le.ktcon(i)) then qo(i,k) = dellaq(i,k) * mbdt + q1(i,k) dellat = (dellah(i,k) - hvap * dellaq(i,k)) / cp to(i,k) = dellat * mbdt + t1(i,k) val = 1.e-10 qo(i,k) = max(qo(i,k), val ) endif endif enddo enddo !c!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !c !c--- the above changed environment is now used to calulate the !c--- effect the arbitrary cloud (with unit mass flux) !c--- would have on the stability, !c--- which then is used to calculate the real mass flux, !c--- necessary to keep this change in balance with the large-scale !c--- destabilization. !c !c--- environmental conditions again, first heights !c do k = 1, km do i = 1, im if(cnvflg(i) .and. k .le. kmax(i)) then qeso(i,k) = 0.01 * fpvs(to(i,k)) ! fpvs is in pa qeso(i,k) = eps * qeso(i,k) / (pfld(i,k)+epsm1*qeso(i,k)) val = 1.e-8 qeso(i,k) = max(qeso(i,k), val ) ! tvo(i,k) = to(i,k) + delta * to(i,k) * qo(i,k) endif enddo enddo !c !c--- moist static energy !c do k = 1, km1 do i = 1, im if(cnvflg(i) .and. k .le. kmax(i)-1) then dz = .5 * (zo(i,k+1) - zo(i,k)) dp = .5 * (pfld(i,k+1) - pfld(i,k)) es = 0.01 * fpvs(to(i,k+1)) ! fpvs is in pa pprime = pfld(i,k+1) + epsm1 * es qs = eps * es / pprime dqsdp = - qs / pprime desdt = es * (fact1 / to(i,k+1) + fact2 / (to(i,k+1)**2)) dqsdt = qs * pfld(i,k+1) * desdt / (es * pprime) gamma = el2orc * qeso(i,k+1) / (to(i,k+1)**2) dt = (g * dz + hvap * dqsdp * dp) / (cp * (1. + gamma)) dq = dqsdt * dt + dqsdp * dp to(i,k) = to(i,k+1) + dt qo(i,k) = qo(i,k+1) + dq po(i,k) = .5 * (pfld(i,k) + pfld(i,k+1)) endif enddo enddo do k = 1, km1 do i = 1, im if(cnvflg(i) .and. k .le. kmax(i)-1) then qeso(i,k) = 0.01 * fpvs(to(i,k)) ! fpvs is in pa qeso(i,k) = eps * qeso(i,k) / (po(i,k) + epsm1 * qeso(i,k)) val1 = 1.e-8 qeso(i,k) = max(qeso(i,k), val1) val2 = 1.e-10 qo(i,k) = max(qo(i,k), val2 ) ! qo(i,k) = min(qo(i,k),qeso(i,k)) heo(i,k) = .5 * g * (zo(i,k) + zo(i,k+1)) + & & cp * to(i,k) + hvap * qo(i,k) heso(i,k) = .5 * g * (zo(i,k) + zo(i,k+1)) + & & cp * to(i,k) + hvap * qeso(i,k) endif enddo enddo do i = 1, im if(cnvflg(i)) then k = kmax(i) heo(i,k) = g * zo(i,k) + cp * to(i,k) + hvap * qo(i,k) heso(i,k) = g * zo(i,k) + cp * to(i,k) + hvap * qeso(i,k) !c heo(i,k) = min(heo(i,k),heso(i,k)) endif enddo !c !c**************************** static control !c !c------- moisture and cloud work functions !c do i = 1, im if(cnvflg(i)) then xaa0(i) = 0. xpwav(i) = 0. endif enddo !c do i = 1, im if(cnvflg(i)) then indx = kb(i) hcko(i,indx) = heo(i,indx) qcko(i,indx) = qo(i,indx) endif enddo do k = 2, km1 do i = 1, im if (cnvflg(i)) then if(k.gt.kb(i).and.k.le.ktcon(i)) then dz = zi(i,k) - zi(i,k-1) tem = 0.5 * (xlamue(i,k)+xlamue(i,k-1)) * dz tem1 = 0.5 * xlamud(i) * dz factor = 1. + tem - tem1 hcko(i,k) = ((1.-tem1)*hcko(i,k-1)+tem*0.5* & & (heo(i,k)+heo(i,k-1)))/factor endif endif enddo enddo do k = 2, km1 do i = 1, im if (cnvflg(i)) then if(k.gt.kb(i).and.k.lt.ktcon(i)) then dz = zi(i,k) - zi(i,k-1) gamma = el2orc * qeso(i,k) / (to(i,k)**2) xdby = hcko(i,k) - heso(i,k) xqrch = qeso(i,k) & & + gamma * xdby / (hvap * (1. + gamma)) !cj tem = 0.5 * (xlamue(i,k)+xlamue(i,k-1)) * dz tem1 = 0.5 * xlamud(i) * dz factor = 1. + tem - tem1 qcko(i,k) = ((1.-tem1)*qcko(i,k-1)+tem*0.5* & & (qo(i,k)+qo(i,k-1)))/factor !cj dq = eta(i,k) * (qcko(i,k) - xqrch) !c if(k.ge.kbcon(i).and.dq.gt.0.) then etah = .5 * (eta(i,k) + eta(i,k-1)) if(ncloud.gt.0..and.k.gt.jmin(i)) then qlk = dq / (eta(i,k) + etah * (c0 + c1) * dz) else qlk = dq / (eta(i,k) + etah * c0 * dz) endif if(k.lt.ktcon1(i)) then xaa0(i) = xaa0(i) - dz * g * qlk endif qcko(i,k) = qlk + xqrch xpw = etah * c0 * dz * qlk xpwav(i) = xpwav(i) + xpw endif endif if(k.ge.kbcon(i).and.k.lt.ktcon1(i)) then dz1 = zo(i,k+1) - zo(i,k) gamma = el2orc * qeso(i,k) / (to(i,k)**2) rfact = 1. + delta * cp * gamma & & * to(i,k) / hvap xaa0(i) = xaa0(i) & & + dz1 * (g / (cp * to(i,k))) & & * xdby / (1. + gamma) & & * rfact val=0. xaa0(i)=xaa0(i)+ & & dz1 * g * delta * & & max(val,(qeso(i,k) - qo(i,k))) endif endif enddo enddo !c !c------- downdraft calculations !c !c--- downdraft moisture properties !c do i = 1, im if(cnvflg(i)) then jmn = jmin(i) hcdo(i,jmn) = heo(i,jmn) qcdo(i,jmn) = qo(i,jmn) qrcd(i,jmn) = qeso(i,jmn) xpwev(i) = 0. endif enddo !cj do k = km1, 1, -1 do i = 1, im if (cnvflg(i) .and. k.lt.jmin(i)) then dz = zi(i,k+1) - zi(i,k) if(k.ge.kbcon(i)) then tem = xlamde * dz tem1 = 0.5 * xlamdd * dz else tem = xlamde * dz tem1 = 0.5 * (xlamd(i)+xlamdd) * dz endif factor = 1. + tem - tem1 hcdo(i,k) = ((1.-tem1)*hcdo(i,k+1)+tem*0.5* & & (heo(i,k)+heo(i,k+1)))/factor endif enddo enddo !cj do k = km1, 1, -1 do i = 1, im if (cnvflg(i) .and. k .lt. jmin(i)) then dq = qeso(i,k) dt = to(i,k) gamma = el2orc * dq / dt**2 dh = hcdo(i,k) - heso(i,k) qrcd(i,k)=dq+(1./hvap)*(gamma/(1.+gamma))*dh ! detad = etad(i,k+1) - etad(i,k) !cj dz = zi(i,k+1) - zi(i,k) if(k.ge.kbcon(i)) then tem = xlamde * dz tem1 = 0.5 * xlamdd * dz else tem = xlamde * dz tem1 = 0.5 * (xlamd(i)+xlamdd) * dz endif factor = 1. + tem - tem1 qcdo(i,k) = ((1.-tem1)*qcdo(i,k+1)+tem*0.5* & & (qo(i,k)+qo(i,k+1)))/factor !cj ! xpwd = etad(i,k+1) * qcdo(i,k+1) - ! & etad(i,k) * qrcd(i,k) ! xpwd = xpwd - detad * ! & .5 * (qrcd(i,k) + qrcd(i,k+1)) !cj xpwd = etad(i,k+1) * (qcdo(i,k) - qrcd(i,k)) qcdo(i,k)= qrcd(i,k) xpwev(i) = xpwev(i) + xpwd endif enddo enddo !c do i = 1, im edtmax = edtmaxl if(slimsk(i).eq.0.) edtmax = edtmaxs if(cnvflg(i)) then if(xpwev(i).ge.0.) then edtx(i) = 0. else edtx(i) = -edtx(i) * xpwav(i) / xpwev(i) edtx(i) = min(edtx(i),edtmax) endif endif enddo !c !c !c--- downdraft cloudwork functions !c !c do k = km1, 1, -1 do i = 1, im if (cnvflg(i) .and. k.lt.jmin(i)) then gamma = el2orc * qeso(i,k) / to(i,k)**2 dhh=hcdo(i,k) dt= to(i,k) dg= gamma dh= heso(i,k) dz=-1.*(zo(i,k+1)-zo(i,k)) xaa0(i)=xaa0(i)+edtx(i)*dz*(g/(cp*dt))*((dhh-dh)/(1.+dg)) & & *(1.+delta*cp*dg*dt/hvap) val=0. xaa0(i)=xaa0(i)+edtx(i)* & & dz*g*delta*max(val,(qeso(i,k)-qo(i,k))) endif enddo enddo !c !c calculate critical cloud work function !c do i = 1, im if(cnvflg(i)) then if(pfld(i,ktcon(i)).lt.pcrit(15))then acrt(i)=acrit(15)*(975.-pfld(i,ktcon(i))) & & /(975.-pcrit(15)) else if(pfld(i,ktcon(i)).gt.pcrit(1))then acrt(i)=acrit(1) else k = int((850. - pfld(i,ktcon(i)))/50.) + 2 k = min(k,15) k = max(k,2) acrt(i)=acrit(k)+(acrit(k-1)-acrit(k))* & & (pfld(i,ktcon(i))-pcrit(k))/(pcrit(k-1)-pcrit(k)) endif endif enddo do i = 1, im if(cnvflg(i)) then if(slimsk(i).eq.1.) then w1 = w1l w2 = w2l w3 = w3l w4 = w4l else w1 = w1s w2 = w2s w3 = w3s w4 = w4s endif !c !c modify critical cloud workfunction by cloud base vertical velocity !c if(pdot(i).le.w4) then acrtfct(i) = (pdot(i) - w4) / (w3 - w4) elseif(pdot(i).ge.-w4) then acrtfct(i) = - (pdot(i) + w4) / (w4 - w3) else acrtfct(i) = 0. endif val1 = -1. acrtfct(i) = max(acrtfct(i),val1) val2 = 1. acrtfct(i) = min(acrtfct(i),val2) acrtfct(i) = 1. - acrtfct(i) !c !c modify acrtfct(i) by colume mean rh if rhbar(i) is greater than 80 percent !c !c if(rhbar(i).ge..8) then !c acrtfct(i) = acrtfct(i) * (.9 - min(rhbar(i),.9)) * 10. !c endif !c !c modify adjustment time scale by cloud base vertical velocity !c val1=0. dtconv(i) = dt2 + max((1800. - dt2),val1) * & & (pdot(i) - w2) / (w1 - w2) !c dtconv(i) = max(dtconv(i), dt2) !c dtconv(i) = 1800. * (pdot(i) - w2) / (w1 - w2) dtconv(i) = max(dtconv(i),dtmin) dtconv(i) = min(dtconv(i),dtmax) !c endif enddo !c !c--- large scale forcing !c xmbmx1=-1.e20 do i= 1, im if(cnvflg(i)) then fld(i)=(aa1(i)-acrt(i)* acrtfct(i))/dtconv(i) if(fld(i).le.0.) cnvflg(i) = .false. endif if(cnvflg(i)) then !c xaa0(i) = max(xaa0(i),0.) xk(i) = (xaa0(i) - aa1(i)) / mbdt if(xk(i).ge.0.) cnvflg(i) = .false. endif !c !c--- kernel, cloud base mass flux !c if(cnvflg(i)) then xmb(i) = -fld(i) / xk(i) xmb(i) = min(xmb(i),xmbmax(i)) xmbmx1=max(xmbmx1,xmb(i)) endif enddo ! if(xmbmx1.gt.0.4)print*,'qingfu test xmbmx1=',xmbmx1 !! totflg = .true. do i=1,im totflg = totflg .and. (.not. cnvflg(i)) enddo if(totflg) return !! !c !c restore to,qo,uo,vo to t1,q1,u1,v1 in case convection stops !c do k = 1, km do i = 1, im if (cnvflg(i) .and. k .le. kmax(i)) then to(i,k) = t1(i,k) qo(i,k) = q1(i,k) uo(i,k) = u1(i,k) vo(i,k) = v1(i,k) qeso(i,k) = 0.01 * fpvs(t1(i,k)) ! fpvs is in pa qeso(i,k) = eps * qeso(i,k) / (pfld(i,k) + epsm1*qeso(i,k)) val = 1.e-8 qeso(i,k) = max(qeso(i,k), val ) endif enddo enddo !c!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !c !c--- feedback: simply the changes from the cloud with unit mass flux !c--- multiplied by the mass flux necessary to keep the !c--- equilibrium with the larger-scale. !c do i = 1, im delhbar(i) = 0. delqbar(i) = 0. deltbar(i) = 0. delubar(i) = 0. delvbar(i) = 0. qcond(i) = 0. enddo do k = 1, km do i = 1, im if (cnvflg(i) .and. k .le. kmax(i)) then if(k.le.ktcon(i)) then dellat = (dellah(i,k) - hvap * dellaq(i,k)) / cp t1(i,k) = t1(i,k) + dellat * xmb(i) * dt2 q1(i,k) = q1(i,k) + dellaq(i,k) * xmb(i) * dt2 tem = 1./rcs(i) u1(i,k) = u1(i,k) + dellau(i,k) * xmb(i) * dt2 * tem v1(i,k) = v1(i,k) + dellav(i,k) * xmb(i) * dt2 * tem dp = 1000. * del(i,k) delhbar(i) = delhbar(i) + dellah(i,k)*xmb(i)*dp/g delqbar(i) = delqbar(i) + dellaq(i,k)*xmb(i)*dp/g deltbar(i) = deltbar(i) + dellat*xmb(i)*dp/g delubar(i) = delubar(i) + dellau(i,k)*xmb(i)*dp/g delvbar(i) = delvbar(i) + dellav(i,k)*xmb(i)*dp/g endif endif enddo enddo do k = 1, km do i = 1, im if (cnvflg(i) .and. k .le. kmax(i)) then if(k.le.ktcon(i)) then qeso(i,k) = 0.01 * fpvs(t1(i,k)) ! fpvs is in pa qeso(i,k) = eps * qeso(i,k)/(pfld(i,k) + epsm1*qeso(i,k)) val = 1.e-8 qeso(i,k) = max(qeso(i,k), val ) endif endif enddo enddo !c do i = 1, im rntot(i) = 0. delqev(i) = 0. delq2(i) = 0. flg(i) = cnvflg(i) enddo do k = km, 1, -1 do i = 1, im if (cnvflg(i) .and. k .le. kmax(i)) then if(k.lt.ktcon(i)) then aup = 1. if(k.le.kb(i)) aup = 0. adw = 1. if(k.ge.jmin(i)) adw = 0. rain = aup * pwo(i,k) + adw * edto(i) * pwdo(i,k) rntot(i) = rntot(i) + rain * xmb(i) * .001 * dt2 endif endif enddo enddo do k = km, 1, -1 do i = 1, im if (k .le. kmax(i)) then deltv(i) = 0. delq(i) = 0. qevap(i) = 0. if(cnvflg(i).and.k.lt.ktcon(i)) then aup = 1. if(k.le.kb(i)) aup = 0. adw = 1. if(k.ge.jmin(i)) adw = 0. rain = aup * pwo(i,k) + adw * edto(i) * pwdo(i,k) rn(i) = rn(i) + rain * xmb(i) * .001 * dt2 endif if(flg(i).and.k.lt.ktcon(i)) then evef = edt(i) * evfact if(slimsk(i).eq.1.) evef=edt(i) * evfactl ! if(slimsk(i).eq.1.) evef=.07 !c if(slimsk(i).ne.1.) evef = 0. qcond(i) = evef * (q1(i,k) - qeso(i,k)) & & / (1. + el2orc * qeso(i,k) / t1(i,k)**2) dp = 1000. * del(i,k) if(rn(i).gt.0..and.qcond(i).lt.0.) then qevap(i) = -qcond(i) * (1.-exp(-.32*sqrt(dt2*rn(i)))) qevap(i) = min(qevap(i), rn(i)*1000.*g/dp) delq2(i) = delqev(i) + .001 * qevap(i) * dp / g endif if(rn(i).gt.0..and.qcond(i).lt.0..and. & & delq2(i).gt.rntot(i)) then qevap(i) = 1000.* g * (rntot(i) - delqev(i)) / dp flg(i) = .false. endif if(rn(i).gt.0..and.qevap(i).gt.0.) then q1(i,k) = q1(i,k) + qevap(i) t1(i,k) = t1(i,k) - elocp * qevap(i) rn(i) = rn(i) - .001 * qevap(i) * dp / g deltv(i) = - elocp*qevap(i)/dt2 delq(i) = + qevap(i)/dt2 delqev(i) = delqev(i) + .001*dp*qevap(i)/g endif dellaq(i,k) = dellaq(i,k) + delq(i) / xmb(i) delqbar(i) = delqbar(i) + delq(i)*dp/g deltbar(i) = deltbar(i) + deltv(i)*dp/g endif endif enddo enddo !cj ! do i = 1, im ! if(me.eq.31.and.cnvflg(i)) then ! if(cnvflg(i)) then ! print *, ' deep delhbar, delqbar, deltbar = ', ! & delhbar(i),hvap*delqbar(i),cp*deltbar(i) ! print *, ' deep delubar, delvbar = ',delubar(i),delvbar(i) ! print *, ' precip =', hvap*rn(i)*1000./dt2 ! print*,'pdif= ',pfld(i,kbcon(i))-pfld(i,ktcon(i)) ! endif ! enddo !c !c precipitation rate converted to actual precip !c in unit of m instead of kg !c do i = 1, im if(cnvflg(i)) then !c !c in the event of upper level rain evaporation and lower level downdraft !c moistening, rn can become negative, in this case, we back out of the !c heating and the moistening !c if(rn(i).lt.0..and..not.flg(i)) rn(i) = 0. if(rn(i).le.0.) then rn(i) = 0. else ktop(i) = ktcon(i) kbot(i) = kbcon(i) kcnv(i) = 1 cldwrk(i) = aa1(i) endif endif enddo !c !c cloud water !c if (ncloud.gt.0) then ! val1=1.0 val2=0.0 do k = 1, km do i = 1, im if (cnvflg(i) .and. rn(i).gt.0.) then if (k.gt.kb(i).and.k.le.ktcon(i)) then tem = dellal(i,k) * xmb(i) * dt2 tem1 = max(val2, min(val1, (tcr-t1(i,k))*tcrf)) if (ql(i,k,2) .gt. -999.0) then ql(i,k,1) = ql(i,k,1) + tem * tem1 ! ice ql(i,k,2) = ql(i,k,2) + tem *(1.0-tem1) ! water else ql(i,k,1) = ql(i,k,1) + tem endif endif endif enddo enddo ! endif !c do k = 1, km do i = 1, im if(cnvflg(i).and.rn(i).le.0.) then if (k .le. kmax(i)) then t1(i,k) = to(i,k) q1(i,k) = qo(i,k) u1(i,k) = uo(i,k) v1(i,k) = vo(i,k) endif endif enddo enddo ! ! hchuang code change ! ! do k = 1, km ! do i = 1, im ! if(cnvflg(i).and.rn(i).gt.0.) then ! if(k.ge.kb(i) .and. k.lt.ktop(i)) then ! ud_mf(i,k) = eta(i,k) * xmb(i) * dt2 ! endif ! endif ! enddo ! enddo ! do i = 1, im ! if(cnvflg(i).and.rn(i).gt.0.) then ! k = ktop(i)-1 ! dt_mf(i,k) = ud_mf(i,k) ! endif ! enddo ! do k = 1, km ! do i = 1, im ! if(cnvflg(i).and.rn(i).gt.0.) then ! if(k.ge.1 .and. k.le.jmin(i)) then ! dd_mf(i,k) = edto(i) * etad(i,k) * xmb(i) * dt2 ! endif ! endif ! enddo ! enddo !! return end subroutine sascnvn subroutine shalcnv(im,ix,km,jcap,delt,del,prsl,ps,phil,ql, & 1,3 & q1,t1,u1,v1,rcs,rn,kbot,ktop,kcnv,slimsk, & & dot,ncloud,hpbl,heat,evap,pgcon) ! use MODULE_GFS_machine , only : kind_phys use MODULE_GFS_funcphys , only : fpvs use MODULE_GFS_physcons, grav => con_g, cp => con_cp, hvap => con_hvap & &, rv => con_rv, fv => con_fvirt, t0c => con_t0c & &, rd => con_rd, cvap => con_cvap, cliq => con_cliq & &, eps => con_eps, epsm1 => con_epsm1 implicit none ! integer im, ix, km, jcap, ncloud, & & kbot(im), ktop(im), kcnv(im) real(kind=kind_phys) delt real(kind=kind_phys) ps(im), del(ix,km), prsl(ix,km), & & ql(ix,km,2),q1(ix,km), t1(ix,km), & & u1(ix,km), v1(ix,km), rcs(im), & & rn(im), slimsk(im), & & dot(ix,km), phil(ix,km), hpbl(im), & & heat(im), evap(im) ! &, ud_mf(im,km),dt_mf(im,km) real ud_mf(im,km),dt_mf(im,km) ! integer i,j,indx, jmn, k, kk, latd, lond, km1 integer kpbl(im) ! real(kind=kind_phys) c0, cpoel, dellat, delta, & & desdt, deta, detad, dg, & & dh, dhh, dlnsig, dp, & & dq, dqsdp, dqsdt, dt, & & dt2, dtmax, dtmin, dv1h, & & dv1q, dv2h, dv2q, dv1u, & & dv1v, dv2u, dv2v, dv3q, & & dv3h, dv3u, dv3v, clam, & & dz, dz1, e1, & & el2orc, elocp, aafac, cthk, & & es, etah, h1, dthk, & & evef, evfact, evfactl, fact1, & & fact2, factor, fjcap, & & g, gamma, pprime, betaw, & & qlk, qrch, qs, c1, & & rain, rfact, shear, tem1, & & tem2, terr, val, val1, & & val2, w1, w1l, w1s, & & w2, w2l, w2s, w3, & & w3l, w3s, w4, w4l, & & w4s, tem, ptem, ptem1, & & pgcon ! integer kb(im), kbcon(im), kbcon1(im), & & ktcon(im), ktcon1(im), & & kbm(im), kmax(im) ! real(kind=kind_phys) aa1(im), & & delhbar(im), delq(im), delq2(im), & & delqbar(im), delqev(im), deltbar(im), & & deltv(im), edt(im), & & wstar(im), sflx(im), & & pdot(im), po(im,km), & & qcond(im), qevap(im), hmax(im), & & rntot(im), vshear(im), & & xlamud(im), xmb(im), xmbmax(im), & & delubar(im), delvbar(im) !c real(kind=kind_phys) cincr, cincrmax, cincrmin !cc !c physical parameters parameter(g=grav) parameter(cpoel=cp/hvap,elocp=hvap/cp, & & el2orc=hvap*hvap/(rv*cp)) parameter(terr=0.,c0=.002,c1=5.e-4,delta=fv) parameter(fact1=(cvap-cliq)/rv,fact2=hvap/rv-fact1*t0c) parameter(cthk=50.,cincrmax=180.,cincrmin=120.,dthk=25.) parameter(h1=0.33333333) !c local variables and arrays real(kind=kind_phys) pfld(im,km), to(im,km), qo(im,km), & & uo(im,km), vo(im,km), qeso(im,km) !c cloud water real(kind=kind_phys) qlko_ktcon(im), dellal(im,km), & & dbyo(im,km), zo(im,km), xlamue(im,km), & & heo(im,km), heso(im,km), & & dellah(im,km), dellaq(im,km), & & dellau(im,km), dellav(im,km), hcko(im,km), & & ucko(im,km), vcko(im,km), qcko(im,km), & & eta(im,km), zi(im,km), pwo(im,km), & & tx1(im) ! logical totflg, cnvflg(im), flg(im) ! real(kind=kind_phys) tf, tcr, tcrf parameter (tf=233.16, tcr=263.16, tcrf=1.0/(tcr-tf)) ! !c----------------------------------------------------------------------- ! km1 = km - 1 !c !c compute surface buoyancy flux !c do i=1,im sflx(i) = heat(i)+fv*t1(i,1)*evap(i) enddo !c !c initialize arrays !c do i=1,im cnvflg(i) = .true. if(kcnv(i).eq.1) cnvflg(i) = .false. if(sflx(i).le.0.) cnvflg(i) = .false. if(cnvflg(i)) then kbot(i)=km+1 ktop(i)=0 endif rn(i)=0. kbcon(i)=km ktcon(i)=1 kb(i)=km pdot(i) = 0. qlko_ktcon(i) = 0. edt(i) = 0. aa1(i) = 0. vshear(i) = 0. enddo ! hchuang code change do k = 1, km do i = 1, im ud_mf(i,k) = 0. dt_mf(i,k) = 0. enddo enddo !! totflg = .true. do i=1,im totflg = totflg .and. (.not. cnvflg(i)) enddo if(totflg) return !! !c dt2 = delt val = 1200. dtmin = max(dt2, val ) val = 3600. dtmax = max(dt2, val ) !c model tunable parameters are all here clam = .3 aafac = .1 betaw = .03 !c evef = 0.07 evfact = 0.3 evfactl = 0.3 ! fjcap = (float(jcap) / 126.) ** 2 val = 1. fjcap = max(fjcap,val) w1l = -8.e-3 w2l = -4.e-2 w3l = -5.e-3 w4l = -5.e-4 w1s = -2.e-4 w2s = -2.e-3 w3s = -1.e-3 w4s = -2.e-5 !c !c define top layer for search of the downdraft originating layer !c and the maximum thetae for updraft !c do i=1,im kbm(i) = km kmax(i) = km tx1(i) = 1.0 / ps(i) enddo ! do k = 1, km do i=1,im if (prsl(i,k)*tx1(i) .gt. 0.70) kbm(i) = k + 1 if (prsl(i,k)*tx1(i) .gt. 0.60) kmax(i) = k + 1 enddo enddo do i=1,im kbm(i) = min(kbm(i),kmax(i)) enddo !c !!c hydrostatic height assume zero terr and compute !c updraft entrainment rate as an inverse function of height !c do k = 1, km do i=1,im zo(i,k) = phil(i,k) / g enddo enddo do k = 1, km1 do i=1,im zi(i,k) = 0.5*(zo(i,k)+zo(i,k+1)) xlamue(i,k) = clam / zi(i,k) enddo enddo do i=1,im xlamue(i,km) = xlamue(i,km1) enddo !c !c pbl height !c do i=1,im flg(i) = cnvflg(i) kpbl(i)= 1 enddo do k = 2, km1 do i=1,im if (flg(i).and.zo(i,k).le.hpbl(i)) then kpbl(i) = k else flg(i) = .false. endif enddo enddo do i=1,im kpbl(i)= min(kpbl(i),kbm(i)) enddo !c !c!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !c convert surface pressure to mb from cb !c do k = 1, km do i = 1, im if (cnvflg(i) .and. k .le. kmax(i)) then pfld(i,k) = prsl(i,k) * 10.0 eta(i,k) = 1. hcko(i,k) = 0. qcko(i,k) = 0. ucko(i,k) = 0. vcko(i,k) = 0. dbyo(i,k) = 0. pwo(i,k) = 0. dellal(i,k) = 0. to(i,k) = t1(i,k) qo(i,k) = q1(i,k) uo(i,k) = u1(i,k) * rcs(i) vo(i,k) = v1(i,k) * rcs(i) endif enddo enddo !c !c column variables !c p is pressure of the layer (mb) !c t is temperature at t-dt (k)..tn !c q is mixing ratio at t-dt (kg/kg)..qn !c to is temperature at t+dt (k)... this is after advection and turbulan !c qo is mixing ratio at t+dt (kg/kg)..q1 !c do k = 1, km do i=1,im if (cnvflg(i) .and. k .le. kmax(i)) then qeso(i,k) = 0.01 * fpvs(to(i,k)) ! fpvs is in pa qeso(i,k) = eps * qeso(i,k) / (pfld(i,k) + epsm1*qeso(i,k)) val1 = 1.e-8 qeso(i,k) = max(qeso(i,k), val1) val2 = 1.e-10 qo(i,k) = max(qo(i,k), val2 ) ! qo(i,k) = min(qo(i,k),qeso(i,k)) ! tvo(i,k) = to(i,k) + delta * to(i,k) * qo(i,k) endif enddo enddo !c !c compute moist static energy !c do k = 1, km do i=1,im if (cnvflg(i) .and. k .le. kmax(i)) then ! tem = g * zo(i,k) + cp * to(i,k) tem = phil(i,k) + cp * to(i,k) heo(i,k) = tem + hvap * qo(i,k) heso(i,k) = tem + hvap * qeso(i,k) !c heo(i,k) = min(heo(i,k),heso(i,k)) endif enddo enddo !c !c determine level with largest moist static energy within pbl !c this is the level where updraft starts !c do i=1,im if (cnvflg(i)) then hmax(i) = heo(i,1) kb(i) = 1 endif enddo do k = 2, km do i=1,im if (cnvflg(i).and.k.le.kpbl(i)) then if(heo(i,k).gt.hmax(i)) then kb(i) = k hmax(i) = heo(i,k) endif endif enddo enddo !c do k = 1, km1 do i=1,im if (cnvflg(i) .and. k .le. kmax(i)-1) then dz = .5 * (zo(i,k+1) - zo(i,k)) dp = .5 * (pfld(i,k+1) - pfld(i,k)) es = 0.01 * fpvs(to(i,k+1)) ! fpvs is in pa pprime = pfld(i,k+1) + epsm1 * es qs = eps * es / pprime dqsdp = - qs / pprime desdt = es * (fact1 / to(i,k+1) + fact2 / (to(i,k+1)**2)) dqsdt = qs * pfld(i,k+1) * desdt / (es * pprime) gamma = el2orc * qeso(i,k+1) / (to(i,k+1)**2) dt = (g * dz + hvap * dqsdp * dp) / (cp * (1. + gamma)) dq = dqsdt * dt + dqsdp * dp to(i,k) = to(i,k+1) + dt qo(i,k) = qo(i,k+1) + dq po(i,k) = .5 * (pfld(i,k) + pfld(i,k+1)) endif enddo enddo ! do k = 1, km1 do i=1,im if (cnvflg(i) .and. k .le. kmax(i)-1) then qeso(i,k) = 0.01 * fpvs(to(i,k)) ! fpvs is in pa qeso(i,k) = eps * qeso(i,k) / (po(i,k) + epsm1*qeso(i,k)) val1 = 1.e-8 qeso(i,k) = max(qeso(i,k), val1) val2 = 1.e-10 qo(i,k) = max(qo(i,k), val2 ) ! qo(i,k) = min(qo(i,k),qeso(i,k)) heo(i,k) = .5 * g * (zo(i,k) + zo(i,k+1)) + & & cp * to(i,k) + hvap * qo(i,k) heso(i,k) = .5 * g * (zo(i,k) + zo(i,k+1)) + & & cp * to(i,k) + hvap * qeso(i,k) uo(i,k) = .5 * (uo(i,k) + uo(i,k+1)) vo(i,k) = .5 * (vo(i,k) + vo(i,k+1)) endif enddo enddo !c !c look for the level of free convection as cloud base !c do i=1,im flg(i) = cnvflg(i) if(flg(i)) kbcon(i) = kmax(i) enddo do k = 2, km1 do i=1,im if (flg(i).and.k.lt.kbm(i)) then if(k.gt.kb(i).and.heo(i,kb(i)).gt.heso(i,k)) then kbcon(i) = k flg(i) = .false. endif endif enddo enddo !c do i=1,im if(cnvflg(i)) then if(kbcon(i).eq.kmax(i)) cnvflg(i) = .false. endif enddo !! totflg = .true. do i=1,im totflg = totflg .and. (.not. cnvflg(i)) enddo if(totflg) return !! !c !c determine critical convective inhibition !c as a function of vertical velocity at cloud base. !c do i=1,im if(cnvflg(i)) then pdot(i) = 10.* dot(i,kbcon(i)) endif enddo do i=1,im if(cnvflg(i)) then if(slimsk(i).eq.1.) then w1 = w1l w2 = w2l w3 = w3l w4 = w4l else w1 = w1s w2 = w2s w3 = w3s w4 = w4s endif if(pdot(i).le.w4) then ptem = (pdot(i) - w4) / (w3 - w4) elseif(pdot(i).ge.-w4) then ptem = - (pdot(i) + w4) / (w4 - w3) else ptem = 0. endif val1 = -1. ptem = max(ptem,val1) val2 = 1. ptem = min(ptem,val2) ptem = 1. - ptem ptem1= .5*(cincrmax-cincrmin) cincr = cincrmax - ptem * ptem1 tem1 = pfld(i,kb(i)) - pfld(i,kbcon(i)) if(tem1.gt.cincr) then cnvflg(i) = .false. endif endif enddo !! totflg = .true. do i=1,im totflg = totflg .and. (.not. cnvflg(i)) enddo if(totflg) return !! !c !c assume the detrainment rate for the updrafts to be same as !c the entrainment rate at cloud base !c do i = 1, im if(cnvflg(i)) then xlamud(i) = xlamue(i,kbcon(i)) endif enddo !c !c determine updraft mass flux for the subcloud layers !c do k = km1, 1, -1 do i = 1, im if (cnvflg(i)) then if(k.lt.kbcon(i).and.k.ge.kb(i)) then dz = zi(i,k+1) - zi(i,k) ptem = 0.5*(xlamue(i,k)+xlamue(i,k+1))-xlamud(i) eta(i,k) = eta(i,k+1) / (1. + ptem * dz) endif endif enddo enddo !c !c compute mass flux above cloud base !c do k = 2, km1 do i = 1, im if(cnvflg(i))then if(k.gt.kbcon(i).and.k.lt.kmax(i)) then dz = zi(i,k) - zi(i,k-1) ptem = 0.5*(xlamue(i,k)+xlamue(i,k-1))-xlamud(i) eta(i,k) = eta(i,k-1) * (1 + ptem * dz) endif endif enddo enddo !c !c compute updraft cloud property !c do i = 1, im if(cnvflg(i)) then indx = kb(i) hcko(i,indx) = heo(i,indx) ucko(i,indx) = uo(i,indx) vcko(i,indx) = vo(i,indx) endif enddo !c do k = 2, km1 do i = 1, im if (cnvflg(i)) then if(k.gt.kb(i).and.k.lt.kmax(i)) then dz = zi(i,k) - zi(i,k-1) tem = 0.5 * (xlamue(i,k)+xlamue(i,k-1)) * dz tem1 = 0.5 * xlamud(i) * dz factor = 1. + tem - tem1 ptem = 0.5 * tem + pgcon ptem1= 0.5 * tem - pgcon hcko(i,k) = ((1.-tem1)*hcko(i,k-1)+tem*0.5* & & (heo(i,k)+heo(i,k-1)))/factor ucko(i,k) = ((1.-tem1)*ucko(i,k-1)+ptem*uo(i,k) & & +ptem1*uo(i,k-1))/factor vcko(i,k) = ((1.-tem1)*vcko(i,k-1)+ptem*vo(i,k) & & +ptem1*vo(i,k-1))/factor dbyo(i,k) = hcko(i,k) - heso(i,k) endif endif enddo enddo !c !c taking account into convection inhibition due to existence of !c dry layers below cloud base !c do i=1,im flg(i) = cnvflg(i) kbcon1(i) = kmax(i) enddo do k = 2, km1 do i=1,im if (flg(i).and.k.lt.kbm(i)) then if(k.ge.kbcon(i).and.dbyo(i,k).gt.0.) then kbcon1(i) = k flg(i) = .false. endif endif enddo enddo do i=1,im if(cnvflg(i)) then if(kbcon1(i).eq.kmax(i)) cnvflg(i) = .false. endif enddo do i=1,im if(cnvflg(i)) then tem = pfld(i,kbcon(i)) - pfld(i,kbcon1(i)) if(tem.gt.dthk) then cnvflg(i) = .false. endif endif enddo !! totflg = .true. do i = 1, im totflg = totflg .and. (.not. cnvflg(i)) enddo if(totflg) return !! !c !c determine first guess cloud top as the level of zero buoyancy !c limited to the level of sigma=0.7 !c do i = 1, im flg(i) = cnvflg(i) if(flg(i)) ktcon(i) = kbm(i) enddo do k = 2, km1 do i=1,im if (flg(i).and.k .lt. kbm(i)) then if(k.gt.kbcon1(i).and.dbyo(i,k).lt.0.) then ktcon(i) = k flg(i) = .false. endif endif enddo enddo !c !c turn off shallow convection if cloud top is less than pbl top !c do i=1,im if(cnvflg(i)) then kk = kpbl(i)+1 if(ktcon(i).le.kk) cnvflg(i) = .false. endif enddo ! c ! c turn off shallow convection if cloud depth is less than ! c a threshold value (cthk) ! c do i = 1, im if(cnvflg(i)) then tem = pfld(i,kbcon(i))-pfld(i,ktcon(i)) if(tem.lt.cthk) cnvflg(i) = .false. endif enddo !! totflg = .true. do i = 1, im totflg = totflg .and. (.not. cnvflg(i)) enddo if(totflg) return !! !c !c specify upper limit of mass flux at cloud base !c do i = 1, im if(cnvflg(i)) then ! xmbmax(i) = .1 ! k = kbcon(i) dp = 1000. * del(i,k) xmbmax(i) = dp / (g * dt2) ! ! tem = dp / (g * dt2) ! xmbmax(i) = min(tem, xmbmax(i)) endif enddo !c !c compute cloud moisture property and precipitation !c do i = 1, im if (cnvflg(i)) then aa1(i) = 0. qcko(i,kb(i)) = qo(i,kb(i)) endif enddo do k = 2, km1 do i = 1, im if (cnvflg(i)) then if(k.gt.kb(i).and.k.lt.ktcon(i)) then dz = zi(i,k) - zi(i,k-1) gamma = el2orc * qeso(i,k) / (to(i,k)**2) qrch = qeso(i,k) & & + gamma * dbyo(i,k) / (hvap * (1. + gamma)) !cj tem = 0.5 * (xlamue(i,k)+xlamue(i,k-1)) * dz tem1 = 0.5 * xlamud(i) * dz factor = 1. + tem - tem1 qcko(i,k) = ((1.-tem1)*qcko(i,k-1)+tem*0.5* & & (qo(i,k)+qo(i,k-1)))/factor !cj dq = eta(i,k) * (qcko(i,k) - qrch) !c ! rhbar(i) = rhbar(i) + qo(i,k) / qeso(i,k) !c !c below lfc check if there is excess moisture to release latent heat !c if(k.ge.kbcon(i).and.dq.gt.0.) then etah = .5 * (eta(i,k) + eta(i,k-1)) if(ncloud.gt.0.) then dp = 1000. * del(i,k) qlk = dq / (eta(i,k) + etah * (c0 + c1) * dz) dellal(i,k) = etah * c1 * dz * qlk * g / dp else qlk = dq / (eta(i,k) + etah * c0 * dz) endif aa1(i) = aa1(i) - dz * g * qlk qcko(i,k)= qlk + qrch pwo(i,k) = etah * c0 * dz * qlk endif endif endif enddo enddo !c !c calculate cloud work function !c do k = 2, km1 do i = 1, im if (cnvflg(i)) then if(k.ge.kbcon(i).and.k.lt.ktcon(i)) then dz1 = zo(i,k+1) - zo(i,k) gamma = el2orc * qeso(i,k) / (to(i,k)**2) rfact = 1. + delta * cp * gamma & & * to(i,k) / hvap aa1(i) = aa1(i) + & & dz1 * (g / (cp * to(i,k))) & & * dbyo(i,k) / (1. + gamma) & & * rfact val = 0. aa1(i)=aa1(i)+ & & dz1 * g * delta * & & max(val,(qeso(i,k) - qo(i,k))) endif endif enddo enddo do i = 1, im if(cnvflg(i).and.aa1(i).le.0.) cnvflg(i) = .false. enddo !! totflg = .true. do i=1,im totflg = totflg .and. (.not. cnvflg(i)) enddo if(totflg) return !! !c !c estimate the onvective overshooting as the level !c where the [aafac * cloud work function] becomes zero, !c which is the final cloud top !c limited to the level of sigma=0.7 !c do i = 1, im if (cnvflg(i)) then aa1(i) = aafac * aa1(i) endif enddo !c do i = 1, im flg(i) = cnvflg(i) ktcon1(i) = kbm(i) enddo do k = 2, km1 do i = 1, im if (flg(i)) then if(k.ge.ktcon(i).and.k.lt.kbm(i)) then dz1 = zo(i,k+1) - zo(i,k) gamma = el2orc * qeso(i,k) / (to(i,k)**2) rfact = 1. + delta * cp * gamma & & * to(i,k) / hvap aa1(i) = aa1(i) + & & dz1 * (g / (cp * to(i,k))) & & * dbyo(i,k) / (1. + gamma) & & * rfact if(aa1(i).lt.0.) then ktcon1(i) = k flg(i) = .false. endif endif endif enddo enddo !c !c compute cloud moisture property, detraining cloud water !c and precipitation in overshooting layers !c do k = 2, km1 do i = 1, im if (cnvflg(i)) then if(k.ge.ktcon(i).and.k.lt.ktcon1(i)) then dz = zi(i,k) - zi(i,k-1) gamma = el2orc * qeso(i,k) / (to(i,k)**2) qrch = qeso(i,k) & & + gamma * dbyo(i,k) / (hvap * (1. + gamma)) !cj tem = 0.5 * (xlamue(i,k)+xlamue(i,k-1)) * dz tem1 = 0.5 * xlamud(i) * dz factor = 1. + tem - tem1 qcko(i,k) = ((1.-tem1)*qcko(i,k-1)+tem*0.5* & & (qo(i,k)+qo(i,k-1)))/factor !cj dq = eta(i,k) * (qcko(i,k) - qrch) !c !c check if there is excess moisture to release latent heat !c if(dq.gt.0.) then etah = .5 * (eta(i,k) + eta(i,k-1)) if(ncloud.gt.0.) then dp = 1000. * del(i,k) qlk = dq / (eta(i,k) + etah * (c0 + c1) * dz) dellal(i,k) = etah * c1 * dz * qlk * g / dp else qlk = dq / (eta(i,k) + etah * c0 * dz) endif qcko(i,k) = qlk + qrch pwo(i,k) = etah * c0 * dz * qlk endif endif endif enddo enddo !c !c exchange ktcon with ktcon1 !c do i = 1, im if(cnvflg(i)) then kk = ktcon(i) ktcon(i) = ktcon1(i) ktcon1(i) = kk endif enddo !c !c this section is ready for cloud water !c if(ncloud.gt.0) then !c !c compute liquid and vapor separation at cloud top !c do i = 1, im if(cnvflg(i)) then k = ktcon(i) - 1 gamma = el2orc * qeso(i,k) / (to(i,k)**2) qrch = qeso(i,k) & & + gamma * dbyo(i,k) / (hvap * (1. + gamma)) dq = qcko(i,k) - qrch !c !c check if there is excess moisture to release latent heat !c if(dq.gt.0.) then qlko_ktcon(i) = dq qcko(i,k) = qrch endif endif enddo endif !!c !c--- compute precipitation efficiency in terms of windshear !c do i = 1, im if(cnvflg(i)) then vshear(i) = 0. endif enddo do k = 2, km do i = 1, im if (cnvflg(i)) then if(k.gt.kb(i).and.k.le.ktcon(i)) then shear= sqrt((uo(i,k)-uo(i,k-1)) ** 2 & & + (vo(i,k)-vo(i,k-1)) ** 2) vshear(i) = vshear(i) + shear endif endif enddo enddo do i = 1, im if(cnvflg(i)) then vshear(i) = 1.e3 * vshear(i) / (zi(i,ktcon(i))-zi(i,kb(i))) e1=1.591-.639*vshear(i) & & +.0953*(vshear(i)**2)-.00496*(vshear(i)**3) edt(i)=1.-e1 val = .9 edt(i) = min(edt(i),val) val = .0 edt(i) = max(edt(i),val) endif enddo !c !c--- what would the change be, that a cloud with unit mass !c--- will do to the environment? !c do k = 1, km do i = 1, im if(cnvflg(i) .and. k .le. kmax(i)) then dellah(i,k) = 0. dellaq(i,k) = 0. dellau(i,k) = 0. dellav(i,k) = 0. endif enddo enddo !c !c--- changed due to subsidence and entrainment !c do k = 2, km1 do i = 1, im if (cnvflg(i)) then if(k.gt.kb(i).and.k.lt.ktcon(i)) then dp = 1000. * del(i,k) dz = zi(i,k) - zi(i,k-1) !c dv1h = heo(i,k) dv2h = .5 * (heo(i,k) + heo(i,k-1)) dv3h = heo(i,k-1) dv1q = qo(i,k) dv2q = .5 * (qo(i,k) + qo(i,k-1)) dv3q = qo(i,k-1) dv1u = uo(i,k) dv2u = .5 * (uo(i,k) + uo(i,k-1)) dv3u = uo(i,k-1) dv1v = vo(i,k) dv2v = .5 * (vo(i,k) + vo(i,k-1)) dv3v = vo(i,k-1) !c tem = 0.5 * (xlamue(i,k)+xlamue(i,k-1)) tem1 = xlamud(i) !cj dellah(i,k) = dellah(i,k) + & & ( eta(i,k)*dv1h - eta(i,k-1)*dv3h & & - tem*eta(i,k-1)*dv2h*dz & & + tem1*eta(i,k-1)*.5*(hcko(i,k)+hcko(i,k-1))*dz & & ) *g/dp !cj dellaq(i,k) = dellaq(i,k) + & & ( eta(i,k)*dv1q - eta(i,k-1)*dv3q & & - tem*eta(i,k-1)*dv2q*dz & & + tem1*eta(i,k-1)*.5*(qcko(i,k)+qcko(i,k-1))*dz & & ) *g/dp !cj dellau(i,k) = dellau(i,k) + & & ( eta(i,k)*dv1u - eta(i,k-1)*dv3u & & - tem*eta(i,k-1)*dv2u*dz & & + tem1*eta(i,k-1)*.5*(ucko(i,k)+ucko(i,k-1))*dz & & - pgcon*eta(i,k-1)*(dv1u-dv3u) & & ) *g/dp !cj dellav(i,k) = dellav(i,k) + & & ( eta(i,k)*dv1v - eta(i,k-1)*dv3v & & - tem*eta(i,k-1)*dv2v*dz & & + tem1*eta(i,k-1)*.5*(vcko(i,k)+vcko(i,k-1))*dz & & - pgcon*eta(i,k-1)*(dv1v-dv3v) & & ) *g/dp !cj endif endif enddo enddo !c !c------- cloud top !c do i = 1, im if(cnvflg(i)) then indx = ktcon(i) dp = 1000. * del(i,indx) dv1h = heo(i,indx-1) dellah(i,indx) = eta(i,indx-1) * & & (hcko(i,indx-1) - dv1h) * g / dp dv1q = qo(i,indx-1) dellaq(i,indx) = eta(i,indx-1) * & & (qcko(i,indx-1) - dv1q) * g / dp dv1u = uo(i,indx-1) dellau(i,indx) = eta(i,indx-1) * & & (ucko(i,indx-1) - dv1u) * g / dp dv1v = vo(i,indx-1) dellav(i,indx) = eta(i,indx-1) * & & (vcko(i,indx-1) - dv1v) * g / dp !c !c cloud water !c dellal(i,indx) = eta(i,indx-1) * & & qlko_ktcon(i) * g / dp endif enddo !c !c mass flux at cloud base for shallow convection !c (Grant, 2001) !c do i= 1, im if(cnvflg(i)) then k = kbcon(i) ! ptem = g*sflx(i)*zi(i,k)/t1(i,1) ptem = g*sflx(i)*hpbl(i)/t1(i,1) wstar(i) = ptem**h1 tem = po(i,k)*100. / (rd*t1(i,k)) xmb(i) = betaw*tem*wstar(i) xmb(i) = min(xmb(i),xmbmax(i)) endif enddo !c !c!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !c do k = 1, km do i = 1, im if (cnvflg(i) .and. k .le. kmax(i)) then qeso(i,k) = 0.01 * fpvs(t1(i,k)) ! fpvs is in pa qeso(i,k) = eps * qeso(i,k) / (pfld(i,k) + epsm1*qeso(i,k)) val = 1.e-8 qeso(i,k) = max(qeso(i,k), val ) endif enddo enddo !c!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !c do i = 1, im delhbar(i) = 0. delqbar(i) = 0. deltbar(i) = 0. delubar(i) = 0. delvbar(i) = 0. qcond(i) = 0. enddo do k = 1, km do i = 1, im if (cnvflg(i)) then if(k.gt.kb(i).and.k.le.ktcon(i)) then dellat = (dellah(i,k) - hvap * dellaq(i,k)) / cp t1(i,k) = t1(i,k) + dellat * xmb(i) * dt2 q1(i,k) = q1(i,k) + dellaq(i,k) * xmb(i) * dt2 tem = 1./rcs(i) u1(i,k) = u1(i,k) + dellau(i,k) * xmb(i) * dt2 * tem v1(i,k) = v1(i,k) + dellav(i,k) * xmb(i) * dt2 * tem dp = 1000. * del(i,k) delhbar(i) = delhbar(i) + dellah(i,k)*xmb(i)*dp/g delqbar(i) = delqbar(i) + dellaq(i,k)*xmb(i)*dp/g deltbar(i) = deltbar(i) + dellat*xmb(i)*dp/g delubar(i) = delubar(i) + dellau(i,k)*xmb(i)*dp/g delvbar(i) = delvbar(i) + dellav(i,k)*xmb(i)*dp/g endif endif enddo enddo do k = 1, km do i = 1, im if (cnvflg(i)) then if(k.gt.kb(i).and.k.le.ktcon(i)) then qeso(i,k) = 0.01 * fpvs(t1(i,k)) ! fpvs is in pa qeso(i,k) = eps * qeso(i,k)/(pfld(i,k) + epsm1*qeso(i,k)) val = 1.e-8 qeso(i,k) = max(qeso(i,k), val ) endif endif enddo enddo !c do i = 1, im rntot(i) = 0. delqev(i) = 0. delq2(i) = 0. flg(i) = cnvflg(i) enddo do k = km, 1, -1 do i = 1, im if (cnvflg(i)) then if(k.lt.ktcon(i).and.k.gt.kb(i)) then rntot(i) = rntot(i) + pwo(i,k) * xmb(i) * .001 * dt2 endif endif enddo enddo !c !c evaporating rain !c do k = km, 1, -1 do i = 1, im if (k .le. kmax(i)) then deltv(i) = 0. delq(i) = 0. qevap(i) = 0. if(cnvflg(i)) then if(k.lt.ktcon(i).and.k.gt.kb(i)) then rn(i) = rn(i) + pwo(i,k) * xmb(i) * .001 * dt2 endif endif if(flg(i).and.k.lt.ktcon(i)) then evef = edt(i) * evfact if(slimsk(i).eq.1.) evef=edt(i) * evfactl ! if(slimsk(i).eq.1.) evef=.07 !c if(slimsk(i).ne.1.) evef = 0. qcond(i) = evef * (q1(i,k) - qeso(i,k)) & & / (1. + el2orc * qeso(i,k) / t1(i,k)**2) dp = 1000. * del(i,k) if(rn(i).gt.0..and.qcond(i).lt.0.) then qevap(i) = -qcond(i) * (1.-exp(-.32*sqrt(dt2*rn(i)))) qevap(i) = min(qevap(i), rn(i)*1000.*g/dp) delq2(i) = delqev(i) + .001 * qevap(i) * dp / g endif if(rn(i).gt.0..and.qcond(i).lt.0..and. & & delq2(i).gt.rntot(i)) then qevap(i) = 1000.* g * (rntot(i) - delqev(i)) / dp flg(i) = .false. endif if(rn(i).gt.0..and.qevap(i).gt.0.) then tem = .001 * dp / g tem1 = qevap(i) * tem if(tem1.gt.rn(i)) then qevap(i) = rn(i) / tem rn(i) = 0. else rn(i) = rn(i) - tem1 endif q1(i,k) = q1(i,k) + qevap(i) t1(i,k) = t1(i,k) - elocp * qevap(i) deltv(i) = - elocp*qevap(i)/dt2 delq(i) = + qevap(i)/dt2 delqev(i) = delqev(i) + .001*dp*qevap(i)/g endif dellaq(i,k) = dellaq(i,k) + delq(i) / xmb(i) delqbar(i) = delqbar(i) + delq(i)*dp/g deltbar(i) = deltbar(i) + deltv(i)*dp/g endif endif enddo enddo !cj ! do i = 1, im ! if(me.eq.31.and.cnvflg(i)) then ! if(cnvflg(i)) then ! print *, ' shallow delhbar, delqbar, deltbar = ', ! & delhbar(i),hvap*delqbar(i),cp*deltbar(i) ! print *, ' shallow delubar, delvbar = ',delubar(i),delvbar(i) ! print *, ' precip =', hvap*rn(i)*1000./dt2 ! print*,'pdif= ',pfld(i,kbcon(i))-pfld(i,ktcon(i)) ! endif ! enddo !cj do i = 1, im if(cnvflg(i)) then if(rn(i).lt.0..or..not.flg(i)) rn(i) = 0. ktop(i) = ktcon(i) kbot(i) = kbcon(i) kcnv(i) = 0 endif enddo !c !c cloud water !c if (ncloud.gt.0) then ! val1 = 1.0 val2 = 0. do k = 1, km1 do i = 1, im if (cnvflg(i)) then if (k.gt.kb(i).and.k.le.ktcon(i)) then tem = dellal(i,k) * xmb(i) * dt2 ! tem1 = max(0.0, min(1.0, (tcr-t1(i,k))*tcrf)) tem1 = max(val2, min(val1, (tcr-t1(i,k))*tcrf)) if (ql(i,k,2) .gt. -999.0) then ql(i,k,1) = ql(i,k,1) + tem * tem1 ! ice ql(i,k,2) = ql(i,k,2) + tem *(1.0-tem1) ! water else ql(i,k,1) = ql(i,k,1) + tem endif endif endif enddo enddo ! endif ! ! hchuang code change ! do k = 1, km do i = 1, im if(cnvflg(i)) then if(k.ge.kb(i) .and. k.lt.ktop(i)) then ud_mf(i,k) = eta(i,k) * xmb(i) * dt2 endif endif enddo enddo do i = 1, im if(cnvflg(i)) then k = ktop(i)-1 dt_mf(i,k) = ud_mf(i,k) endif enddo !! return end subroutine shalcnv END MODULE module_cu_sas