! Create an initial data set for the WRF model based on an ideal condition
! This program is specifically set up for the NMM core.
PROGRAM ideal_nmm,37
USE module_machine
USE module_domain
USE module_initialize_ideal
USE module_io_domain
USE module_driver_constants
USE module_configure
USE module_timing
USE module_check_a_mundo
#ifdef WRF_CHEM
USE module_input_chem_data
USE module_input_chem_bioemiss
#endif
USE module_utility
#ifdef DM_PARALLEL
USE module_dm
#endif
IMPLICIT NONE
REAL :: time , bdyfrq
INTEGER :: loop , levels_to_process , debug_level
TYPE(domain) , POINTER :: null_domain
TYPE(domain) , POINTER :: grid
TYPE (grid_config_rec_type) :: config_flags
INTEGER :: number_at_same_level
INTEGER :: max_dom, domain_id
INTEGER :: idum1, idum2
#ifdef DM_PARALLEL
INTEGER :: nbytes
! INTEGER, PARAMETER :: configbuflen = 2*1024
INTEGER, PARAMETER :: configbuflen = 4*CONFIG_BUF_LEN
INTEGER :: configbuf( configbuflen )
LOGICAL , EXTERNAL :: wrf_dm_on_monitor
#endif
INTEGER :: ids , ide , jds , jde , kds , kde
INTEGER :: ims , ime , jms , jme , kms , kme
INTEGER :: ips , ipe , jps , jpe , kps , kpe
INTEGER :: ijds , ijde , spec_bdy_width
INTEGER :: i , j , k , idts
#ifdef DEREF_KLUDGE
! see http://www.mmm.ucar.edu/wrf/WG2/topics/deref_kludge.htm
INTEGER :: sm31 , em31 , sm32 , em32 , sm33 , em33
INTEGER :: sm31x, em31x, sm32x, em32x, sm33x, em33x
INTEGER :: sm31y, em31y, sm32y, em32y, sm33y, em33y
#endif
CHARACTER (LEN=80) :: message
INTEGER :: start_year , start_month , start_day
INTEGER :: start_hour , start_minute , start_second
INTEGER :: end_year , end_month , end_day , &
end_hour , end_minute , end_second
INTEGER :: interval_seconds , real_data_init_type
INTEGER :: time_loop_max , time_loop, rc
REAL :: t1,t2
#include "version_decl"
INTERFACE
SUBROUTINE Setup_Timekeeping( grid )
USE module_domain
TYPE(domain), POINTER :: grid
END SUBROUTINE Setup_Timekeeping
END INTERFACE
! Define the name of this program (program_name defined in module_domain)
program_name = "IDEAL_HWRF " // TRIM(release_version) // " PREPROCESSOR"
#ifdef DM_PARALLEL
CALL disable_quilting
#endif
! CALL start()
! Initialize the modules used by the WRF system.
! Many of the CALLs made from the
! init_modules routine are NO-OPs. Typical initializations
! are: the size of a
! REAL, setting the file handles to a pre-use value, defining moisture and
! chemistry indices, etc.
CALL wrf_debug ( 100 , 'ideal_hwrf: calling init_modules ' )
!!!! CALL init_modules
CALL init_modules
(1) ! Phase 1 returns after MPI_INIT() (if it is called)
CALL WRFU_Initialize( defaultCalKind=WRFU_CAL_GREGORIAN, rc=rc )
CALL init_modules
(2) ! Phase 2 resumes after MPI_INIT() (if it is called)
! The configuration switches mostly come from the NAMELIST input.
#ifdef DM_PARALLEL
IF ( wrf_dm_on_monitor() ) THEN
write(message,*) 'call initial_config'
CALL wrf_message
( message )
CALL initial_config
ENDIF
CALL get_config_as_buffer
( configbuf, configbuflen, nbytes )
CALL wrf_dm_bcast_bytes
( configbuf, nbytes )
CALL set_config_as_buffer
( configbuf, configbuflen )
CALL wrf_dm_initialize
#else
CALL initial_config
#endif
CALL check_nml_consistency
CALL set_physics_rconfigs
CALL nl_get_debug_level ( 1, debug_level )
CALL set_wrf_debug_level
( debug_level )
CALL wrf_message
( program_name )
! Allocate the space for the mother of all domains.
NULLIFY( null_domain )
CALL wrf_debug ( 100 , 'ideal_hwrf: calling alloc_and_configure_domain ' )
CALL alloc_and_configure_domain
( domain_id = 1 , &
grid = head_grid , &
parent = null_domain , &
kid = -1 )
grid => head_grid
#include "deref_kludge.h"
CALL Setup_Timekeeping
( grid )
CALL domain_clock_set
( grid, &
time_step_seconds=model_config_rec%interval_seconds )
CALL wrf_debug ( 100 , 'ideal_hwrf: calling set_scalar_indices_from_config ' )
CALL set_scalar_indices_from_config
( grid%id , idum1, idum2 )
CALL wrf_debug ( 100 , 'ideal_hwrf: calling model_to_grid_config_rec ' )
CALL model_to_grid_config_rec
( grid%id , model_config_rec , config_flags )
write(message,*) 'after model_to_grid_config_rec, e_we, e_sn are: ', &
config_flags%e_we, config_flags%e_sn
CALL wrf_message
(message)
! Initialize the WRF IO: open files, init file handles, etc.
CALL wrf_debug ( 100 , 'ideal_hwrf: calling init_wrfio' )
CALL init_wrfio
! Some of the configuration values may have been modified from the initial READ
! of the NAMELIST, so we re-broadcast the configuration records.
#ifdef DM_PARALLEL
CALL wrf_debug
( 100 , 'ideal_hwrf: re-broadcast the configuration records' )
CALL get_config_as_buffer
( configbuf, configbuflen, nbytes )
CALL wrf_dm_bcast_bytes
( configbuf, nbytes )
CALL set_config_as_buffer
( configbuf, configbuflen )
#endif
! No looping in this layer.
CALL med_sidata_input
( grid , config_flags )
! We are done.
CALL wrf_debug
( 0 , 'ideal_hwrf: SUCCESS COMPLETE IDEAL_HWRF INIT' )
#ifdef DM_PARALLEL
CALL wrf_dm_shutdown
#endif
CALL WRFU_Finalize( rc=rc )
END PROGRAM ideal_nmm
SUBROUTINE med_sidata_input ( grid , config_flags ) 3,171
! Driver layer
USE module_domain
USE module_io_domain
! Model layer
USE module_configure
USE module_bc_time_utilities
USE module_initialize_ideal
USE module_optional_input
#ifdef WRF_CHEM
USE module_input_chem_data
USE module_input_chem_bioemiss
#endif
USE module_si_io_nmm
USE module_date_time
IMPLICIT NONE
! Interface
INTERFACE
SUBROUTINE start_domain ( grid , allowed_to_read )
USE module_domain
TYPE (domain) grid
LOGICAL, INTENT(IN) :: allowed_to_read
END SUBROUTINE start_domain
END INTERFACE
! Arguments
TYPE(domain) :: grid
TYPE (grid_config_rec_type) :: config_flags
! Local
INTEGER :: time_step_begin_restart
INTEGER :: idsi , ierr , myproc
CHARACTER (LEN=80) :: si_inpname
CHARACTER (LEN=132) :: message
CHARACTER(LEN=19) :: start_date_char , end_date_char , &
current_date_char , next_date_char
INTEGER :: time_loop_max , loop
INTEGER :: julyr , julday , LEN
INTEGER :: io_form_auxinput1
INTEGER, EXTERNAL :: use_package
LOGICAL :: using_binary_wrfsi
REAL :: gmt
REAL :: t1,t2
INTEGER :: numx_sm_levels_input,numx_st_levels_input
REAL,DIMENSION(100) :: smx_levels_input,stx_levels_input
#ifdef DEREF_KLUDGE
! see http://www.mmm.ucar.edu/wrf/WG2/topics/deref_kludge.htm
INTEGER :: sm31 , em31 , sm32 , em32 , sm33 , em33
INTEGER :: sm31x, em31x, sm32x, em32x, sm33x, em33x
INTEGER :: sm31y, em31y, sm32y, em32y, sm33y, em33y
#endif
#if defined(HWRF)
! Sam Says:
! The *INIT arrays are used to read init data written out by hwrf_prep_hybrid
REAL,ALLOCATABLE,DIMENSION(:,:,:)::TINIT,UINIT,VINIT,QINIT,CWMINIT
REAL,ALLOCATABLE,DIMENSION(:,:,:)::PINIT
REAL,ALLOCATABLE,DIMENSION(:,:)::PDINIT
! The *B arrays are used to read boundary data written out by hwrf_prep_hybrid
REAL,ALLOCATABLE,DIMENSION(:,:,:)::TB,UB,VB,QB,CWMB
REAL,ALLOCATABLE,DIMENSION(:,:)::PDB
INTEGER :: KB, LM, IM, JM, iunit_gfs, N
integer :: i,j,k
LOGICAL,EXTERNAL :: WRF_DM_ON_MONITOR
integer :: ids,ide, jds,jde, kds,kde
integer :: ims,ime, jms,jme, kms,kme
integer :: its,ite, jts,jte, kts,kte
integer :: ioerror
#endif
#include "deref_kludge.h"
grid%input_from_file = .true.
grid%input_from_file = .false.
CALL compute_si_start_and_end
( model_config_rec%start_year (grid%id) , &
model_config_rec%start_month (grid%id) , &
model_config_rec%start_day (grid%id) , &
model_config_rec%start_hour (grid%id) , &
model_config_rec%start_minute(grid%id) , &
model_config_rec%start_second(grid%id) , &
model_config_rec% end_year (grid%id) , &
model_config_rec% end_month (grid%id) , &
model_config_rec% end_day (grid%id) , &
model_config_rec% end_hour (grid%id) , &
model_config_rec% end_minute(grid%id) , &
model_config_rec% end_second(grid%id) , &
model_config_rec%interval_seconds , &
model_config_rec%real_data_init_type , &
start_date_char , end_date_char , time_loop_max )
! Here we define the initial time to process, for later use by the code.
current_date_char = start_date_char
! start_date = start_date_char // '.0000'
start_date = start_date_char
current_date = start_date
CALL nl_set_bdyfrq ( grid%id , REAL(model_config_rec%interval_seconds) )
! Loop over each time period to process.
write(message,*) 'time_loop_max: ', time_loop_max
CALL wrf_message
(message)
DO loop = 1 , time_loop_max
internal_time_loop=loop
write(message,*) 'loop=', loop
CALL wrf_message
(message)
write(message,*) '-----------------------------------------------------------'
CALL wrf_message
(message)
write(message,*) ' '
CALL wrf_message
(message)
write(message,'(A,A,A,I2,A,I2)') ' Current date being processed: ', &
current_date, ', which is loop #',loop,' out of ',time_loop_max
CALL wrf_message
(message)
! After current_date has been set, fill in the julgmt stuff.
CALL geth_julgmt
( config_flags%julyr , config_flags%julday , &
config_flags%gmt )
! Now that the specific Julian info is available,
! save these in the model config record.
CALL nl_set_gmt (grid%id, config_flags%gmt)
CALL nl_set_julyr (grid%id, config_flags%julyr)
CALL nl_set_julday (grid%id, config_flags%julday)
CALL nl_get_io_form_auxinput1( 1, io_form_auxinput1 )
using_binary_wrfsi=.false.
write(message,*) 'TRIM(config_flags%auxinput1_inname): ', TRIM(config_flags%auxinput1_inname)
CALL wrf_message
(message)
#if defined(HWRF)
ifph_onlyfirst: if(.not.grid%use_prep_hybrid .or. loop==1) then
#endif
IF (config_flags%auxinput1_inname(1:10) .eq. 'real_input') THEN
using_binary_wrfsi=.true.
ENDIF
SELECT CASE ( use_package(io_form_auxinput1) )
#ifdef NETCDF
CASE ( IO_NETCDF )
! Open the wrfinput file.
current_date_char(11:11)='_'
WRITE ( wrf_err_message , FMT='(A,A)' )'med_sidata_input: calling open_r_dataset for ',TRIM(config_flags%auxinput1_inname)
CALL wrf_debug
( 100 , wrf_err_message )
IF ( config_flags%auxinput1_inname(1:8) .NE. 'wrf_real' ) THEN
CALL construct_filename4a
( si_inpname , config_flags%auxinput1_inname , grid%id , 2 , current_date_char , &
config_flags%io_form_auxinput1 )
ELSE
CALL construct_filename2a
( si_inpname , config_flags%auxinput1_inname , grid%id , 2 , current_date_char )
END IF
CALL open_r_dataset
( idsi, TRIM(si_inpname) , grid , config_flags , "DATASET=AUXINPUT1", ierr )
IF ( ierr .NE. 0 ) THEN
CALL wrf_error_fatal
( 'error opening ' // TRIM(si_inpname) // ' for input; bad date in namelist or file not in directory' )
ENDIF
! Input data.
CALL wrf_debug (100, 'med_sidata_input: call input_auxinput1_wrf')
CALL input_auxinput1 ( idsi, grid, config_flags, ierr )
! Possible optional SI input. This sets flags used by init_domain.
IF ( loop .EQ. 1 ) THEN
CALL wrf_debug (100, 'med_sidata_input: call init_module_optional_input' )
CALL init_module_optional_input
( grid , config_flags )
CALL wrf_debug ( 100 , 'med_sidata_input: calling optional_input' )
!
CALL optional_input
( grid , idsi , config_flags )
write(0,*) 'maxval st_input(1) within ideal_hwrf: ', maxval(st_input(:,1,:))
END IF
!
CALL close_dataset
( idsi , config_flags , "DATASET=AUXINPUT1" )
#endif
#ifdef INTIO
CASE ( IO_INTIO )
! Possible optional SI input. This sets flags used by init_domain.
IF ( loop .EQ. 1 ) THEN
CALL wrf_debug (100, 'med_sidata_input: call init_module_optional_input' )
CALL init_module_optional_input
( grid , config_flags )
END IF
IF (using_binary_wrfsi) THEN
current_date_char(11:11)='_'
CALL read_si
( grid, current_date_char )
current_date_char(11:11)='T'
ELSE
write(message,*) 'binary WPS branch'
CALL wrf_message
(message)
current_date_char(11:11)='_'
CALL construct_filename4a
( si_inpname , config_flags%auxinput1_inname , grid%id , 2 , current_date_char , &
config_flags%io_form_auxinput1 )
CALL read_wps
( grid, trim(si_inpname), current_date_char, config_flags%num_metgrid_levels )
!!! bogus set some flags??
flag_metgrid=1
flag_soilhgt=1
ENDIF
#endif
CASE DEFAULT
CALL wrf_error_fatal
('ideal_hwrf: not valid io_form_auxinput1')
END SELECT
#if defined(HWRF)
endif ifph_onlyfirst
#endif
grid%islope=1
grid%vegfra=grid%vegfrc
grid%dfrlg=grid%dfl/9.81
grid%isurban=1
grid%isoilwater=14
! Initialize the mother domain for this time period with input data.
CALL wrf_debug ( 100 , 'med_sidata_input: calling init_domain' )
grid%input_from_file = .true.
CALL init_domain
( grid )
#if defined(HWRF)
read_phinit: if(grid%use_prep_hybrid) then
#if defined(DM_PARALLEL)
if(.not. wrf_dm_on_monitor()) then
call wrf_error_fatal
('ideal_hwrf: in use_prep_hybrid mode, threading and mpi are forbidden.')
endif
#endif
ph_loop1: if(loop==1) then
! determine kds, ids, jds
SELECT CASE ( model_data_order )
CASE ( DATA_ORDER_ZXY )
kds = grid%sd31 ; kde = grid%ed31 ;
ids = grid%sd32 ; ide = grid%ed32 ;
jds = grid%sd33 ; jde = grid%ed33 ;
kms = grid%sm31 ; kme = grid%em31 ;
ims = grid%sm32 ; ime = grid%em32 ;
jms = grid%sm33 ; jme = grid%em33 ;
kts = grid%sp31 ; kte = grid%ep31 ; ! tile is entire patch
its = grid%sp32 ; ite = grid%ep32 ; ! tile is entire patch
jts = grid%sp33 ; jte = grid%ep33 ; ! tile is entire patch
CASE ( DATA_ORDER_XYZ )
ids = grid%sd31 ; ide = grid%ed31 ;
jds = grid%sd32 ; jde = grid%ed32 ;
kds = grid%sd33 ; kde = grid%ed33 ;
ims = grid%sm31 ; ime = grid%em31 ;
jms = grid%sm32 ; jme = grid%em32 ;
kms = grid%sm33 ; kme = grid%em33 ;
its = grid%sp31 ; ite = grid%ep31 ; ! tile is entire patch
jts = grid%sp32 ; jte = grid%ep32 ; ! tile is entire patch
kts = grid%sp33 ; kte = grid%ep33 ; ! tile is entire patch
CASE ( DATA_ORDER_XZY )
ids = grid%sd31 ; ide = grid%ed31 ;
kds = grid%sd32 ; kde = grid%ed32 ;
jds = grid%sd33 ; jde = grid%ed33 ;
ims = grid%sm31 ; ime = grid%em31 ;
kms = grid%sm32 ; kme = grid%em32 ;
jms = grid%sm33 ; jme = grid%em33 ;
its = grid%sp31 ; ite = grid%ep31 ; ! tile is entire patch
kts = grid%sp32 ; kte = grid%ep32 ; ! tile is entire patch
jts = grid%sp33 ; jte = grid%ep33 ; ! tile is entire patch
END SELECT
! Allocate 3D initialization arrays:
call wrf_message
('ALLOCATE PREP_HYBRID INIT ARRAYS')
ALLOCATE ( TINIT (ids:(ide-1),kds:(kde-1) ,jds:(jde-1)) )
ALLOCATE ( PINIT (ids:(ide-1),kds:kde ,jds:(jde-1)) )
ALLOCATE ( UINIT (ids:(ide-1),kds:(kde-1) ,jds:(jde-1)) )
ALLOCATE ( VINIT (ids:(ide-1),kds:(kde-1) ,jds:(jde-1)) )
ALLOCATE ( QINIT (ids:(ide-1),kds:(kde-1) ,jds:(jde-1)) )
ALLOCATE ( CWMINIT(ids:(ide-1),kds:(kde-1) ,jds:(jde-1)) )
ALLOCATE ( PDINIT (ids:(ide-1), jds:(jde-1)) )
REWIND 900
READ(900,iostat=ioerror) PDINIT,TINIT,QINIT,CWMINIT,UINIT,VINIT,PINIT
if(ioerror/=0) then
call wrf_error_fatal
('Unable to read MAKBND output from unit 900.')
endif
WRITE(0,*) 'U V T AT 10 10 10 ',UINIT(10,10,10),VINIT(10,10,10),TINIT(10,10,10)
! Switch from IKJ to IJK ordering
DO I = ids,ide-1
DO J = jds,jde-1
grid%pd(I,J) = PDINIT(I,J)
DO K = kds,kde-1
grid%q2(I,J,K) = 0
grid%u(I,J,K) = UINIT(I,K,J)
grid%v(I,J,K) = VINIT(I,K,J)
grid%t(I,J,K) = TINIT(I,K,J)
grid%q(I,J,K) = QINIT(I,K,J)
grid%cwm(I,J,K) = CWMINIT(I,K,J)
ENDDO
! Was commented out in original V2 HWRF too:
! DO K = kds,kde
! grid%nmm_pint(I,J,K) = pinit(I,K,J)
! ENDDO
ENDDO
ENDDO
call wrf_message
('DEALLOCATE PREP_HYBRID INIT ARRAYS')
deallocate(TINIT,PINIT,UINIT,VINIT,QINIT,CWMINIT,PDINIT)
end if ph_loop1
end if read_phinit
#endif
CALL model_to_grid_config_rec
( grid%id, model_config_rec, config_flags )
! Close this file that is output from the SI and input to this pre-proc.
CALL wrf_debug
( 100 , 'med_sidata_input: back from init_domain' )
!!! not sure about this, but doesnt seem like needs to be called each time
IF ( loop .EQ. 1 ) THEN
CALL start_domain
( grid , .TRUE.)
END IF
#ifdef WRF_CHEM
IF ( loop == 1 ) THEN
! IF ( ( grid%chem_opt .EQ. RADM2 ) .OR. &
! ( grid%chem_opt .EQ. RADM2SORG ) .OR. &
! ( grid%chem_opt .EQ. RACM ) .OR. &
! ( grid%chem_opt .EQ. RACMSORG ) ) THEN
IF( grid%chem_opt > 0 ) then
! Read the chemistry data from a previous wrf forecast (wrfout file)
IF(grid%chem_in_opt == 1 ) THEN
message = 'INITIALIZING CHEMISTRY WITH OLD SIMULATION'
CALL wrf_message
( message )
CALL input_ext_chem_file( grid )
IF(grid%bio_emiss_opt == BEIS311 ) THEN
message = 'READING BEIS3.11 EMISSIONS DATA'
CALL wrf_message
( message )
CALL med_read_wrf_chem_bioemiss
( grid , config_flags)
else IF(grid%bio_emiss_opt == 3 ) THEN !shc
message = 'READING MEGAN 2 EMISSIONS DATA'
CALL wrf_message
( message )
CALL med_read_wrf_chem_bioemiss
( grid , config_flags)
END IF
ELSEIF(grid%chem_in_opt == 0)then
! Generate chemistry data from a idealized vertical profile
message = 'STARTING WITH BACKGROUND CHEMISTRY '
CALL wrf_message
( message )
write(message,*)' ETA1 '
CALL wrf_message
( message )
! write(message,*) grid%eta1
! CALL wrf_message ( message )
CALL input_chem_profile ( grid )
IF(grid%bio_emiss_opt == BEIS311 ) THEN
message = 'READING BEIS3.11 EMISSIONS DATA'
CALL wrf_message
( message )
CALL med_read_wrf_chem_bioemiss
( grid , config_flags)
else IF(grid%bio_emiss_opt == 3 ) THEN !shc
message = 'READING MEGAN 2 EMISSIONS DATA'
CALL wrf_message
( message )
CALL med_read_wrf_chem_bioemiss
( grid , config_flags)
END IF
ELSE
message = 'RUNNING WITHOUT CHEMISTRY INITIALIZATION'
CALL wrf_message
( message )
ENDIF
ENDIF
ENDIF
#endif
config_flags%isurban=1
config_flags%isoilwater=14
CALL assemble_output
( grid , config_flags , loop , time_loop_max )
! Here we define the next time that we are going to process.
CALL geth_newdate
( current_date_char , start_date_char , &
loop * model_config_rec%interval_seconds )
current_date = current_date_char // '.0000'
CALL domain_clock_set
( grid, current_date(1:19) )
write(message,*) 'current_date= ', current_date
CALL wrf_message
(message)
END DO
END SUBROUTINE med_sidata_input
SUBROUTINE compute_si_start_and_end ( & 3,10
start_year, start_month, start_day, start_hour, &
start_minute, start_second, &
end_year , end_month , end_day , end_hour , &
end_minute , end_second , &
interval_seconds , real_data_init_type , &
start_date_char , end_date_char , time_loop_max )
USE module_date_time
IMPLICIT NONE
INTEGER :: start_year , start_month , start_day , &
start_hour , start_minute , start_second
INTEGER :: end_year , end_month , end_day , &
end_hour , end_minute , end_second
INTEGER :: interval_seconds , real_data_init_type
INTEGER :: time_loop_max , time_loop
CHARACTER(LEN=132) :: message
CHARACTER(LEN=19) :: current_date_char , start_date_char , &
end_date_char , next_date_char
! WRITE ( start_date_char , FMT = &
! '(I4.4,"-",I2.2,"-",I2.2,"_",I2.2,":",I2.2,":",I2.2)' ) &
! start_year,start_month,start_day,start_hour,start_minute,start_second
! WRITE ( end_date_char , FMT = &
! '(I4.4,"-",I2.2,"-",I2.2,"_",I2.2,":",I2.2,":",I2.2)' ) &
! end_year, end_month, end_day, end_hour, end_minute, end_second
WRITE ( start_date_char , FMT = &
'(I4.4,"-",I2.2,"-",I2.2,"T",I2.2,":",I2.2,":",I2.2)' ) &
start_year,start_month,start_day,start_hour,start_minute,start_second
WRITE ( end_date_char , FMT = &
'(I4.4,"-",I2.2,"-",I2.2,"T",I2.2,":",I2.2,":",I2.2)' ) &
end_year, end_month, end_day, end_hour, end_minute, end_second
! start_date = start_date_char // '.0000'
! Figure out our loop count for the processing times.
time_loop = 1
PRINT '(A,I4,A,A,A)','Time period #',time_loop, &
' to process = ',start_date_char,'.'
current_date_char = start_date_char
loop_count : DO
CALL geth_newdate
(next_date_char, current_date_char, interval_seconds )
IF ( next_date_char .LT. end_date_char ) THEN
time_loop = time_loop + 1
PRINT '(A,I4,A,A,A)','Time period #',time_loop,&
' to process = ',next_date_char,'.'
current_date_char = next_date_char
ELSE IF ( next_date_char .EQ. end_date_char ) THEN
time_loop = time_loop + 1
PRINT '(A,I4,A,A,A)','Time period #',time_loop,&
' to process = ',next_date_char,'.'
PRINT '(A,I4,A)','Total analysis times to input = ',time_loop,'.'
time_loop_max = time_loop
EXIT loop_count
ELSE IF ( next_date_char .GT. end_date_char ) THEN
PRINT '(A,I4,A)','Total analysis times to input = ',time_loop,'.'
time_loop_max = time_loop
EXIT loop_count
END IF
END DO loop_count
write(message,*) 'done in si_start_and_end'
CALL wrf_message
(message)
END SUBROUTINE compute_si_start_and_end
SUBROUTINE assemble_output ( grid , config_flags , loop , time_loop_max ) 4,234
!!! replace with something? USE module_big_step_utilities_em
USE module_domain
USE module_io_domain
USE module_configure
USE module_date_time
USE module_bc
IMPLICIT NONE
#if defined(HWRF)
external get_wrf_debug_level
integer :: debug
#endif
TYPE(domain) :: grid
TYPE (grid_config_rec_type) :: config_flags
INTEGER , INTENT(IN) :: loop , time_loop_max
INTEGER :: ids , ide , jds , jde , kds , kde
INTEGER :: ims , ime , jms , jme , kms , kme
INTEGER :: ips , ipe , jps , jpe , kps , kpe
INTEGER :: ijds , ijde , spec_bdy_width
INTEGER :: inc_h,inc_v
INTEGER :: i , j , k , idts
INTEGER :: id1 , interval_seconds , ierr, rc, sst_update
INTEGER , SAVE :: id ,id4
CHARACTER (LEN=80) :: inpname , bdyname
CHARACTER(LEN= 4) :: loop_char
CHARACTER(LEN=132) :: message
character *19 :: temp19
character *24 :: temp24 , temp24b
REAL, DIMENSION(:,:,:), ALLOCATABLE, SAVE :: ubdy3dtemp1 , vbdy3dtemp1 ,&
tbdy3dtemp1 , &
cwmbdy3dtemp1 , qbdy3dtemp1,&
q2bdy3dtemp1 , pdbdy2dtemp1
REAL, DIMENSION(:,:,:), ALLOCATABLE, SAVE :: ubdy3dtemp2 , vbdy3dtemp2 , &
tbdy3dtemp2 , &
cwmbdy3dtemp2 , qbdy3dtemp2, &
q2bdy3dtemp2, pdbdy2dtemp2
REAL :: t1,t2
#ifdef DEREF_KLUDGE
! see http://www.mmm.ucar.edu/wrf/WG2/topics/deref_kludge.htm
INTEGER :: sm31 , em31 , sm32 , em32 , sm33 , em33
INTEGER :: sm31x, em31x, sm32x, em32x, sm33x, em33x
INTEGER :: sm31y, em31y, sm32y, em32y, sm33y, em33y
#endif
#if defined(HWRF)
! Sam says:
! The *B arrays are used to read boundary data written out by hwrf_prep_hybrid
REAL,ALLOCATABLE,DIMENSION(:,:,:)::TB,UB,VB,QB,CWMB
REAL,ALLOCATABLE,DIMENSION(:,:)::PDB
! Dimensions and looping variables:
INTEGER :: KB, LM, IM, JM, N
! Unit number to read boundary data from (changes each time)
INTEGER :: iunit_gfs
! Did we allocate the prep_hybrid input arrays?
LOGICAL :: alloc_ph_arrays
integer :: ioerror
#endif
#include "deref_kludge.h"
#if defined(HWRF)
alloc_ph_arrays=.false.
call get_wrf_debug_level
(debug)
#endif
! Various sizes that we need to be concerned about.
ids = grid%sd31
ide = grid%ed31-1 ! 030730tst
jds = grid%sd32
jde = grid%ed32-1 ! 030730tst
kds = grid%sd33
kde = grid%ed33-1 ! 030730tst
ims = grid%sm31
ime = grid%em31
jms = grid%sm32
jme = grid%em32
kms = grid%sm33
kme = grid%em33
ips = grid%sp31
ipe = grid%ep31-1 ! 030730tst
jps = grid%sp32
jpe = grid%ep32-1 ! 030730tst
kps = grid%sp33
kpe = grid%ep33-1 ! 030730tst
if (IPE .ne. IDE) IPE=IPE+1
if (JPE .ne. JDE) JPE=JPE+1
write(message,*) 'assemble output (ids,ide): ', ids,ide
CALL wrf_message
(message)
write(message,*) 'assemble output (ims,ime): ', ims,ime
CALL wrf_message
(message)
write(message,*) 'assemble output (ips,ipe): ', ips,ipe
CALL wrf_message
(message)
write(message,*) 'assemble output (jds,jde): ', jds,jde
CALL wrf_message
(message)
write(message,*) 'assemble output (jms,jme): ', jms,jme
CALL wrf_message
(message)
write(message,*) 'assemble output (jps,jpe): ', jps,jpe
CALL wrf_message
(message)
write(message,*) 'assemble output (kds,kde): ', kds,kde
CALL wrf_message
(message)
write(message,*) 'assemble output (kms,kme): ', kms,kme
CALL wrf_message
(message)
write(message,*) 'assemble output (kps,kpe): ', kps,kpe
CALL wrf_message
(message)
ijds = MIN ( ids , jds )
!mptest030805 ijde = MAX ( ide , jde )
ijde = MAX ( ide , jde ) + 1 ! to make stuff_bdy dimensions consistent with alloc
! Boundary width, scalar value.
spec_bdy_width = model_config_rec%spec_bdy_width
interval_seconds = model_config_rec%interval_seconds
sst_update = model_config_rec%sst_update
!-----------------------------------------------------------------------
!
main_loop_test: IF ( loop .EQ. 1 ) THEN
!
!-----------------------------------------------------------------------
IF ( time_loop_max .NE. 1 ) THEN
IF(sst_update .EQ. 1)THEN
CALL construct_filename1
( inpname , 'wrflowinp' , grid%id , 2 )
CALL open_w_dataset
( id4, TRIM(inpname) , grid , config_flags , output_auxinput4 , "DATASET=AUXINPUT4", ierr )
IF ( ierr .NE. 0 ) THEN
CALL wrf_error_fatal
( 'ideal_hwrf: error opening wrflowinp for writing' )
END IF
CALL output_auxinput4 ( id4, grid , config_flags , ierr )
END IF
END IF
! This is the space needed to save the current 3d data for use in computing
! the lateral boundary tendencies.
ALLOCATE ( ubdy3dtemp1(ims:ime,jms:jme,kms:kme) )
ALLOCATE ( vbdy3dtemp1(ims:ime,jms:jme,kms:kme) )
ALLOCATE ( tbdy3dtemp1(ims:ime,jms:jme,kms:kme) )
ALLOCATE ( qbdy3dtemp1(ims:ime,jms:jme,kms:kme) )
ALLOCATE ( cwmbdy3dtemp1(ims:ime,jms:jme,kms:kme) )
ALLOCATE ( q2bdy3dtemp1(ims:ime,jms:jme,kms:kme) )
ALLOCATE ( pdbdy2dtemp1(ims:ime,jms:jme,1:1) )
ubdy3dtemp1=0.
vbdy3dtemp1=0.
tbdy3dtemp1=0.
qbdy3dtemp1=0.
cwmbdy3dtemp1=0.
q2bdy3dtemp1=0.
pdbdy2dtemp1=0.
ALLOCATE ( ubdy3dtemp2(ims:ime,jms:jme,kms:kme) )
ALLOCATE ( vbdy3dtemp2(ims:ime,jms:jme,kms:kme) )
ALLOCATE ( tbdy3dtemp2(ims:ime,jms:jme,kms:kme) )
ALLOCATE ( qbdy3dtemp2(ims:ime,jms:jme,kms:kme) )
ALLOCATE ( cwmbdy3dtemp2(ims:ime,jms:jme,kms:kme) )
ALLOCATE ( q2bdy3dtemp2(ims:ime,jms:jme,kms:kme) )
ALLOCATE ( pdbdy2dtemp2(ims:ime,jms:jme,1:1) )
ubdy3dtemp2=0.
vbdy3dtemp2=0.
tbdy3dtemp2=0.
qbdy3dtemp2=0.
cwmbdy3dtemp2=0.
q2bdy3dtemp2=0.
pdbdy2dtemp2=0.
! Open the wrfinput file. From this program, this is an *output* file.
CALL construct_filename1
( inpname , 'wrfinput' , grid%id , 2 )
CALL open_w_dataset
( id1, TRIM(inpname) , grid , config_flags , &
output_input , "DATASET=INPUT", ierr )
IF ( ierr .NE. 0 ) THEN
CALL wrf_error_fatal
( 'ideal_hwrf: error opening wrfinput for writing' )
ENDIF
! CALL calc_current_date ( grid%id , 0. )
! grid%write_metadata = .true.
write(message,*) 'making call to output_input'
CALL wrf_message
(message)
CALL output_input ( id1, grid , config_flags , ierr )
!***
!*** CLOSE THE WRFINPUT DATASET
!***
CALL close_dataset
( id1 , config_flags , "DATASET=INPUT" )
! We need to save the 3d data to compute a
! difference during the next loop.
!
!-----------------------------------------------------------------------
!*** SOUTHERN BOUNDARY
!-----------------------------------------------------------------------
!
IF(JPS==JDS)THEN
J=1
DO k = kps , MIN(kde,kpe)
DO i = ips , MIN(ide,ipe)
ubdy3dtemp1(i,j,k) = grid%u(i,j,k)
vbdy3dtemp1(i,j,k) = grid%v(i,j,k)
tbdy3dtemp1(i,j,k) = grid%t(i,j,k)
qbdy3dtemp1(i,j,k) = grid%q(i,j,k)
cwmbdy3dtemp1(i,j,k) = grid%cwm(i,j,k)
q2bdy3dtemp1(i,j,k) = grid%q2(i,j,k)
END DO
END DO
DO i = ips , MIN(ide,ipe)
pdbdy2dtemp1(i,j,1) = grid%pd(i,j)
END DO
ENDIF
!
!-----------------------------------------------------------------------
!*** NORTHERN BOUNDARY
!-----------------------------------------------------------------------
!
IF(JPE==JDE)THEN
J=MIN(JDE,JPE)
DO k = kps , MIN(kde,kpe)
DO i = ips , MIN(ide,ipe)
ubdy3dtemp1(i,j,k) = grid%u(i,j,k)
vbdy3dtemp1(i,j,k) = grid%v(i,j,k)
tbdy3dtemp1(i,j,k) = grid%t(i,j,k)
qbdy3dtemp1(i,j,k) = grid%q(i,j,k)
cwmbdy3dtemp1(i,j,k) = grid%cwm(i,j,k)
q2bdy3dtemp1(i,j,k) = grid%q2(i,j,k)
END DO
END DO
DO i = ips , MIN(ide,ipe)
pdbdy2dtemp1(i,j,1) = grid%pd(i,j)
END DO
ENDIF
!
!-----------------------------------------------------------------------
!*** WESTERN BOUNDARY
!-----------------------------------------------------------------------
!
write(message,*) 'western boundary, store winds over J: ', jps, min(jpe,jde)
CALL wrf_message
(message)
IF(IPS==IDS)THEN
I=1
DO k = kps , MIN(kde,kpe)
inc_h=mod(jps+1,2)
DO j = jps+inc_h, min(jde,jpe),2
if (J .ge. 3 .and. J .le. JDE-2 .and. mod(J,2) .eq. 1) then
tbdy3dtemp1(i,j,k) = grid%t(i,j,k)
qbdy3dtemp1(i,j,k) = grid%q(i,j,k)
cwmbdy3dtemp1(i,j,k) = grid%cwm(i,j,k)
q2bdy3dtemp1(i,j,k) = grid%q2(i,j,k)
if(k==1)then
write(message,*)' loop=',loop,' i=',i,' j=',j,' tbdy3dtemp1(i,j,k)=',tbdy3dtemp1(i,j,k)
CALL wrf_debug
(10,message)
endif
endif
END DO
END DO
DO k = kps , MIN(kde,kpe)
inc_v=mod(jps,2)
DO j = jps+inc_v, min(jde,jpe),2
if (J .ge. 2 .and. J .le. JDE-1 .and. mod(J,2) .eq. 0) then
ubdy3dtemp1(i,j,k) = grid%u(i,j,k)
vbdy3dtemp1(i,j,k) = grid%v(i,j,k)
endif
END DO
END DO
!
inc_h=mod(jps+1,2)
DO j = jps+inc_h, min(jde,jpe),2
if (J .ge. 3 .and. J .le. JDE-2 .and. mod(J,2) .eq. 1) then
pdbdy2dtemp1(i,j,1) = grid%pd(i,j)
write(message,*)' loop=',loop,' i=',i,' j=',j,' pdbdy2dtemp1(i,j)=',pdbdy2dtemp1(i,j,1)
CALL wrf_debug
(10,message)
endif
END DO
ENDIF
!
!-----------------------------------------------------------------------
!*** EASTERN BOUNDARY
!-----------------------------------------------------------------------
!
IF(IPE==IDE)THEN
I=MIN(IDE,IPE)
!
DO k = kps , MIN(kde,kpe)
!
!*** Make sure the J loop is on the global boundary
!
inc_h=mod(jps+1,2)
DO j = jps+inc_h, min(jde,jpe),2
if (J .ge. 3 .and. J .le. JDE-2 .and. mod(J,2) .eq. 1) then
tbdy3dtemp1(i,j,k) = grid%t(i,j,k)
qbdy3dtemp1(i,j,k) = grid%q(i,j,k)
cwmbdy3dtemp1(i,j,k) = grid%cwm(i,j,k)
q2bdy3dtemp1(i,j,k) = grid%q2(i,j,k)
endif
END DO
END DO
DO k = kps , MIN(kde,kpe)
inc_v=mod(jps,2)
DO j = jps+inc_v, min(jde,jpe),2
if (J .ge. 2 .and. J .le. JDE-1 .and. mod(J,2) .eq. 0) then
ubdy3dtemp1(i,j,k) = grid%u(i,j,k)
vbdy3dtemp1(i,j,k) = grid%v(i,j,k)
endif
END DO
END DO
!
inc_h=mod(jps+1,2)
DO j = jps+inc_h, min(jde,jpe),2
if (J .ge. 3 .and. J .le. JDE-2 .and. mod(J,2) .eq. 1) then
pdbdy2dtemp1(i,j,1) = grid%pd(i,j)
endif
END DO
ENDIF
! There are 2 components to the lateral boundaries.
! First, there is the starting
! point of this time period - just the outer few rows and columns.
CALL stuff_bdy_ijk
(ubdy3dtemp1, grid%u_bxs, grid%u_bxe, &
grid%u_bys, grid%u_bye, &
'N', spec_bdy_width , &
ids , ide+1 , jds , jde+1 , kds , kde+1 , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe+1 )
CALL stuff_bdy_ijk
(vbdy3dtemp1, grid%v_bxs, grid%v_bxe, &
grid%v_bys, grid%v_bye, &
'N', spec_bdy_width , &
ids , ide+1 , jds , jde+1 , kds , kde+1 , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe+1 )
CALL stuff_bdy_ijk
(tbdy3dtemp1, grid%t_bxs, grid%t_bxe, &
grid%t_bys, grid%t_bye, &
'N', spec_bdy_width , &
ids , ide+1 , jds , jde+1 , kds , kde+1 , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe+1 )
CALL stuff_bdy_ijk
(cwmbdy3dtemp1, grid%cwm_bxs, grid%cwm_bxe, &
grid%cwm_bys, grid%cwm_bye, &
'N', spec_bdy_width , &
ids , ide+1 , jds , jde+1 , kds , kde+1 , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe+1 )
CALL stuff_bdy_ijk
(qbdy3dtemp1, grid%q_bxs, grid%q_bxe, &
grid%q_bys, grid%q_bye, &
'N', spec_bdy_width , &
ids , ide+1 , jds , jde+1 , kds , kde+1 , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe+1 )
CALL stuff_bdy_ijk
(q2bdy3dtemp1, grid%q2_bxs, grid%q2_bxe, &
grid%q2_bys, grid%q2_bye, &
'N', spec_bdy_width , &
ids , ide+1 , jds , jde+1 , kds , kde+1 , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe+1 )
CALL stuff_bdy_ijk
(pdbdy2dtemp1, grid%pd_bxs, grid%pd_bxe, &
grid%pd_bys, grid%pd_bye, &
'M', spec_bdy_width, &
ids , ide+1 , jds , jde+1 , 1 , 1 , &
ims , ime , jms , jme , 1 , 1 , &
ips , ipe , jps , jpe , 1 , 1 )
!-----------------------------------------------------------------------
!
ELSE IF ( loop .GT. 1 ) THEN
!
!-----------------------------------------------------------------------
call wrf_debug
(1,'LOOP>1, so start making non-init boundary conditions')
#if defined(HWRF)
bdytmp_useph: if(grid%use_prep_hybrid) then
call wrf_debug
(1,'ALLOCATE PREP_HYBRID BOUNDARY ARRAYS')
!! When running in prep_hybrid mode, we must read in the data here.
! Allocate boundary arrays:
KB = 2*IDE + JDE - 3
LM = KDE
IM = IDE
JM = JDE
ALLOCATE(TB(KB,LM,2))
ALLOCATE(QB(KB,LM,2))
ALLOCATE(CWMB(KB,LM,2))
ALLOCATE(UB(KB,LM,2))
ALLOCATE(VB(KB,LM,2))
ALLOCATE(PDB(KB,2))
alloc_ph_arrays=.true.
! Read in the data:
IUNIT_GFS = 900 + LOOP - 1
READ(IUNIT_GFS,iostat=ioerror) PDB,TB,QB,CWMB,UB,VB
if(ioerror/=0) then
write(message,*) 'Unable to read MAKBND output from unit ',IUNIT_GFS
call wrf_error_fatal
(message)
endif
! Now copy the data into the temporary boundary arrays, and
! switch from IKJ to IJK while we do it.
!! Southern boundary
IF(JPS.EQ.JDS)THEN
J=1
DO k = kps , MIN(kde,kpe)
N=1
DO i = ips , MIN(ide,ipe)
tbdy3dtemp2(i,j,k) = TB(N,k,1)
qbdy3dtemp2(i,j,k) = QB(N,k,1)
cwmbdy3dtemp2(i,j,k) = CWMB(N,k,1)
q2bdy3dtemp2(i,j,k) = 0.0 !KWON
write(message,*)'southtend t',k,i,n,tbdy3dtemp2(i,j,k)
call wrf_debug
(10,message)
write(message,*)'southtend q',k,i,n,qbdy3dtemp2(i,j,k)
call wrf_debug
(10,message)
if (K .eq. 1 ) then
write(0,*) 'S boundary values T,Q : ', I,tbdy3dtemp2(i,j,k), &
qbdy3dtemp2(i,j,k)
endif
N=N+1
END DO
END DO
DO k = kps , MIN(kde,kpe)
N=1
DO i = ips , MIN(ide,ipe)
ubdy3dtemp2(i,j,k) = UB(N,k,1)
vbdy3dtemp2(i,j,k) = VB(N,k,1)
N=N+1
ENDDO
END DO
N=1
DO i = ips , MIN(ide,ipe)
pdbdy2dtemp2(i,j,1) = PDB(N,1)
write(message,*)'southtend p',i,n,pdbdy2dtemp1(i,j,1)
call wrf_debug
(10,message)
N=N+1
END DO
ENDIF
! Northern boundary
IF(JPE.EQ.JDE)THEN
J=MIN(JDE,JPE)
DO k = kps , MIN(kde,kpe)
N=IM+1
DO i = ips , MIN(ide,ipe)
tbdy3dtemp2(i,j,k) = TB(N,k,1)
qbdy3dtemp2(i,j,k) = QB(N,k,1)
cwmbdy3dtemp2(i,j,k) = CWMB(N,k,1)
q2bdy3dtemp2(i,j,k) = 0.0 !KWON
write(message,*)'northtend t',k,i,n,tbdy3dtemp2(i,j,k)
call wrf_debug
(10,message)
write(message,*)'northtend q',k,i,n,qbdy3dtemp2(i,j,k)
call wrf_debug
(10,message)
N=N+1
END DO
END DO
DO k = kps , MIN(kde,kpe)
N=IM
DO i = ips , MIN(ide,ipe)
ubdy3dtemp2(i,j,k) = UB(N,k,1)
vbdy3dtemp2(i,j,k) = VB(N,k,1)
N=N+1
END DO
END DO
N=IM+1
DO i = ips , MIN(ide,ipe)
pdbdy2dtemp2(i,j,1) = PDB(N,1)
write(message,*)'northtend p',i,n,pdbdy2dtemp1(i,j,1)
call wrf_debug
(10,message)
N=N+1
END DO
ENDIF
!! Western boundary
IF(IPS.EQ.IDS)THEN
I=1
DO k = kps , MIN(kde,kpe)
N=2*IM+1
inc_h=mod(jps+1,2)
DO j = jps+inc_h, MIN(jde,jpe),2
if (J .ge. 3 .and. J .le. jde-2 .and. mod(J,2) .eq. 1) then
tbdy3dtemp2(i,j,k) = TB(N,k,1)
qbdy3dtemp2(i,j,k) = QB(N,k,1)
cwmbdy3dtemp2(i,j,k) = CWMB(N,k,1)
q2bdy3dtemp2(i,j,k) = 0.0 !KWON
write(message,*)'westtend t',k,j,n,tbdy3dtemp2(i,j,k)
call wrf_debug
(10,message)
write(message,*)'westtend q',k,j,n,qbdy3dtemp2(i,j,k)
call wrf_debug
(10,message)
N=N+1
endif
END DO
END DO
DO k = kps , MIN(kde,kpe)
N=2*IM-1
inc_v=mod(jps,2)
DO j = jps+inc_v, MIN(jde,jpe),2
if (J .ge. 2 .and. J .le. jde-1 .and. mod(J,2) .eq. 0) then
ubdy3dtemp2(i,j,k) = UB(N,k,1)
vbdy3dtemp2(i,j,k) = VB(N,k,1)
N=N+1
endif
END DO
END DO
N=2*IM+1
inc_h=mod(jps+1,2)
DO j = jps+inc_h, MIN(jde,jpe),2
if (J .ge. 3 .and. J .le. jde-2 .and. mod(J,2) .eq. 1) then
pdbdy2dtemp2(i,j,1) = PDB(N,1)
write(message,*)'westtend p',j,n,pdbdy2dtemp1(i,j,1)
call wrf_debug
(10,message)
N=N+1
endif
END DO
ENDIF
!! Eastern boundary
IF(IPE.EQ.IDE)THEN
I=MIN(IDE,IPE)
DO k = kps , MIN(kde,kpe)
N=2*IM+(JM/2)
inc_h=mod(jps+1,2)
DO j = jps+inc_h, MIN(jde,jpe),2
if (J .ge. 3 .and. J .le. jde-2 .and. mod(J,2) .eq. 1) then
tbdy3dtemp2(i,j,k) = TB(N,k,1)
qbdy3dtemp2(i,j,k) = QB(N,k,1)
cwmbdy3dtemp2(i,j,k) = CWMB(N,k,1)
q2bdy3dtemp2(i,j,k) = 0.0 !KWON
write(message,*)'easttend t',k,j,n,tbdy3dtemp2(i,j,k)
call wrf_debug
(10,message)
write(message,*)'easttend q',k,j,n,qbdy3dtemp2(i,j,k)
call wrf_debug
(10,message)
N=N+1
endif
END DO
END DO
DO k = kps , MIN(kde,kpe)
N=2*IM+(JM/2)-1
inc_v=mod(jps,2)
DO j = jps+inc_v, MIN(jde,jpe),2
if (J .ge. 2 .and. J .le. jde-1 .and. mod(J,2) .eq. 0) then
ubdy3dtemp2(i,j,k) = UB(N,k,1)
vbdy3dtemp2(i,j,k) = VB(N,k,1)
N=N+1
endif
END DO
END DO
N=2*IM+(JM/2)
inc_h=mod(jps+1,2)
DO j = jps+inc_h, MIN(jde,jpe),2
if (J .ge. 3 .and. J .le. jde-2 .and. mod(J,2) .eq. 1) then
pdbdy2dtemp2(i,j,1) = PDB(N,1)
write(message,*)'easttend p',j,n,pdbdy2dtemp1(i,j,1)
call wrf_debug
(10,message)
N=N+1
endif
END DO
ENDIF
else
#endif
CALL output_auxinput4 ( id4, grid , config_flags , ierr )
#if defined( HWRF)
endif bdytmp_useph
#endif
write(message,*)' assemble_output loop=',loop,' in IF block'
call wrf_message
(message)
! Open the boundary file.
IF ( loop .eq. 2 ) THEN
CALL construct_filename1
( bdyname , 'wrfbdy' , grid%id , 2 )
CALL open_w_dataset
( id, TRIM(bdyname) , grid , config_flags , &
output_boundary , "DATASET=BOUNDARY", ierr )
IF ( ierr .NE. 0 ) THEN
CALL wrf_error_fatal
( 'ideal_hwrf: error opening wrfbdy for writing' )
ENDIF
! grid%write_metadata = .true.
ELSE
! what's this do?
! grid%write_metadata = .true.
! grid%write_metadata = .false.
CALL domain_clockadvance
( grid )
END IF
#if defined(HWRF)
bdytmp_notph: if(.not.grid%use_prep_hybrid) then
#endif
!-----------------------------------------------------------------------
!*** SOUTHERN BOUNDARY
!-----------------------------------------------------------------------
!
IF(JPS==JDS)THEN
J=1
DO k = kps , MIN(kde,kpe)
DO i = ips , MIN(ide,ipe)
ubdy3dtemp2(i,j,k) = grid%u(i,j,k)
vbdy3dtemp2(i,j,k) = grid%v(i,j,k)
tbdy3dtemp2(i,j,k) = grid%t(i,j,k)
qbdy3dtemp2(i,j,k) = grid%q(i,j,k)
cwmbdy3dtemp2(i,j,k) = grid%cwm(i,j,k)
q2bdy3dtemp2(i,j,k) = grid%q2(i,j,k)
END DO
END DO
!
DO i = ips , MIN(ide,ipe)
pdbdy2dtemp2(i,j,1) = grid%pd(i,j)
END DO
ENDIF
!
!-----------------------------------------------------------------------
!*** NORTHERN BOUNDARY
!-----------------------------------------------------------------------
!
IF(JPE==JDE)THEN
J=MIN(JDE,JPE)
DO k = kps , MIN(kde,kpe)
DO i = ips , MIN(ide,ipe)
ubdy3dtemp2(i,j,k) = grid%u(i,j,k)
vbdy3dtemp2(i,j,k) = grid%v(i,j,k)
tbdy3dtemp2(i,j,k) = grid%t(i,j,k)
qbdy3dtemp2(i,j,k) = grid%q(i,j,k)
cwmbdy3dtemp2(i,j,k) = grid%cwm(i,j,k)
q2bdy3dtemp2(i,j,k) = grid%q2(i,j,k)
END DO
END DO
DO i = ips , MIN(ide,ipe)
pdbdy2dtemp2(i,j,1) = grid%pd(i,j)
END DO
ENDIF
!
!-----------------------------------------------------------------------
!*** WESTERN BOUNDARY
!-----------------------------------------------------------------------
!
IF(IPS==IDS)THEN
I=1
DO k = kps , MIN(kde,kpe)
inc_h=mod(jps+1,2)
if(k==1)then
write(message,*)' assemble_ouput loop=',loop,' inc_h=',inc_h,' jps=',jps
call wrf_debug
(10,message)
endif
DO j = jps+inc_h, MIN(jde,jpe),2
if (J .ge. 3 .and. J .le. jde-2 .and. mod(J,2) .eq. 1) then
tbdy3dtemp2(i,j,k) = grid%t(i,j,k)
if(k==1)then
write(message,*)' loop=',loop,' i=',i,' j=',j,' tbdy3dtemp1(i,j,k)=',tbdy3dtemp1(i,j,k)
call wrf_debug
(10,message)
endif
qbdy3dtemp2(i,j,k) = grid%q(i,j,k)
cwmbdy3dtemp2(i,j,k) = grid%cwm(i,j,k)
q2bdy3dtemp2(i,j,k) = grid%q2(i,j,k)
endif
END DO
END DO
!
DO k = kps , MIN(kde,kpe)
inc_v=mod(jps,2)
DO j = jps+inc_v, MIN(jde,jpe),2
if (J .ge. 2 .and. J .le. jde-1 .and. mod(J,2) .eq. 0) then
ubdy3dtemp2(i,j,k) = grid%u(i,j,k)
vbdy3dtemp2(i,j,k) = grid%v(i,j,k)
endif
END DO
END DO
inc_h=mod(jps+1,2)
DO j = jps+inc_h, MIN(jde,jpe),2
if (J .ge. 3 .and. J .le. jde-2 .and. mod(J,2) .eq. 1) then
pdbdy2dtemp2(i,j,1) = grid%pd(i,j)
write(message,*)' loop=',loop,' i=',i,' j=',j,' pdbdy2dtemp1(i,j)=',pdbdy2dtemp1(i,j,1)
CALL wrf_debug
(10,message)
endif
END DO
ENDIF
!
!-----------------------------------------------------------------------
!*** EASTERN BOUNDARY
!-----------------------------------------------------------------------
!
IF(IPE==IDE)THEN
I=MIN(IDE,IPE)
DO k = kps , MIN(kde,kpe)
inc_h=mod(jps+1,2)
DO j = jps+inc_h, MIN(jde,jpe),2
if (J .ge. 3 .and. J .le. jde-2 .and. mod(J,2) .eq. 1) then
tbdy3dtemp2(i,j,k) = grid%t(i,j,k)
qbdy3dtemp2(i,j,k) = grid%q(i,j,k)
cwmbdy3dtemp2(i,j,k) = grid%cwm(i,j,k)
q2bdy3dtemp2(i,j,k) = grid%q2(i,j,k)
endif
END DO
END DO
DO k = kps , MIN(kde,kpe)
inc_v=mod(jps,2)
DO j = jps+inc_v, MIN(jde,jpe),2
if (J .ge. 2 .and. J .le. jde-1 .and. mod(J,2) .eq. 0) then
ubdy3dtemp2(i,j,k) = grid%u(i,j,k)
vbdy3dtemp2(i,j,k) = grid%v(i,j,k)
endif
END DO
END DO
inc_h=mod(jps+1,2)
DO j = jps+inc_h, MIN(jde,jpe),2
if (J .ge. 3 .and. J .le. jde-2 .and. mod(J,2) .eq. 1) then
pdbdy2dtemp2(i,j,1) = grid%pd(i,j)
endif
END DO
ENDIF
#if defined(HWRF)
endif bdytmp_notph
#endif
!-----------------------------------------------------------------------
! During all of the loops after the first loop,
! we first compute the boundary
! tendencies with the current data values
! (*bdy3dtemp2 arrays) and the previously
! saved information stored in the *bdy3dtemp1 arrays.
CALL stuff_bdytend_ijk
( ubdy3dtemp2 , ubdy3dtemp1 , REAL(interval_seconds),&
grid%u_btxs, grid%u_btxe, &
grid%u_btys, grid%u_btye, &
'N', spec_bdy_width , &
ids , ide+1 , jds , jde+1 , kds , kde+1 , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe+1 )
CALL stuff_bdytend_ijk
( vbdy3dtemp2 , vbdy3dtemp1 , REAL(interval_seconds),&
grid%v_btxs, grid%v_btxe, &
grid%v_btys, grid%v_btye, &
'N', spec_bdy_width , &
ids , ide+1 , jds , jde+1 , kds , kde+1 , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe+1 )
CALL stuff_bdytend_ijk
( tbdy3dtemp2 , tbdy3dtemp1 , REAL(interval_seconds),&
grid%t_btxs, grid%t_btxe, &
grid%t_btys, grid%t_btye, &
'N', spec_bdy_width , &
ids , ide+1 , jds , jde+1 , kds , kde+1 , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe+1 )
CALL stuff_bdytend_ijk
( cwmbdy3dtemp2 , cwmbdy3dtemp1 , REAL(interval_seconds),&
grid%cwm_btxs, grid%cwm_btxe, &
grid%cwm_btys, grid%cwm_btye, &
'N', spec_bdy_width , &
ids , ide+1 , jds , jde+1 , kds , kde+1 , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe+1 )
CALL stuff_bdytend_ijk
( qbdy3dtemp2 , qbdy3dtemp1 , REAL(interval_seconds),&
grid%q_btxs, grid%q_btxe, &
grid%q_btys, grid%q_btye, &
'N', spec_bdy_width , &
ids , ide+1 , jds , jde+1 , kds , kde+1 , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe+1 )
CALL stuff_bdytend_ijk
( q2bdy3dtemp2 , q2bdy3dtemp1 , REAL(interval_seconds),&
grid%q2_btxs, grid%q2_btxe, &
grid%q2_btys, grid%q2_btye, &
'N', spec_bdy_width , &
ids , ide+1 , jds , jde+1 , kds , kde+1 , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe+1 )
CALL stuff_bdytend_ijk
( pdbdy2dtemp2 , pdbdy2dtemp1, REAL(interval_seconds),&
grid%pd_btxs, grid%pd_btxe, &
grid%pd_btys, grid%pd_btye, &
'M', spec_bdy_width , &
ids , ide+1 , jds , jde+1 , 1 , 1 , &
ims , ime , jms , jme , 1 , 1 , &
ips , ipe , jps , jpe , 1 , 1 )
! Both pieces of the boundary data are now
! available to be written (initial time and tendency).
! This looks ugly, these date shifting things.
! What's it for? We want the "Times" variable
! in the lateral BDY file to have the valid times
! of when the initial fields are written.
! That's what the loop-2 thingy is for with the start date.
! We increment the start_date so
! that the starting time in the attributes is the
! second time period. Why you may ask. I
! agree, why indeed.
temp24= current_date
temp24b=start_date
start_date = current_date
CALL geth_newdate
( temp19 , temp24b(1:19) , &
(loop-2) * model_config_rec%interval_seconds )
current_date = temp19 // '.0000'
CALL domain_clock_set
( grid, current_date(1:19) )
write(message,*) 'LBC valid between these times ',current_date, ' ',start_date
CALL wrf_message
(message)
CALL output_boundary
( id, grid , config_flags , ierr )
current_date = temp24
start_date = temp24b
! OK, for all of the loops, we output the initialzation
! data, which would allow us to
! start the model at any of the available analysis time periods.
! WRITE ( loop_char , FMT = '(I4.4)' ) loop
! CALL open_w_dataset ( id1, 'wrfinput'//loop_char , grid , config_flags , output_input , "DATASET=INPUT", ierr )
! IF ( ierr .NE. 0 ) THEN
! CALL wrf_error_fatal( 'ideal_hwrf: error opening wrfinput'//loop_char//' for writing' )
! ENDIF
! grid%write_metadata = .true.
! CALL calc_current_date ( grid%id , 0. )
! CALL output_input ( id1, grid , config_flags , ierr )
! CALL close_dataset ( id1 , config_flags , "DATASET=INPUT" )
! Is this or is this not the last time time? We can remove some unnecessary
! stores if it is not.
IF ( loop .LT. time_loop_max ) THEN
! We need to save the 3d data to compute a
! difference during the next loop. Couple the
! 3d fields with total mu (mub + mu_2) and the
! stagger-specific map scale factor.
! We load up the boundary data again for use in the next loop.
!mp change these limits?????????
DO k = kps , kpe
DO j = jps , jpe
DO i = ips , ipe
ubdy3dtemp1(i,j,k) = ubdy3dtemp2(i,j,k)
vbdy3dtemp1(i,j,k) = vbdy3dtemp2(i,j,k)
tbdy3dtemp1(i,j,k) = tbdy3dtemp2(i,j,k)
cwmbdy3dtemp1(i,j,k) = cwmbdy3dtemp2(i,j,k)
qbdy3dtemp1(i,j,k) = qbdy3dtemp2(i,j,k)
q2bdy3dtemp1(i,j,k) = q2bdy3dtemp2(i,j,k)
END DO
END DO
END DO
!mp change these limits?????????
DO j = jps , jpe
DO i = ips , ipe
pdbdy2dtemp1(i,j,1) = pdbdy2dtemp2(i,j,1)
END DO
END DO
! There are 2 components to the lateral boundaries.
! First, there is the starting
! point of this time period - just the outer few rows and columns.
CALL stuff_bdy_ijk
(ubdy3dtemp1, grid%u_bxs, grid%u_bxe, &
grid%u_bys, grid%u_bye, &
'N', spec_bdy_width , &
ids , ide+1 , jds , jde+1 , kds , kde+1 , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe+1 )
CALL stuff_bdy_ijk
(vbdy3dtemp1, grid%v_bxs, grid%v_bxe, &
grid%v_bys, grid%v_bye, &
'N', spec_bdy_width , &
ids , ide+1 , jds , jde+1 , kds , kde+1 , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe+1 )
CALL stuff_bdy_ijk
(tbdy3dtemp1, grid%t_bxs, grid%t_bxe, &
grid%t_bys, grid%t_bye, &
'N', spec_bdy_width , &
ids , ide+1 , jds , jde+1 , kds , kde+1 , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe+1 )
CALL stuff_bdy_ijk
(cwmbdy3dtemp1, grid%cwm_bxs, grid%cwm_bxe, &
grid%cwm_bys, grid%cwm_bye, &
'N', spec_bdy_width , &
ids , ide+1 , jds , jde+1 , kds , kde+1 , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe+1 )
CALL stuff_bdy_ijk
(qbdy3dtemp1, grid%q_bxs, grid%q_bxe, &
grid%q_bys, grid%q_bye, &
'N', spec_bdy_width , &
ids , ide+1 , jds , jde+1 , kds , kde+1 , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe+1 )
CALL stuff_bdy_ijk
(q2bdy3dtemp1, grid%q2_bxs, grid%q2_bxe, &
grid%q2_bys, grid%q2_bye, &
'N', spec_bdy_width , &
ids , ide+1 , jds , jde+1 , kds , kde+1 , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe+1 )
CALL stuff_bdy_ijk
(pdbdy2dtemp1,grid%pd_bxs, grid%pd_bxe, &
grid%pd_bys, grid%pd_bye, &
'M', spec_bdy_width , &
ids , ide+1 , jds , jde+1 , 1 , 1 , &
ims , ime , jms , jme , 1 , 1 , &
ips , ipe , jps , jpe , 1 , 1 )
ELSE IF ( loop .EQ. time_loop_max ) THEN
! If this is the last time through here, we need to close the files.
CALL close_dataset
( id , config_flags , "DATASET=BOUNDARY" )
END IF
END IF main_loop_test
#if defined(HWRF)
if(alloc_ph_arrays) then
call wrf_debug
(1,'DEALLOCATE PREP_HYBRID BOUNARY ARRAYS')
deallocate(TB,QB,CWMB,UB,VB,PDB)
endif
#endif
END SUBROUTINE assemble_output