! Create an initial data set for the WRF model based on an ideal condition ! This program is specifically set up for the NMM core. PROGRAM ideal_nmm,37 USE module_machine USE module_domain USE module_initialize_ideal USE module_io_domain USE module_driver_constants USE module_configure USE module_timing USE module_check_a_mundo #ifdef WRF_CHEM USE module_input_chem_data USE module_input_chem_bioemiss #endif USE module_utility #ifdef DM_PARALLEL USE module_dm #endif IMPLICIT NONE REAL :: time , bdyfrq INTEGER :: loop , levels_to_process , debug_level TYPE(domain) , POINTER :: null_domain TYPE(domain) , POINTER :: grid TYPE (grid_config_rec_type) :: config_flags INTEGER :: number_at_same_level INTEGER :: max_dom, domain_id INTEGER :: idum1, idum2 #ifdef DM_PARALLEL INTEGER :: nbytes ! INTEGER, PARAMETER :: configbuflen = 2*1024 INTEGER, PARAMETER :: configbuflen = 4*CONFIG_BUF_LEN INTEGER :: configbuf( configbuflen ) LOGICAL , EXTERNAL :: wrf_dm_on_monitor #endif INTEGER :: ids , ide , jds , jde , kds , kde INTEGER :: ims , ime , jms , jme , kms , kme INTEGER :: ips , ipe , jps , jpe , kps , kpe INTEGER :: ijds , ijde , spec_bdy_width INTEGER :: i , j , k , idts #ifdef DEREF_KLUDGE ! see http://www.mmm.ucar.edu/wrf/WG2/topics/deref_kludge.htm INTEGER :: sm31 , em31 , sm32 , em32 , sm33 , em33 INTEGER :: sm31x, em31x, sm32x, em32x, sm33x, em33x INTEGER :: sm31y, em31y, sm32y, em32y, sm33y, em33y #endif CHARACTER (LEN=80) :: message INTEGER :: start_year , start_month , start_day INTEGER :: start_hour , start_minute , start_second INTEGER :: end_year , end_month , end_day , & end_hour , end_minute , end_second INTEGER :: interval_seconds , real_data_init_type INTEGER :: time_loop_max , time_loop, rc REAL :: t1,t2 #include "version_decl" INTERFACE SUBROUTINE Setup_Timekeeping( grid ) USE module_domain TYPE(domain), POINTER :: grid END SUBROUTINE Setup_Timekeeping END INTERFACE ! Define the name of this program (program_name defined in module_domain) program_name = "IDEAL_HWRF " // TRIM(release_version) // " PREPROCESSOR" #ifdef DM_PARALLEL CALL disable_quilting #endif ! CALL start() ! Initialize the modules used by the WRF system. ! Many of the CALLs made from the ! init_modules routine are NO-OPs. Typical initializations ! are: the size of a ! REAL, setting the file handles to a pre-use value, defining moisture and ! chemistry indices, etc. CALL wrf_debug ( 100 , 'ideal_hwrf: calling init_modules ' ) !!!! CALL init_modules CALL init_modules(1) ! Phase 1 returns after MPI_INIT() (if it is called) CALL WRFU_Initialize( defaultCalKind=WRFU_CAL_GREGORIAN, rc=rc ) CALL init_modules(2) ! Phase 2 resumes after MPI_INIT() (if it is called) ! The configuration switches mostly come from the NAMELIST input. #ifdef DM_PARALLEL IF ( wrf_dm_on_monitor() ) THEN write(message,*) 'call initial_config' CALL wrf_message ( message ) CALL initial_config ENDIF CALL get_config_as_buffer( configbuf, configbuflen, nbytes ) CALL wrf_dm_bcast_bytes( configbuf, nbytes ) CALL set_config_as_buffer( configbuf, configbuflen ) CALL wrf_dm_initialize #else CALL initial_config #endif CALL check_nml_consistency CALL set_physics_rconfigs CALL nl_get_debug_level ( 1, debug_level ) CALL set_wrf_debug_level ( debug_level ) CALL wrf_message ( program_name ) ! Allocate the space for the mother of all domains. NULLIFY( null_domain ) CALL wrf_debug ( 100 , 'ideal_hwrf: calling alloc_and_configure_domain ' ) CALL alloc_and_configure_domain ( domain_id = 1 , & grid = head_grid , & parent = null_domain , & kid = -1 ) grid => head_grid #include "deref_kludge.h" CALL Setup_Timekeeping ( grid ) CALL domain_clock_set( grid, & time_step_seconds=model_config_rec%interval_seconds ) CALL wrf_debug ( 100 , 'ideal_hwrf: calling set_scalar_indices_from_config ' ) CALL set_scalar_indices_from_config ( grid%id , idum1, idum2 ) CALL wrf_debug ( 100 , 'ideal_hwrf: calling model_to_grid_config_rec ' ) CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags ) write(message,*) 'after model_to_grid_config_rec, e_we, e_sn are: ', & config_flags%e_we, config_flags%e_sn CALL wrf_message(message) ! Initialize the WRF IO: open files, init file handles, etc. CALL wrf_debug ( 100 , 'ideal_hwrf: calling init_wrfio' ) CALL init_wrfio ! Some of the configuration values may have been modified from the initial READ ! of the NAMELIST, so we re-broadcast the configuration records. #ifdef DM_PARALLEL CALL wrf_debug ( 100 , 'ideal_hwrf: re-broadcast the configuration records' ) CALL get_config_as_buffer( configbuf, configbuflen, nbytes ) CALL wrf_dm_bcast_bytes( configbuf, nbytes ) CALL set_config_as_buffer( configbuf, configbuflen ) #endif ! No looping in this layer. CALL med_sidata_input ( grid , config_flags ) ! We are done. CALL wrf_debug ( 0 , 'ideal_hwrf: SUCCESS COMPLETE IDEAL_HWRF INIT' ) #ifdef DM_PARALLEL CALL wrf_dm_shutdown #endif CALL WRFU_Finalize( rc=rc ) END PROGRAM ideal_nmm SUBROUTINE med_sidata_input ( grid , config_flags ) 3,171 ! Driver layer USE module_domain USE module_io_domain ! Model layer USE module_configure USE module_bc_time_utilities USE module_initialize_ideal USE module_optional_input #ifdef WRF_CHEM USE module_input_chem_data USE module_input_chem_bioemiss #endif USE module_si_io_nmm USE module_date_time IMPLICIT NONE ! Interface INTERFACE SUBROUTINE start_domain ( grid , allowed_to_read ) USE module_domain TYPE (domain) grid LOGICAL, INTENT(IN) :: allowed_to_read END SUBROUTINE start_domain END INTERFACE ! Arguments TYPE(domain) :: grid TYPE (grid_config_rec_type) :: config_flags ! Local INTEGER :: time_step_begin_restart INTEGER :: idsi , ierr , myproc CHARACTER (LEN=80) :: si_inpname CHARACTER (LEN=132) :: message CHARACTER(LEN=19) :: start_date_char , end_date_char , & current_date_char , next_date_char INTEGER :: time_loop_max , loop INTEGER :: julyr , julday , LEN INTEGER :: io_form_auxinput1 INTEGER, EXTERNAL :: use_package LOGICAL :: using_binary_wrfsi REAL :: gmt REAL :: t1,t2 INTEGER :: numx_sm_levels_input,numx_st_levels_input REAL,DIMENSION(100) :: smx_levels_input,stx_levels_input #ifdef DEREF_KLUDGE ! see http://www.mmm.ucar.edu/wrf/WG2/topics/deref_kludge.htm INTEGER :: sm31 , em31 , sm32 , em32 , sm33 , em33 INTEGER :: sm31x, em31x, sm32x, em32x, sm33x, em33x INTEGER :: sm31y, em31y, sm32y, em32y, sm33y, em33y #endif #if defined(HWRF) ! Sam Says: ! The *INIT arrays are used to read init data written out by hwrf_prep_hybrid REAL,ALLOCATABLE,DIMENSION(:,:,:)::TINIT,UINIT,VINIT,QINIT,CWMINIT REAL,ALLOCATABLE,DIMENSION(:,:,:)::PINIT REAL,ALLOCATABLE,DIMENSION(:,:)::PDINIT ! The *B arrays are used to read boundary data written out by hwrf_prep_hybrid REAL,ALLOCATABLE,DIMENSION(:,:,:)::TB,UB,VB,QB,CWMB REAL,ALLOCATABLE,DIMENSION(:,:)::PDB INTEGER :: KB, LM, IM, JM, iunit_gfs, N integer :: i,j,k LOGICAL,EXTERNAL :: WRF_DM_ON_MONITOR integer :: ids,ide, jds,jde, kds,kde integer :: ims,ime, jms,jme, kms,kme integer :: its,ite, jts,jte, kts,kte integer :: ioerror #endif #include "deref_kludge.h" grid%input_from_file = .true. grid%input_from_file = .false. CALL compute_si_start_and_end ( model_config_rec%start_year (grid%id) , & model_config_rec%start_month (grid%id) , & model_config_rec%start_day (grid%id) , & model_config_rec%start_hour (grid%id) , & model_config_rec%start_minute(grid%id) , & model_config_rec%start_second(grid%id) , & model_config_rec% end_year (grid%id) , & model_config_rec% end_month (grid%id) , & model_config_rec% end_day (grid%id) , & model_config_rec% end_hour (grid%id) , & model_config_rec% end_minute(grid%id) , & model_config_rec% end_second(grid%id) , & model_config_rec%interval_seconds , & model_config_rec%real_data_init_type , & start_date_char , end_date_char , time_loop_max ) ! Here we define the initial time to process, for later use by the code. current_date_char = start_date_char ! start_date = start_date_char // '.0000' start_date = start_date_char current_date = start_date CALL nl_set_bdyfrq ( grid%id , REAL(model_config_rec%interval_seconds) ) ! Loop over each time period to process. write(message,*) 'time_loop_max: ', time_loop_max CALL wrf_message(message) DO loop = 1 , time_loop_max internal_time_loop=loop write(message,*) 'loop=', loop CALL wrf_message(message) write(message,*) '-----------------------------------------------------------' CALL wrf_message(message) write(message,*) ' ' CALL wrf_message(message) write(message,'(A,A,A,I2,A,I2)') ' Current date being processed: ', & current_date, ', which is loop #',loop,' out of ',time_loop_max CALL wrf_message(message) ! After current_date has been set, fill in the julgmt stuff. CALL geth_julgmt ( config_flags%julyr , config_flags%julday , & config_flags%gmt ) ! Now that the specific Julian info is available, ! save these in the model config record. CALL nl_set_gmt (grid%id, config_flags%gmt) CALL nl_set_julyr (grid%id, config_flags%julyr) CALL nl_set_julday (grid%id, config_flags%julday) CALL nl_get_io_form_auxinput1( 1, io_form_auxinput1 ) using_binary_wrfsi=.false. write(message,*) 'TRIM(config_flags%auxinput1_inname): ', TRIM(config_flags%auxinput1_inname) CALL wrf_message(message) #if defined(HWRF) ifph_onlyfirst: if(.not.grid%use_prep_hybrid .or. loop==1) then #endif IF (config_flags%auxinput1_inname(1:10) .eq. 'real_input') THEN using_binary_wrfsi=.true. ENDIF SELECT CASE ( use_package(io_form_auxinput1) ) #ifdef NETCDF CASE ( IO_NETCDF ) ! Open the wrfinput file. current_date_char(11:11)='_' WRITE ( wrf_err_message , FMT='(A,A)' )'med_sidata_input: calling open_r_dataset for ',TRIM(config_flags%auxinput1_inname) CALL wrf_debug ( 100 , wrf_err_message ) IF ( config_flags%auxinput1_inname(1:8) .NE. 'wrf_real' ) THEN CALL construct_filename4a( si_inpname , config_flags%auxinput1_inname , grid%id , 2 , current_date_char , & config_flags%io_form_auxinput1 ) ELSE CALL construct_filename2a( si_inpname , config_flags%auxinput1_inname , grid%id , 2 , current_date_char ) END IF CALL open_r_dataset ( idsi, TRIM(si_inpname) , grid , config_flags , "DATASET=AUXINPUT1", ierr ) IF ( ierr .NE. 0 ) THEN CALL wrf_error_fatal( 'error opening ' // TRIM(si_inpname) // ' for input; bad date in namelist or file not in directory' ) ENDIF ! Input data. CALL wrf_debug (100, 'med_sidata_input: call input_auxinput1_wrf') CALL input_auxinput1 ( idsi, grid, config_flags, ierr ) ! Possible optional SI input. This sets flags used by init_domain. IF ( loop .EQ. 1 ) THEN CALL wrf_debug (100, 'med_sidata_input: call init_module_optional_input' ) CALL init_module_optional_input ( grid , config_flags ) CALL wrf_debug ( 100 , 'med_sidata_input: calling optional_input' ) ! CALL optional_input ( grid , idsi , config_flags ) write(0,*) 'maxval st_input(1) within ideal_hwrf: ', maxval(st_input(:,1,:)) END IF ! CALL close_dataset ( idsi , config_flags , "DATASET=AUXINPUT1" ) #endif #ifdef INTIO CASE ( IO_INTIO ) ! Possible optional SI input. This sets flags used by init_domain. IF ( loop .EQ. 1 ) THEN CALL wrf_debug (100, 'med_sidata_input: call init_module_optional_input' ) CALL init_module_optional_input ( grid , config_flags ) END IF IF (using_binary_wrfsi) THEN current_date_char(11:11)='_' CALL read_si ( grid, current_date_char ) current_date_char(11:11)='T' ELSE write(message,*) 'binary WPS branch' CALL wrf_message(message) current_date_char(11:11)='_' CALL construct_filename4a( si_inpname , config_flags%auxinput1_inname , grid%id , 2 , current_date_char , & config_flags%io_form_auxinput1 ) CALL read_wps ( grid, trim(si_inpname), current_date_char, config_flags%num_metgrid_levels ) !!! bogus set some flags?? flag_metgrid=1 flag_soilhgt=1 ENDIF #endif CASE DEFAULT CALL wrf_error_fatal('ideal_hwrf: not valid io_form_auxinput1') END SELECT #if defined(HWRF) endif ifph_onlyfirst #endif grid%islope=1 grid%vegfra=grid%vegfrc grid%dfrlg=grid%dfl/9.81 grid%isurban=1 grid%isoilwater=14 ! Initialize the mother domain for this time period with input data. CALL wrf_debug ( 100 , 'med_sidata_input: calling init_domain' ) grid%input_from_file = .true. CALL init_domain ( grid ) #if defined(HWRF) read_phinit: if(grid%use_prep_hybrid) then #if defined(DM_PARALLEL) if(.not. wrf_dm_on_monitor()) then call wrf_error_fatal('ideal_hwrf: in use_prep_hybrid mode, threading and mpi are forbidden.') endif #endif ph_loop1: if(loop==1) then ! determine kds, ids, jds SELECT CASE ( model_data_order ) CASE ( DATA_ORDER_ZXY ) kds = grid%sd31 ; kde = grid%ed31 ; ids = grid%sd32 ; ide = grid%ed32 ; jds = grid%sd33 ; jde = grid%ed33 ; kms = grid%sm31 ; kme = grid%em31 ; ims = grid%sm32 ; ime = grid%em32 ; jms = grid%sm33 ; jme = grid%em33 ; kts = grid%sp31 ; kte = grid%ep31 ; ! tile is entire patch its = grid%sp32 ; ite = grid%ep32 ; ! tile is entire patch jts = grid%sp33 ; jte = grid%ep33 ; ! tile is entire patch CASE ( DATA_ORDER_XYZ ) ids = grid%sd31 ; ide = grid%ed31 ; jds = grid%sd32 ; jde = grid%ed32 ; kds = grid%sd33 ; kde = grid%ed33 ; ims = grid%sm31 ; ime = grid%em31 ; jms = grid%sm32 ; jme = grid%em32 ; kms = grid%sm33 ; kme = grid%em33 ; its = grid%sp31 ; ite = grid%ep31 ; ! tile is entire patch jts = grid%sp32 ; jte = grid%ep32 ; ! tile is entire patch kts = grid%sp33 ; kte = grid%ep33 ; ! tile is entire patch CASE ( DATA_ORDER_XZY ) ids = grid%sd31 ; ide = grid%ed31 ; kds = grid%sd32 ; kde = grid%ed32 ; jds = grid%sd33 ; jde = grid%ed33 ; ims = grid%sm31 ; ime = grid%em31 ; kms = grid%sm32 ; kme = grid%em32 ; jms = grid%sm33 ; jme = grid%em33 ; its = grid%sp31 ; ite = grid%ep31 ; ! tile is entire patch kts = grid%sp32 ; kte = grid%ep32 ; ! tile is entire patch jts = grid%sp33 ; jte = grid%ep33 ; ! tile is entire patch END SELECT ! Allocate 3D initialization arrays: call wrf_message('ALLOCATE PREP_HYBRID INIT ARRAYS') ALLOCATE ( TINIT (ids:(ide-1),kds:(kde-1) ,jds:(jde-1)) ) ALLOCATE ( PINIT (ids:(ide-1),kds:kde ,jds:(jde-1)) ) ALLOCATE ( UINIT (ids:(ide-1),kds:(kde-1) ,jds:(jde-1)) ) ALLOCATE ( VINIT (ids:(ide-1),kds:(kde-1) ,jds:(jde-1)) ) ALLOCATE ( QINIT (ids:(ide-1),kds:(kde-1) ,jds:(jde-1)) ) ALLOCATE ( CWMINIT(ids:(ide-1),kds:(kde-1) ,jds:(jde-1)) ) ALLOCATE ( PDINIT (ids:(ide-1), jds:(jde-1)) ) REWIND 900 READ(900,iostat=ioerror) PDINIT,TINIT,QINIT,CWMINIT,UINIT,VINIT,PINIT if(ioerror/=0) then call wrf_error_fatal('Unable to read MAKBND output from unit 900.') endif WRITE(0,*) 'U V T AT 10 10 10 ',UINIT(10,10,10),VINIT(10,10,10),TINIT(10,10,10) ! Switch from IKJ to IJK ordering DO I = ids,ide-1 DO J = jds,jde-1 grid%pd(I,J) = PDINIT(I,J) DO K = kds,kde-1 grid%q2(I,J,K) = 0 grid%u(I,J,K) = UINIT(I,K,J) grid%v(I,J,K) = VINIT(I,K,J) grid%t(I,J,K) = TINIT(I,K,J) grid%q(I,J,K) = QINIT(I,K,J) grid%cwm(I,J,K) = CWMINIT(I,K,J) ENDDO ! Was commented out in original V2 HWRF too: ! DO K = kds,kde ! grid%nmm_pint(I,J,K) = pinit(I,K,J) ! ENDDO ENDDO ENDDO call wrf_message('DEALLOCATE PREP_HYBRID INIT ARRAYS') deallocate(TINIT,PINIT,UINIT,VINIT,QINIT,CWMINIT,PDINIT) end if ph_loop1 end if read_phinit #endif CALL model_to_grid_config_rec ( grid%id, model_config_rec, config_flags ) ! Close this file that is output from the SI and input to this pre-proc. CALL wrf_debug ( 100 , 'med_sidata_input: back from init_domain' ) !!! not sure about this, but doesnt seem like needs to be called each time IF ( loop .EQ. 1 ) THEN CALL start_domain ( grid , .TRUE.) END IF #ifdef WRF_CHEM IF ( loop == 1 ) THEN ! IF ( ( grid%chem_opt .EQ. RADM2 ) .OR. & ! ( grid%chem_opt .EQ. RADM2SORG ) .OR. & ! ( grid%chem_opt .EQ. RACM ) .OR. & ! ( grid%chem_opt .EQ. RACMSORG ) ) THEN IF( grid%chem_opt > 0 ) then ! Read the chemistry data from a previous wrf forecast (wrfout file) IF(grid%chem_in_opt == 1 ) THEN message = 'INITIALIZING CHEMISTRY WITH OLD SIMULATION' CALL wrf_message ( message ) CALL input_ext_chem_file( grid ) IF(grid%bio_emiss_opt == BEIS311 ) THEN message = 'READING BEIS3.11 EMISSIONS DATA' CALL wrf_message ( message ) CALL med_read_wrf_chem_bioemiss ( grid , config_flags) else IF(grid%bio_emiss_opt == 3 ) THEN !shc message = 'READING MEGAN 2 EMISSIONS DATA' CALL wrf_message ( message ) CALL med_read_wrf_chem_bioemiss ( grid , config_flags) END IF ELSEIF(grid%chem_in_opt == 0)then ! Generate chemistry data from a idealized vertical profile message = 'STARTING WITH BACKGROUND CHEMISTRY ' CALL wrf_message ( message ) write(message,*)' ETA1 ' CALL wrf_message ( message ) ! write(message,*) grid%eta1 ! CALL wrf_message ( message ) CALL input_chem_profile ( grid ) IF(grid%bio_emiss_opt == BEIS311 ) THEN message = 'READING BEIS3.11 EMISSIONS DATA' CALL wrf_message ( message ) CALL med_read_wrf_chem_bioemiss ( grid , config_flags) else IF(grid%bio_emiss_opt == 3 ) THEN !shc message = 'READING MEGAN 2 EMISSIONS DATA' CALL wrf_message ( message ) CALL med_read_wrf_chem_bioemiss ( grid , config_flags) END IF ELSE message = 'RUNNING WITHOUT CHEMISTRY INITIALIZATION' CALL wrf_message ( message ) ENDIF ENDIF ENDIF #endif config_flags%isurban=1 config_flags%isoilwater=14 CALL assemble_output ( grid , config_flags , loop , time_loop_max ) ! Here we define the next time that we are going to process. CALL geth_newdate ( current_date_char , start_date_char , & loop * model_config_rec%interval_seconds ) current_date = current_date_char // '.0000' CALL domain_clock_set( grid, current_date(1:19) ) write(message,*) 'current_date= ', current_date CALL wrf_message(message) END DO END SUBROUTINE med_sidata_input SUBROUTINE compute_si_start_and_end ( & 3,10 start_year, start_month, start_day, start_hour, & start_minute, start_second, & end_year , end_month , end_day , end_hour , & end_minute , end_second , & interval_seconds , real_data_init_type , & start_date_char , end_date_char , time_loop_max ) USE module_date_time IMPLICIT NONE INTEGER :: start_year , start_month , start_day , & start_hour , start_minute , start_second INTEGER :: end_year , end_month , end_day , & end_hour , end_minute , end_second INTEGER :: interval_seconds , real_data_init_type INTEGER :: time_loop_max , time_loop CHARACTER(LEN=132) :: message CHARACTER(LEN=19) :: current_date_char , start_date_char , & end_date_char , next_date_char ! WRITE ( start_date_char , FMT = & ! '(I4.4,"-",I2.2,"-",I2.2,"_",I2.2,":",I2.2,":",I2.2)' ) & ! start_year,start_month,start_day,start_hour,start_minute,start_second ! WRITE ( end_date_char , FMT = & ! '(I4.4,"-",I2.2,"-",I2.2,"_",I2.2,":",I2.2,":",I2.2)' ) & ! end_year, end_month, end_day, end_hour, end_minute, end_second WRITE ( start_date_char , FMT = & '(I4.4,"-",I2.2,"-",I2.2,"T",I2.2,":",I2.2,":",I2.2)' ) & start_year,start_month,start_day,start_hour,start_minute,start_second WRITE ( end_date_char , FMT = & '(I4.4,"-",I2.2,"-",I2.2,"T",I2.2,":",I2.2,":",I2.2)' ) & end_year, end_month, end_day, end_hour, end_minute, end_second ! start_date = start_date_char // '.0000' ! Figure out our loop count for the processing times. time_loop = 1 PRINT '(A,I4,A,A,A)','Time period #',time_loop, & ' to process = ',start_date_char,'.' current_date_char = start_date_char loop_count : DO CALL geth_newdate (next_date_char, current_date_char, interval_seconds ) IF ( next_date_char .LT. end_date_char ) THEN time_loop = time_loop + 1 PRINT '(A,I4,A,A,A)','Time period #',time_loop,& ' to process = ',next_date_char,'.' current_date_char = next_date_char ELSE IF ( next_date_char .EQ. end_date_char ) THEN time_loop = time_loop + 1 PRINT '(A,I4,A,A,A)','Time period #',time_loop,& ' to process = ',next_date_char,'.' PRINT '(A,I4,A)','Total analysis times to input = ',time_loop,'.' time_loop_max = time_loop EXIT loop_count ELSE IF ( next_date_char .GT. end_date_char ) THEN PRINT '(A,I4,A)','Total analysis times to input = ',time_loop,'.' time_loop_max = time_loop EXIT loop_count END IF END DO loop_count write(message,*) 'done in si_start_and_end' CALL wrf_message(message) END SUBROUTINE compute_si_start_and_end SUBROUTINE assemble_output ( grid , config_flags , loop , time_loop_max ) 4,234 !!! replace with something? USE module_big_step_utilities_em USE module_domain USE module_io_domain USE module_configure USE module_date_time USE module_bc IMPLICIT NONE #if defined(HWRF) external get_wrf_debug_level integer :: debug #endif TYPE(domain) :: grid TYPE (grid_config_rec_type) :: config_flags INTEGER , INTENT(IN) :: loop , time_loop_max INTEGER :: ids , ide , jds , jde , kds , kde INTEGER :: ims , ime , jms , jme , kms , kme INTEGER :: ips , ipe , jps , jpe , kps , kpe INTEGER :: ijds , ijde , spec_bdy_width INTEGER :: inc_h,inc_v INTEGER :: i , j , k , idts INTEGER :: id1 , interval_seconds , ierr, rc, sst_update INTEGER , SAVE :: id ,id4 CHARACTER (LEN=80) :: inpname , bdyname CHARACTER(LEN= 4) :: loop_char CHARACTER(LEN=132) :: message character *19 :: temp19 character *24 :: temp24 , temp24b REAL, DIMENSION(:,:,:), ALLOCATABLE, SAVE :: ubdy3dtemp1 , vbdy3dtemp1 ,& tbdy3dtemp1 , & cwmbdy3dtemp1 , qbdy3dtemp1,& q2bdy3dtemp1 , pdbdy2dtemp1 REAL, DIMENSION(:,:,:), ALLOCATABLE, SAVE :: ubdy3dtemp2 , vbdy3dtemp2 , & tbdy3dtemp2 , & cwmbdy3dtemp2 , qbdy3dtemp2, & q2bdy3dtemp2, pdbdy2dtemp2 REAL :: t1,t2 #ifdef DEREF_KLUDGE ! see http://www.mmm.ucar.edu/wrf/WG2/topics/deref_kludge.htm INTEGER :: sm31 , em31 , sm32 , em32 , sm33 , em33 INTEGER :: sm31x, em31x, sm32x, em32x, sm33x, em33x INTEGER :: sm31y, em31y, sm32y, em32y, sm33y, em33y #endif #if defined(HWRF) ! Sam says: ! The *B arrays are used to read boundary data written out by hwrf_prep_hybrid REAL,ALLOCATABLE,DIMENSION(:,:,:)::TB,UB,VB,QB,CWMB REAL,ALLOCATABLE,DIMENSION(:,:)::PDB ! Dimensions and looping variables: INTEGER :: KB, LM, IM, JM, N ! Unit number to read boundary data from (changes each time) INTEGER :: iunit_gfs ! Did we allocate the prep_hybrid input arrays? LOGICAL :: alloc_ph_arrays integer :: ioerror #endif #include "deref_kludge.h" #if defined(HWRF) alloc_ph_arrays=.false. call get_wrf_debug_level(debug) #endif ! Various sizes that we need to be concerned about. ids = grid%sd31 ide = grid%ed31-1 ! 030730tst jds = grid%sd32 jde = grid%ed32-1 ! 030730tst kds = grid%sd33 kde = grid%ed33-1 ! 030730tst ims = grid%sm31 ime = grid%em31 jms = grid%sm32 jme = grid%em32 kms = grid%sm33 kme = grid%em33 ips = grid%sp31 ipe = grid%ep31-1 ! 030730tst jps = grid%sp32 jpe = grid%ep32-1 ! 030730tst kps = grid%sp33 kpe = grid%ep33-1 ! 030730tst if (IPE .ne. IDE) IPE=IPE+1 if (JPE .ne. JDE) JPE=JPE+1 write(message,*) 'assemble output (ids,ide): ', ids,ide CALL wrf_message(message) write(message,*) 'assemble output (ims,ime): ', ims,ime CALL wrf_message(message) write(message,*) 'assemble output (ips,ipe): ', ips,ipe CALL wrf_message(message) write(message,*) 'assemble output (jds,jde): ', jds,jde CALL wrf_message(message) write(message,*) 'assemble output (jms,jme): ', jms,jme CALL wrf_message(message) write(message,*) 'assemble output (jps,jpe): ', jps,jpe CALL wrf_message(message) write(message,*) 'assemble output (kds,kde): ', kds,kde CALL wrf_message(message) write(message,*) 'assemble output (kms,kme): ', kms,kme CALL wrf_message(message) write(message,*) 'assemble output (kps,kpe): ', kps,kpe CALL wrf_message(message) ijds = MIN ( ids , jds ) !mptest030805 ijde = MAX ( ide , jde ) ijde = MAX ( ide , jde ) + 1 ! to make stuff_bdy dimensions consistent with alloc ! Boundary width, scalar value. spec_bdy_width = model_config_rec%spec_bdy_width interval_seconds = model_config_rec%interval_seconds sst_update = model_config_rec%sst_update !----------------------------------------------------------------------- ! main_loop_test: IF ( loop .EQ. 1 ) THEN ! !----------------------------------------------------------------------- IF ( time_loop_max .NE. 1 ) THEN IF(sst_update .EQ. 1)THEN CALL construct_filename1( inpname , 'wrflowinp' , grid%id , 2 ) CALL open_w_dataset ( id4, TRIM(inpname) , grid , config_flags , output_auxinput4 , "DATASET=AUXINPUT4", ierr ) IF ( ierr .NE. 0 ) THEN CALL wrf_error_fatal( 'ideal_hwrf: error opening wrflowinp for writing' ) END IF CALL output_auxinput4 ( id4, grid , config_flags , ierr ) END IF END IF ! This is the space needed to save the current 3d data for use in computing ! the lateral boundary tendencies. ALLOCATE ( ubdy3dtemp1(ims:ime,jms:jme,kms:kme) ) ALLOCATE ( vbdy3dtemp1(ims:ime,jms:jme,kms:kme) ) ALLOCATE ( tbdy3dtemp1(ims:ime,jms:jme,kms:kme) ) ALLOCATE ( qbdy3dtemp1(ims:ime,jms:jme,kms:kme) ) ALLOCATE ( cwmbdy3dtemp1(ims:ime,jms:jme,kms:kme) ) ALLOCATE ( q2bdy3dtemp1(ims:ime,jms:jme,kms:kme) ) ALLOCATE ( pdbdy2dtemp1(ims:ime,jms:jme,1:1) ) ubdy3dtemp1=0. vbdy3dtemp1=0. tbdy3dtemp1=0. qbdy3dtemp1=0. cwmbdy3dtemp1=0. q2bdy3dtemp1=0. pdbdy2dtemp1=0. ALLOCATE ( ubdy3dtemp2(ims:ime,jms:jme,kms:kme) ) ALLOCATE ( vbdy3dtemp2(ims:ime,jms:jme,kms:kme) ) ALLOCATE ( tbdy3dtemp2(ims:ime,jms:jme,kms:kme) ) ALLOCATE ( qbdy3dtemp2(ims:ime,jms:jme,kms:kme) ) ALLOCATE ( cwmbdy3dtemp2(ims:ime,jms:jme,kms:kme) ) ALLOCATE ( q2bdy3dtemp2(ims:ime,jms:jme,kms:kme) ) ALLOCATE ( pdbdy2dtemp2(ims:ime,jms:jme,1:1) ) ubdy3dtemp2=0. vbdy3dtemp2=0. tbdy3dtemp2=0. qbdy3dtemp2=0. cwmbdy3dtemp2=0. q2bdy3dtemp2=0. pdbdy2dtemp2=0. ! Open the wrfinput file. From this program, this is an *output* file. CALL construct_filename1( inpname , 'wrfinput' , grid%id , 2 ) CALL open_w_dataset ( id1, TRIM(inpname) , grid , config_flags , & output_input , "DATASET=INPUT", ierr ) IF ( ierr .NE. 0 ) THEN CALL wrf_error_fatal( 'ideal_hwrf: error opening wrfinput for writing' ) ENDIF ! CALL calc_current_date ( grid%id , 0. ) ! grid%write_metadata = .true. write(message,*) 'making call to output_input' CALL wrf_message(message) CALL output_input ( id1, grid , config_flags , ierr ) !*** !*** CLOSE THE WRFINPUT DATASET !*** CALL close_dataset ( id1 , config_flags , "DATASET=INPUT" ) ! We need to save the 3d data to compute a ! difference during the next loop. ! !----------------------------------------------------------------------- !*** SOUTHERN BOUNDARY !----------------------------------------------------------------------- ! IF(JPS==JDS)THEN J=1 DO k = kps , MIN(kde,kpe) DO i = ips , MIN(ide,ipe) ubdy3dtemp1(i,j,k) = grid%u(i,j,k) vbdy3dtemp1(i,j,k) = grid%v(i,j,k) tbdy3dtemp1(i,j,k) = grid%t(i,j,k) qbdy3dtemp1(i,j,k) = grid%q(i,j,k) cwmbdy3dtemp1(i,j,k) = grid%cwm(i,j,k) q2bdy3dtemp1(i,j,k) = grid%q2(i,j,k) END DO END DO DO i = ips , MIN(ide,ipe) pdbdy2dtemp1(i,j,1) = grid%pd(i,j) END DO ENDIF ! !----------------------------------------------------------------------- !*** NORTHERN BOUNDARY !----------------------------------------------------------------------- ! IF(JPE==JDE)THEN J=MIN(JDE,JPE) DO k = kps , MIN(kde,kpe) DO i = ips , MIN(ide,ipe) ubdy3dtemp1(i,j,k) = grid%u(i,j,k) vbdy3dtemp1(i,j,k) = grid%v(i,j,k) tbdy3dtemp1(i,j,k) = grid%t(i,j,k) qbdy3dtemp1(i,j,k) = grid%q(i,j,k) cwmbdy3dtemp1(i,j,k) = grid%cwm(i,j,k) q2bdy3dtemp1(i,j,k) = grid%q2(i,j,k) END DO END DO DO i = ips , MIN(ide,ipe) pdbdy2dtemp1(i,j,1) = grid%pd(i,j) END DO ENDIF ! !----------------------------------------------------------------------- !*** WESTERN BOUNDARY !----------------------------------------------------------------------- ! write(message,*) 'western boundary, store winds over J: ', jps, min(jpe,jde) CALL wrf_message(message) IF(IPS==IDS)THEN I=1 DO k = kps , MIN(kde,kpe) inc_h=mod(jps+1,2) DO j = jps+inc_h, min(jde,jpe),2 if (J .ge. 3 .and. J .le. JDE-2 .and. mod(J,2) .eq. 1) then tbdy3dtemp1(i,j,k) = grid%t(i,j,k) qbdy3dtemp1(i,j,k) = grid%q(i,j,k) cwmbdy3dtemp1(i,j,k) = grid%cwm(i,j,k) q2bdy3dtemp1(i,j,k) = grid%q2(i,j,k) if(k==1)then write(message,*)' loop=',loop,' i=',i,' j=',j,' tbdy3dtemp1(i,j,k)=',tbdy3dtemp1(i,j,k) CALL wrf_debug(10,message) endif endif END DO END DO DO k = kps , MIN(kde,kpe) inc_v=mod(jps,2) DO j = jps+inc_v, min(jde,jpe),2 if (J .ge. 2 .and. J .le. JDE-1 .and. mod(J,2) .eq. 0) then ubdy3dtemp1(i,j,k) = grid%u(i,j,k) vbdy3dtemp1(i,j,k) = grid%v(i,j,k) endif END DO END DO ! inc_h=mod(jps+1,2) DO j = jps+inc_h, min(jde,jpe),2 if (J .ge. 3 .and. J .le. JDE-2 .and. mod(J,2) .eq. 1) then pdbdy2dtemp1(i,j,1) = grid%pd(i,j) write(message,*)' loop=',loop,' i=',i,' j=',j,' pdbdy2dtemp1(i,j)=',pdbdy2dtemp1(i,j,1) CALL wrf_debug(10,message) endif END DO ENDIF ! !----------------------------------------------------------------------- !*** EASTERN BOUNDARY !----------------------------------------------------------------------- ! IF(IPE==IDE)THEN I=MIN(IDE,IPE) ! DO k = kps , MIN(kde,kpe) ! !*** Make sure the J loop is on the global boundary ! inc_h=mod(jps+1,2) DO j = jps+inc_h, min(jde,jpe),2 if (J .ge. 3 .and. J .le. JDE-2 .and. mod(J,2) .eq. 1) then tbdy3dtemp1(i,j,k) = grid%t(i,j,k) qbdy3dtemp1(i,j,k) = grid%q(i,j,k) cwmbdy3dtemp1(i,j,k) = grid%cwm(i,j,k) q2bdy3dtemp1(i,j,k) = grid%q2(i,j,k) endif END DO END DO DO k = kps , MIN(kde,kpe) inc_v=mod(jps,2) DO j = jps+inc_v, min(jde,jpe),2 if (J .ge. 2 .and. J .le. JDE-1 .and. mod(J,2) .eq. 0) then ubdy3dtemp1(i,j,k) = grid%u(i,j,k) vbdy3dtemp1(i,j,k) = grid%v(i,j,k) endif END DO END DO ! inc_h=mod(jps+1,2) DO j = jps+inc_h, min(jde,jpe),2 if (J .ge. 3 .and. J .le. JDE-2 .and. mod(J,2) .eq. 1) then pdbdy2dtemp1(i,j,1) = grid%pd(i,j) endif END DO ENDIF ! There are 2 components to the lateral boundaries. ! First, there is the starting ! point of this time period - just the outer few rows and columns. CALL stuff_bdy_ijk (ubdy3dtemp1, grid%u_bxs, grid%u_bxe, & grid%u_bys, grid%u_bye, & 'N', spec_bdy_width , & ids , ide+1 , jds , jde+1 , kds , kde+1 , & ims , ime , jms , jme , kms , kme , & ips , ipe , jps , jpe , kps , kpe+1 ) CALL stuff_bdy_ijk (vbdy3dtemp1, grid%v_bxs, grid%v_bxe, & grid%v_bys, grid%v_bye, & 'N', spec_bdy_width , & ids , ide+1 , jds , jde+1 , kds , kde+1 , & ims , ime , jms , jme , kms , kme , & ips , ipe , jps , jpe , kps , kpe+1 ) CALL stuff_bdy_ijk (tbdy3dtemp1, grid%t_bxs, grid%t_bxe, & grid%t_bys, grid%t_bye, & 'N', spec_bdy_width , & ids , ide+1 , jds , jde+1 , kds , kde+1 , & ims , ime , jms , jme , kms , kme , & ips , ipe , jps , jpe , kps , kpe+1 ) CALL stuff_bdy_ijk (cwmbdy3dtemp1, grid%cwm_bxs, grid%cwm_bxe, & grid%cwm_bys, grid%cwm_bye, & 'N', spec_bdy_width , & ids , ide+1 , jds , jde+1 , kds , kde+1 , & ims , ime , jms , jme , kms , kme , & ips , ipe , jps , jpe , kps , kpe+1 ) CALL stuff_bdy_ijk (qbdy3dtemp1, grid%q_bxs, grid%q_bxe, & grid%q_bys, grid%q_bye, & 'N', spec_bdy_width , & ids , ide+1 , jds , jde+1 , kds , kde+1 , & ims , ime , jms , jme , kms , kme , & ips , ipe , jps , jpe , kps , kpe+1 ) CALL stuff_bdy_ijk (q2bdy3dtemp1, grid%q2_bxs, grid%q2_bxe, & grid%q2_bys, grid%q2_bye, & 'N', spec_bdy_width , & ids , ide+1 , jds , jde+1 , kds , kde+1 , & ims , ime , jms , jme , kms , kme , & ips , ipe , jps , jpe , kps , kpe+1 ) CALL stuff_bdy_ijk (pdbdy2dtemp1, grid%pd_bxs, grid%pd_bxe, & grid%pd_bys, grid%pd_bye, & 'M', spec_bdy_width, & ids , ide+1 , jds , jde+1 , 1 , 1 , & ims , ime , jms , jme , 1 , 1 , & ips , ipe , jps , jpe , 1 , 1 ) !----------------------------------------------------------------------- ! ELSE IF ( loop .GT. 1 ) THEN ! !----------------------------------------------------------------------- call wrf_debug(1,'LOOP>1, so start making non-init boundary conditions') #if defined(HWRF) bdytmp_useph: if(grid%use_prep_hybrid) then call wrf_debug(1,'ALLOCATE PREP_HYBRID BOUNDARY ARRAYS') !! When running in prep_hybrid mode, we must read in the data here. ! Allocate boundary arrays: KB = 2*IDE + JDE - 3 LM = KDE IM = IDE JM = JDE ALLOCATE(TB(KB,LM,2)) ALLOCATE(QB(KB,LM,2)) ALLOCATE(CWMB(KB,LM,2)) ALLOCATE(UB(KB,LM,2)) ALLOCATE(VB(KB,LM,2)) ALLOCATE(PDB(KB,2)) alloc_ph_arrays=.true. ! Read in the data: IUNIT_GFS = 900 + LOOP - 1 READ(IUNIT_GFS,iostat=ioerror) PDB,TB,QB,CWMB,UB,VB if(ioerror/=0) then write(message,*) 'Unable to read MAKBND output from unit ',IUNIT_GFS call wrf_error_fatal(message) endif ! Now copy the data into the temporary boundary arrays, and ! switch from IKJ to IJK while we do it. !! Southern boundary IF(JPS.EQ.JDS)THEN J=1 DO k = kps , MIN(kde,kpe) N=1 DO i = ips , MIN(ide,ipe) tbdy3dtemp2(i,j,k) = TB(N,k,1) qbdy3dtemp2(i,j,k) = QB(N,k,1) cwmbdy3dtemp2(i,j,k) = CWMB(N,k,1) q2bdy3dtemp2(i,j,k) = 0.0 !KWON write(message,*)'southtend t',k,i,n,tbdy3dtemp2(i,j,k) call wrf_debug(10,message) write(message,*)'southtend q',k,i,n,qbdy3dtemp2(i,j,k) call wrf_debug(10,message) if (K .eq. 1 ) then write(0,*) 'S boundary values T,Q : ', I,tbdy3dtemp2(i,j,k), & qbdy3dtemp2(i,j,k) endif N=N+1 END DO END DO DO k = kps , MIN(kde,kpe) N=1 DO i = ips , MIN(ide,ipe) ubdy3dtemp2(i,j,k) = UB(N,k,1) vbdy3dtemp2(i,j,k) = VB(N,k,1) N=N+1 ENDDO END DO N=1 DO i = ips , MIN(ide,ipe) pdbdy2dtemp2(i,j,1) = PDB(N,1) write(message,*)'southtend p',i,n,pdbdy2dtemp1(i,j,1) call wrf_debug(10,message) N=N+1 END DO ENDIF ! Northern boundary IF(JPE.EQ.JDE)THEN J=MIN(JDE,JPE) DO k = kps , MIN(kde,kpe) N=IM+1 DO i = ips , MIN(ide,ipe) tbdy3dtemp2(i,j,k) = TB(N,k,1) qbdy3dtemp2(i,j,k) = QB(N,k,1) cwmbdy3dtemp2(i,j,k) = CWMB(N,k,1) q2bdy3dtemp2(i,j,k) = 0.0 !KWON write(message,*)'northtend t',k,i,n,tbdy3dtemp2(i,j,k) call wrf_debug(10,message) write(message,*)'northtend q',k,i,n,qbdy3dtemp2(i,j,k) call wrf_debug(10,message) N=N+1 END DO END DO DO k = kps , MIN(kde,kpe) N=IM DO i = ips , MIN(ide,ipe) ubdy3dtemp2(i,j,k) = UB(N,k,1) vbdy3dtemp2(i,j,k) = VB(N,k,1) N=N+1 END DO END DO N=IM+1 DO i = ips , MIN(ide,ipe) pdbdy2dtemp2(i,j,1) = PDB(N,1) write(message,*)'northtend p',i,n,pdbdy2dtemp1(i,j,1) call wrf_debug(10,message) N=N+1 END DO ENDIF !! Western boundary IF(IPS.EQ.IDS)THEN I=1 DO k = kps , MIN(kde,kpe) N=2*IM+1 inc_h=mod(jps+1,2) DO j = jps+inc_h, MIN(jde,jpe),2 if (J .ge. 3 .and. J .le. jde-2 .and. mod(J,2) .eq. 1) then tbdy3dtemp2(i,j,k) = TB(N,k,1) qbdy3dtemp2(i,j,k) = QB(N,k,1) cwmbdy3dtemp2(i,j,k) = CWMB(N,k,1) q2bdy3dtemp2(i,j,k) = 0.0 !KWON write(message,*)'westtend t',k,j,n,tbdy3dtemp2(i,j,k) call wrf_debug(10,message) write(message,*)'westtend q',k,j,n,qbdy3dtemp2(i,j,k) call wrf_debug(10,message) N=N+1 endif END DO END DO DO k = kps , MIN(kde,kpe) N=2*IM-1 inc_v=mod(jps,2) DO j = jps+inc_v, MIN(jde,jpe),2 if (J .ge. 2 .and. J .le. jde-1 .and. mod(J,2) .eq. 0) then ubdy3dtemp2(i,j,k) = UB(N,k,1) vbdy3dtemp2(i,j,k) = VB(N,k,1) N=N+1 endif END DO END DO N=2*IM+1 inc_h=mod(jps+1,2) DO j = jps+inc_h, MIN(jde,jpe),2 if (J .ge. 3 .and. J .le. jde-2 .and. mod(J,2) .eq. 1) then pdbdy2dtemp2(i,j,1) = PDB(N,1) write(message,*)'westtend p',j,n,pdbdy2dtemp1(i,j,1) call wrf_debug(10,message) N=N+1 endif END DO ENDIF !! Eastern boundary IF(IPE.EQ.IDE)THEN I=MIN(IDE,IPE) DO k = kps , MIN(kde,kpe) N=2*IM+(JM/2) inc_h=mod(jps+1,2) DO j = jps+inc_h, MIN(jde,jpe),2 if (J .ge. 3 .and. J .le. jde-2 .and. mod(J,2) .eq. 1) then tbdy3dtemp2(i,j,k) = TB(N,k,1) qbdy3dtemp2(i,j,k) = QB(N,k,1) cwmbdy3dtemp2(i,j,k) = CWMB(N,k,1) q2bdy3dtemp2(i,j,k) = 0.0 !KWON write(message,*)'easttend t',k,j,n,tbdy3dtemp2(i,j,k) call wrf_debug(10,message) write(message,*)'easttend q',k,j,n,qbdy3dtemp2(i,j,k) call wrf_debug(10,message) N=N+1 endif END DO END DO DO k = kps , MIN(kde,kpe) N=2*IM+(JM/2)-1 inc_v=mod(jps,2) DO j = jps+inc_v, MIN(jde,jpe),2 if (J .ge. 2 .and. J .le. jde-1 .and. mod(J,2) .eq. 0) then ubdy3dtemp2(i,j,k) = UB(N,k,1) vbdy3dtemp2(i,j,k) = VB(N,k,1) N=N+1 endif END DO END DO N=2*IM+(JM/2) inc_h=mod(jps+1,2) DO j = jps+inc_h, MIN(jde,jpe),2 if (J .ge. 3 .and. J .le. jde-2 .and. mod(J,2) .eq. 1) then pdbdy2dtemp2(i,j,1) = PDB(N,1) write(message,*)'easttend p',j,n,pdbdy2dtemp1(i,j,1) call wrf_debug(10,message) N=N+1 endif END DO ENDIF else #endif CALL output_auxinput4 ( id4, grid , config_flags , ierr ) #if defined( HWRF) endif bdytmp_useph #endif write(message,*)' assemble_output loop=',loop,' in IF block' call wrf_message(message) ! Open the boundary file. IF ( loop .eq. 2 ) THEN CALL construct_filename1( bdyname , 'wrfbdy' , grid%id , 2 ) CALL open_w_dataset ( id, TRIM(bdyname) , grid , config_flags , & output_boundary , "DATASET=BOUNDARY", ierr ) IF ( ierr .NE. 0 ) THEN CALL wrf_error_fatal( 'ideal_hwrf: error opening wrfbdy for writing' ) ENDIF ! grid%write_metadata = .true. ELSE ! what's this do? ! grid%write_metadata = .true. ! grid%write_metadata = .false. CALL domain_clockadvance( grid ) END IF #if defined(HWRF) bdytmp_notph: if(.not.grid%use_prep_hybrid) then #endif !----------------------------------------------------------------------- !*** SOUTHERN BOUNDARY !----------------------------------------------------------------------- ! IF(JPS==JDS)THEN J=1 DO k = kps , MIN(kde,kpe) DO i = ips , MIN(ide,ipe) ubdy3dtemp2(i,j,k) = grid%u(i,j,k) vbdy3dtemp2(i,j,k) = grid%v(i,j,k) tbdy3dtemp2(i,j,k) = grid%t(i,j,k) qbdy3dtemp2(i,j,k) = grid%q(i,j,k) cwmbdy3dtemp2(i,j,k) = grid%cwm(i,j,k) q2bdy3dtemp2(i,j,k) = grid%q2(i,j,k) END DO END DO ! DO i = ips , MIN(ide,ipe) pdbdy2dtemp2(i,j,1) = grid%pd(i,j) END DO ENDIF ! !----------------------------------------------------------------------- !*** NORTHERN BOUNDARY !----------------------------------------------------------------------- ! IF(JPE==JDE)THEN J=MIN(JDE,JPE) DO k = kps , MIN(kde,kpe) DO i = ips , MIN(ide,ipe) ubdy3dtemp2(i,j,k) = grid%u(i,j,k) vbdy3dtemp2(i,j,k) = grid%v(i,j,k) tbdy3dtemp2(i,j,k) = grid%t(i,j,k) qbdy3dtemp2(i,j,k) = grid%q(i,j,k) cwmbdy3dtemp2(i,j,k) = grid%cwm(i,j,k) q2bdy3dtemp2(i,j,k) = grid%q2(i,j,k) END DO END DO DO i = ips , MIN(ide,ipe) pdbdy2dtemp2(i,j,1) = grid%pd(i,j) END DO ENDIF ! !----------------------------------------------------------------------- !*** WESTERN BOUNDARY !----------------------------------------------------------------------- ! IF(IPS==IDS)THEN I=1 DO k = kps , MIN(kde,kpe) inc_h=mod(jps+1,2) if(k==1)then write(message,*)' assemble_ouput loop=',loop,' inc_h=',inc_h,' jps=',jps call wrf_debug(10,message) endif DO j = jps+inc_h, MIN(jde,jpe),2 if (J .ge. 3 .and. J .le. jde-2 .and. mod(J,2) .eq. 1) then tbdy3dtemp2(i,j,k) = grid%t(i,j,k) if(k==1)then write(message,*)' loop=',loop,' i=',i,' j=',j,' tbdy3dtemp1(i,j,k)=',tbdy3dtemp1(i,j,k) call wrf_debug(10,message) endif qbdy3dtemp2(i,j,k) = grid%q(i,j,k) cwmbdy3dtemp2(i,j,k) = grid%cwm(i,j,k) q2bdy3dtemp2(i,j,k) = grid%q2(i,j,k) endif END DO END DO ! DO k = kps , MIN(kde,kpe) inc_v=mod(jps,2) DO j = jps+inc_v, MIN(jde,jpe),2 if (J .ge. 2 .and. J .le. jde-1 .and. mod(J,2) .eq. 0) then ubdy3dtemp2(i,j,k) = grid%u(i,j,k) vbdy3dtemp2(i,j,k) = grid%v(i,j,k) endif END DO END DO inc_h=mod(jps+1,2) DO j = jps+inc_h, MIN(jde,jpe),2 if (J .ge. 3 .and. J .le. jde-2 .and. mod(J,2) .eq. 1) then pdbdy2dtemp2(i,j,1) = grid%pd(i,j) write(message,*)' loop=',loop,' i=',i,' j=',j,' pdbdy2dtemp1(i,j)=',pdbdy2dtemp1(i,j,1) CALL wrf_debug(10,message) endif END DO ENDIF ! !----------------------------------------------------------------------- !*** EASTERN BOUNDARY !----------------------------------------------------------------------- ! IF(IPE==IDE)THEN I=MIN(IDE,IPE) DO k = kps , MIN(kde,kpe) inc_h=mod(jps+1,2) DO j = jps+inc_h, MIN(jde,jpe),2 if (J .ge. 3 .and. J .le. jde-2 .and. mod(J,2) .eq. 1) then tbdy3dtemp2(i,j,k) = grid%t(i,j,k) qbdy3dtemp2(i,j,k) = grid%q(i,j,k) cwmbdy3dtemp2(i,j,k) = grid%cwm(i,j,k) q2bdy3dtemp2(i,j,k) = grid%q2(i,j,k) endif END DO END DO DO k = kps , MIN(kde,kpe) inc_v=mod(jps,2) DO j = jps+inc_v, MIN(jde,jpe),2 if (J .ge. 2 .and. J .le. jde-1 .and. mod(J,2) .eq. 0) then ubdy3dtemp2(i,j,k) = grid%u(i,j,k) vbdy3dtemp2(i,j,k) = grid%v(i,j,k) endif END DO END DO inc_h=mod(jps+1,2) DO j = jps+inc_h, MIN(jde,jpe),2 if (J .ge. 3 .and. J .le. jde-2 .and. mod(J,2) .eq. 1) then pdbdy2dtemp2(i,j,1) = grid%pd(i,j) endif END DO ENDIF #if defined(HWRF) endif bdytmp_notph #endif !----------------------------------------------------------------------- ! During all of the loops after the first loop, ! we first compute the boundary ! tendencies with the current data values ! (*bdy3dtemp2 arrays) and the previously ! saved information stored in the *bdy3dtemp1 arrays. CALL stuff_bdytend_ijk ( ubdy3dtemp2 , ubdy3dtemp1 , REAL(interval_seconds),& grid%u_btxs, grid%u_btxe, & grid%u_btys, grid%u_btye, & 'N', spec_bdy_width , & ids , ide+1 , jds , jde+1 , kds , kde+1 , & ims , ime , jms , jme , kms , kme , & ips , ipe , jps , jpe , kps , kpe+1 ) CALL stuff_bdytend_ijk ( vbdy3dtemp2 , vbdy3dtemp1 , REAL(interval_seconds),& grid%v_btxs, grid%v_btxe, & grid%v_btys, grid%v_btye, & 'N', spec_bdy_width , & ids , ide+1 , jds , jde+1 , kds , kde+1 , & ims , ime , jms , jme , kms , kme , & ips , ipe , jps , jpe , kps , kpe+1 ) CALL stuff_bdytend_ijk ( tbdy3dtemp2 , tbdy3dtemp1 , REAL(interval_seconds),& grid%t_btxs, grid%t_btxe, & grid%t_btys, grid%t_btye, & 'N', spec_bdy_width , & ids , ide+1 , jds , jde+1 , kds , kde+1 , & ims , ime , jms , jme , kms , kme , & ips , ipe , jps , jpe , kps , kpe+1 ) CALL stuff_bdytend_ijk ( cwmbdy3dtemp2 , cwmbdy3dtemp1 , REAL(interval_seconds),& grid%cwm_btxs, grid%cwm_btxe, & grid%cwm_btys, grid%cwm_btye, & 'N', spec_bdy_width , & ids , ide+1 , jds , jde+1 , kds , kde+1 , & ims , ime , jms , jme , kms , kme , & ips , ipe , jps , jpe , kps , kpe+1 ) CALL stuff_bdytend_ijk ( qbdy3dtemp2 , qbdy3dtemp1 , REAL(interval_seconds),& grid%q_btxs, grid%q_btxe, & grid%q_btys, grid%q_btye, & 'N', spec_bdy_width , & ids , ide+1 , jds , jde+1 , kds , kde+1 , & ims , ime , jms , jme , kms , kme , & ips , ipe , jps , jpe , kps , kpe+1 ) CALL stuff_bdytend_ijk ( q2bdy3dtemp2 , q2bdy3dtemp1 , REAL(interval_seconds),& grid%q2_btxs, grid%q2_btxe, & grid%q2_btys, grid%q2_btye, & 'N', spec_bdy_width , & ids , ide+1 , jds , jde+1 , kds , kde+1 , & ims , ime , jms , jme , kms , kme , & ips , ipe , jps , jpe , kps , kpe+1 ) CALL stuff_bdytend_ijk( pdbdy2dtemp2 , pdbdy2dtemp1, REAL(interval_seconds),& grid%pd_btxs, grid%pd_btxe, & grid%pd_btys, grid%pd_btye, & 'M', spec_bdy_width , & ids , ide+1 , jds , jde+1 , 1 , 1 , & ims , ime , jms , jme , 1 , 1 , & ips , ipe , jps , jpe , 1 , 1 ) ! Both pieces of the boundary data are now ! available to be written (initial time and tendency). ! This looks ugly, these date shifting things. ! What's it for? We want the "Times" variable ! in the lateral BDY file to have the valid times ! of when the initial fields are written. ! That's what the loop-2 thingy is for with the start date. ! We increment the start_date so ! that the starting time in the attributes is the ! second time period. Why you may ask. I ! agree, why indeed. temp24= current_date temp24b=start_date start_date = current_date CALL geth_newdate ( temp19 , temp24b(1:19) , & (loop-2) * model_config_rec%interval_seconds ) current_date = temp19 // '.0000' CALL domain_clock_set( grid, current_date(1:19) ) write(message,*) 'LBC valid between these times ',current_date, ' ',start_date CALL wrf_message(message) CALL output_boundary ( id, grid , config_flags , ierr ) current_date = temp24 start_date = temp24b ! OK, for all of the loops, we output the initialzation ! data, which would allow us to ! start the model at any of the available analysis time periods. ! WRITE ( loop_char , FMT = '(I4.4)' ) loop ! CALL open_w_dataset ( id1, 'wrfinput'//loop_char , grid , config_flags , output_input , "DATASET=INPUT", ierr ) ! IF ( ierr .NE. 0 ) THEN ! CALL wrf_error_fatal( 'ideal_hwrf: error opening wrfinput'//loop_char//' for writing' ) ! ENDIF ! grid%write_metadata = .true. ! CALL calc_current_date ( grid%id , 0. ) ! CALL output_input ( id1, grid , config_flags , ierr ) ! CALL close_dataset ( id1 , config_flags , "DATASET=INPUT" ) ! Is this or is this not the last time time? We can remove some unnecessary ! stores if it is not. IF ( loop .LT. time_loop_max ) THEN ! We need to save the 3d data to compute a ! difference during the next loop. Couple the ! 3d fields with total mu (mub + mu_2) and the ! stagger-specific map scale factor. ! We load up the boundary data again for use in the next loop. !mp change these limits????????? DO k = kps , kpe DO j = jps , jpe DO i = ips , ipe ubdy3dtemp1(i,j,k) = ubdy3dtemp2(i,j,k) vbdy3dtemp1(i,j,k) = vbdy3dtemp2(i,j,k) tbdy3dtemp1(i,j,k) = tbdy3dtemp2(i,j,k) cwmbdy3dtemp1(i,j,k) = cwmbdy3dtemp2(i,j,k) qbdy3dtemp1(i,j,k) = qbdy3dtemp2(i,j,k) q2bdy3dtemp1(i,j,k) = q2bdy3dtemp2(i,j,k) END DO END DO END DO !mp change these limits????????? DO j = jps , jpe DO i = ips , ipe pdbdy2dtemp1(i,j,1) = pdbdy2dtemp2(i,j,1) END DO END DO ! There are 2 components to the lateral boundaries. ! First, there is the starting ! point of this time period - just the outer few rows and columns. CALL stuff_bdy_ijk (ubdy3dtemp1, grid%u_bxs, grid%u_bxe, & grid%u_bys, grid%u_bye, & 'N', spec_bdy_width , & ids , ide+1 , jds , jde+1 , kds , kde+1 , & ims , ime , jms , jme , kms , kme , & ips , ipe , jps , jpe , kps , kpe+1 ) CALL stuff_bdy_ijk (vbdy3dtemp1, grid%v_bxs, grid%v_bxe, & grid%v_bys, grid%v_bye, & 'N', spec_bdy_width , & ids , ide+1 , jds , jde+1 , kds , kde+1 , & ims , ime , jms , jme , kms , kme , & ips , ipe , jps , jpe , kps , kpe+1 ) CALL stuff_bdy_ijk (tbdy3dtemp1, grid%t_bxs, grid%t_bxe, & grid%t_bys, grid%t_bye, & 'N', spec_bdy_width , & ids , ide+1 , jds , jde+1 , kds , kde+1 , & ims , ime , jms , jme , kms , kme , & ips , ipe , jps , jpe , kps , kpe+1 ) CALL stuff_bdy_ijk (cwmbdy3dtemp1, grid%cwm_bxs, grid%cwm_bxe, & grid%cwm_bys, grid%cwm_bye, & 'N', spec_bdy_width , & ids , ide+1 , jds , jde+1 , kds , kde+1 , & ims , ime , jms , jme , kms , kme , & ips , ipe , jps , jpe , kps , kpe+1 ) CALL stuff_bdy_ijk (qbdy3dtemp1, grid%q_bxs, grid%q_bxe, & grid%q_bys, grid%q_bye, & 'N', spec_bdy_width , & ids , ide+1 , jds , jde+1 , kds , kde+1 , & ims , ime , jms , jme , kms , kme , & ips , ipe , jps , jpe , kps , kpe+1 ) CALL stuff_bdy_ijk (q2bdy3dtemp1, grid%q2_bxs, grid%q2_bxe, & grid%q2_bys, grid%q2_bye, & 'N', spec_bdy_width , & ids , ide+1 , jds , jde+1 , kds , kde+1 , & ims , ime , jms , jme , kms , kme , & ips , ipe , jps , jpe , kps , kpe+1 ) CALL stuff_bdy_ijk (pdbdy2dtemp1,grid%pd_bxs, grid%pd_bxe, & grid%pd_bys, grid%pd_bye, & 'M', spec_bdy_width , & ids , ide+1 , jds , jde+1 , 1 , 1 , & ims , ime , jms , jme , 1 , 1 , & ips , ipe , jps , jpe , 1 , 1 ) ELSE IF ( loop .EQ. time_loop_max ) THEN ! If this is the last time through here, we need to close the files. CALL close_dataset ( id , config_flags , "DATASET=BOUNDARY" ) END IF END IF main_loop_test #if defined(HWRF) if(alloc_ph_arrays) then call wrf_debug(1,'DEALLOCATE PREP_HYBRID BOUNARY ARRAYS') deallocate(TB,QB,CWMB,UB,VB,PDB) endif #endif END SUBROUTINE assemble_output