! Create an initial data set for the WRF model based on real data. This
! program is specifically set up for the Eulerian, mass-based coordinate.
PROGRAM real_data,84
USE module_machine
#ifdef DM_PARALLEL
USE module_dm
, ONLY : wrf_dm_initialize
#endif
USE module_domain
, ONLY : domain, alloc_and_configure_domain, &
domain_clock_set, head_grid, program_name, domain_clockprint, &
set_current_grid_ptr
USE module_initialize_real, ONLY : wrfu_initialize, find_my_parent, find_my_parent2
USE module_io_domain
USE module_driver_constants
USE module_configure
, ONLY : grid_config_rec_type, model_config_rec, &
initial_config, get_config_as_buffer, set_config_as_buffer
USE module_timing
USE module_state_description, ONLY : realonly
#ifdef NO_LEAP_CALENDAR
USE module_symbols_util, ONLY: wrfu_cal_noleap
#else
USE module_symbols_util, ONLY: wrfu_cal_gregorian
#endif
USE module_check_a_mundo
#ifdef WRF_CHEM
USE module_input_chem_data
USE module_input_chem_bioemiss
! USE module_input_chem_emissopt3
#endif
USE module_utility, ONLY : WRFU_finalize
IMPLICIT NONE
#ifdef WRF_CHEM
! interface
INTERFACE
! mediation-supplied
SUBROUTINE med_read_wrf_chem_bioemiss ( grid , config_flags)
USE module_domain
TYPE (domain) grid
TYPE (grid_config_rec_type) config_flags
END SUBROUTINE med_read_wrf_chem_bioemiss
END INTERFACE
#endif
REAL :: time , bdyfrq
INTEGER :: loop , levels_to_process , debug_level
TYPE(domain) , POINTER :: null_domain
TYPE(domain) , POINTER :: grid , another_grid
TYPE(domain) , POINTER :: grid_ptr , grid_ptr2
TYPE (grid_config_rec_type) :: config_flags
INTEGER :: number_at_same_level
INTEGER :: max_dom, domain_id , grid_id , parent_id , parent_id1 , id
INTEGER :: e_we , e_sn , i_parent_start , j_parent_start
INTEGER :: idum1, idum2
#ifdef DM_PARALLEL
INTEGER :: nbytes
INTEGER, PARAMETER :: configbuflen = 4* CONFIG_BUF_LEN
INTEGER :: configbuf( configbuflen )
LOGICAL , EXTERNAL :: wrf_dm_on_monitor
#endif
LOGICAL found_the_id
INTEGER :: ids , ide , jds , jde , kds , kde
INTEGER :: ims , ime , jms , jme , kms , kme
INTEGER :: ips , ipe , jps , jpe , kps , kpe
INTEGER :: ijds , ijde , spec_bdy_width
INTEGER :: i , j , k , idts, rc
INTEGER :: sibling_count , parent_id_hold , dom_loop
CHARACTER (LEN=80) :: message
INTEGER :: start_year , start_month , start_day , start_hour , start_minute , start_second
INTEGER :: end_year , end_month , end_day , end_hour , end_minute , end_second
INTEGER :: interval_seconds , real_data_init_type
INTEGER :: time_loop_max , time_loop
real::t1,t2
INTERFACE
SUBROUTINE Setup_Timekeeping( grid )
USE module_domain
, ONLY : domain
TYPE(domain), POINTER :: grid
END SUBROUTINE Setup_Timekeeping
END INTERFACE
LOGICAL :: ok_so_far
#include "version_decl"
! Define the name of this program (program_name defined in module_domain)
! NOTE: share/input_wrf.F tests first 7 chars of this name to decide
! whether to read P_TOP as metadata from the SI (yes, if .eq. REAL_EM)
program_name = "REAL_EM " // TRIM(release_version) // " PREPROCESSOR"
#ifdef DM_PARALLEL
CALL disable_quilting
#endif
! Initialize the modules used by the WRF system. Many of the CALLs made from the
! init_modules routine are NO-OPs. Typical initializations are: the size of a
! REAL, setting the file handles to a pre-use value, defining moisture and
! chemistry indices, etc.
CALL wrf_debug ( 100 , 'real_em: calling init_modules ' )
CALL init_modules
(1) ! Phase 1 returns after MPI_INIT() (if it is called)
#ifdef NO_LEAP_CALENDAR
CALL WRFU_Initialize( defaultCalKind=WRFU_CAL_NOLEAP, rc=rc )
#else
CALL WRFU_Initialize( defaultCalKind=WRFU_CAL_GREGORIAN, rc=rc )
#endif
CALL init_modules
(2) ! Phase 2 resumes after MPI_INIT() (if it is called)
! The configuration switches mostly come from the NAMELIST input.
#ifdef DM_PARALLEL
IF ( wrf_dm_on_monitor() ) THEN
CALL initial_config
END IF
CALL get_config_as_buffer
( configbuf, configbuflen, nbytes )
CALL wrf_dm_bcast_bytes
( configbuf, nbytes )
CALL set_config_as_buffer
( configbuf, configbuflen )
CALL wrf_dm_initialize
#else
CALL initial_config
#endif
CALL check_nml_consistency
CALL set_physics_rconfigs
CALL nl_get_debug_level ( 1, debug_level )
CALL set_wrf_debug_level
( debug_level )
CALL wrf_message
( program_name )
! There are variables in the Registry that are only required for the real
! program, fields that come from the WPS package. We define the run-time
! flag that says to allocate space for these input-from-WPS-only arrays.
CALL nl_set_use_wps_input ( 1 , REALONLY )
! Allocate the space for the mother of all domains.
NULLIFY( null_domain )
CALL wrf_debug ( 100 , 'real_em: calling alloc_and_configure_domain ' )
CALL alloc_and_configure_domain
( domain_id = 1 , &
grid = head_grid , &
parent = null_domain , &
kid = -1 )
grid => head_grid
CALL nl_get_max_dom ( 1 , max_dom )
IF ( model_config_rec%interval_seconds .LE. 0 ) THEN
CALL wrf_error_fatal
( 'namelist value for interval_seconds must be > 0')
END IF
all_domains : DO domain_id = 1 , max_dom
IF ( ( model_config_rec%input_from_file(domain_id) ) .OR. &
( domain_id .EQ. 1 ) ) THEN
IF ( domain_id .GT. 1 ) THEN
CALL nl_get_grid_id ( domain_id, grid_id )
CALL nl_get_parent_id ( domain_id, parent_id )
CALL nl_get_e_we ( domain_id, e_we )
CALL nl_get_e_sn ( domain_id, e_sn )
CALL nl_get_i_parent_start ( domain_id, i_parent_start )
CALL nl_get_j_parent_start ( domain_id, j_parent_start )
WRITE (message,FMT='(A,2I3,2I4,2I3)') &
'new allocated domain: id, par id, dims i/j, start i/j =', &
grid_id, parent_id, e_we, e_sn, i_parent_start, j_parent_start
CALL wrf_debug
( 100 , message )
CALL nl_get_grid_id ( parent_id, grid_id )
CALL nl_get_parent_id ( parent_id, parent_id1 )
CALL nl_get_e_we ( parent_id, e_we )
CALL nl_get_e_sn ( parent_id, e_sn )
CALL nl_get_i_parent_start ( parent_id, i_parent_start )
CALL nl_get_j_parent_start ( parent_id, j_parent_start )
WRITE (message,FMT='(A,2I3,2I4,2I3)') &
'parent domain: id, par id, dims i/j, start i/j =', &
grid_id, parent_id1, e_we, e_sn, i_parent_start, j_parent_start
CALL wrf_debug
( 100 , message )
CALL nl_get_grid_id ( domain_id, grid_id )
CALL nl_get_parent_id ( domain_id, parent_id )
CALL nl_get_e_we ( domain_id, e_we )
CALL nl_get_e_sn ( domain_id, e_sn )
CALL nl_get_i_parent_start ( domain_id, i_parent_start )
CALL nl_get_j_parent_start ( domain_id, j_parent_start )
grid_ptr2 => head_grid
found_the_id = .FALSE.
! CALL find_my_parent ( grid_ptr2 , grid_ptr , domain_id , parent_id , found_the_id )
CALL find_my_parent2( grid_ptr2 , grid_ptr , parent_id , found_the_id )
IF ( found_the_id ) THEN
sibling_count = 0
DO dom_loop = 2 , domain_id
CALL nl_get_parent_id ( dom_loop, parent_id_hold )
IF ( parent_id_hold .EQ. parent_id ) THEN
sibling_count = sibling_count + 1
END IF
END DO
CALL alloc_and_configure_domain
( domain_id = domain_id , &
grid = another_grid , &
parent = grid_ptr , &
kid = sibling_count )
grid => another_grid
ELSE
CALL wrf_error_fatal
( 'real_em.F: Could not find the parent domain')
END IF
END IF
CALL Setup_Timekeeping
( grid )
CALL set_current_grid_ptr
( grid )
CALL domain_clockprint
( 150, grid, &
'DEBUG real: clock after Setup_Timekeeping,' )
CALL domain_clock_set
( grid, &
time_step_seconds=model_config_rec%interval_seconds )
CALL domain_clockprint
( 150, grid, &
'DEBUG real: clock after timeStep set,' )
CALL wrf_debug ( 100 , 'real_em: calling set_scalar_indices_from_config ' )
CALL set_scalar_indices_from_config
( grid%id , idum1, idum2 )
CALL wrf_debug ( 100 , 'real_em: calling model_to_grid_config_rec ' )
CALL model_to_grid_config_rec
( grid%id , model_config_rec , config_flags )
! Some simple checks.
ok_so_far = .TRUE.
DO loop = 2 , model_config_rec%max_dom
IF ( model_config_rec%e_vert(loop) .NE. model_config_rec%e_vert(1) ) THEN
CALL wrf_message
( 'e_vert must be the same for each domain' )
ok_so_far = .FALSE.
END IF
END DO
IF ( .NOT. ok_so_far ) THEN
CALL wrf_error_fatal
( 'fix namelist.input settings' )
END IF
! Initialize the WRF IO: open files, init file handles, etc.
CALL wrf_debug ( 100 , 'real_em: calling init_wrfio' )
CALL init_wrfio
! Some of the configuration values may have been modified from the initial READ
! of the NAMELIST, so we re-broadcast the configuration records.
#ifdef DM_PARALLEL
CALL wrf_debug
( 100 , 'real_em: re-broadcast the configuration records' )
CALL get_config_as_buffer
( configbuf, configbuflen, nbytes )
CALL wrf_dm_bcast_bytes
( configbuf, nbytes )
CALL set_config_as_buffer
( configbuf, configbuflen )
#endif
! No looping in this layer.
CALL wrf_debug
( 100 , 'calling med_sidata_input' )
CALL med_sidata_input
( grid , config_flags )
CALL wrf_debug
( 100 , 'backfrom med_sidata_input' )
ELSE
CYCLE all_domains
END IF
END DO all_domains
CALL set_current_grid_ptr
( head_grid )
! We are done.
CALL wrf_debug
( 0 , 'real_em: SUCCESS COMPLETE REAL_EM INIT' )
CALL wrf_shutdown
CALL WRFU_Finalize( rc=rc )
END PROGRAM real_data
SUBROUTINE med_sidata_input ( grid , config_flags ) 3,171
! Driver layer
USE module_domain
USE module_io_domain
! Model layer
USE module_configure
USE module_bc_time_utilities
USE module_initialize_real
USE module_optional_input
#ifdef WRF_CHEM
USE module_input_chem_data
USE module_input_chem_bioemiss
! USE module_input_chem_emissopt3
#endif
USE module_wps_io_arw
USE module_date_time
USE module_utility
IMPLICIT NONE
! Interface
INTERFACE
SUBROUTINE start_domain ( grid , allowed_to_read ) ! comes from module_start in appropriate dyn_ directory
USE module_domain
TYPE (domain) grid
LOGICAL, INTENT(IN) :: allowed_to_read
END SUBROUTINE start_domain
END INTERFACE
! Arguments
TYPE(domain) :: grid
TYPE (grid_config_rec_type) :: config_flags
! Local
INTEGER :: time_step_begin_restart
INTEGER :: idsi , ierr , myproc
CHARACTER (LEN=80) :: si_inpname
CHARACTER (LEN=80) :: message
CHARACTER(LEN=19) :: start_date_char , end_date_char , current_date_char , next_date_char
INTEGER :: time_loop_max , loop, rc
INTEGER :: julyr , julday
INTEGER :: io_form_auxinput1
INTEGER, EXTERNAL :: use_package
LOGICAL :: using_binary_wrfsi
REAL :: gmt
real::t1,t2,t3,t4
grid%input_from_file = .true.
grid%input_from_file = .false.
CALL compute_si_start_and_end
( model_config_rec%start_year (grid%id) , &
model_config_rec%start_month (grid%id) , &
model_config_rec%start_day (grid%id) , &
model_config_rec%start_hour (grid%id) , &
model_config_rec%start_minute(grid%id) , &
model_config_rec%start_second(grid%id) , &
model_config_rec% end_year (grid%id) , &
model_config_rec% end_month (grid%id) , &
model_config_rec% end_day (grid%id) , &
model_config_rec% end_hour (grid%id) , &
model_config_rec% end_minute(grid%id) , &
model_config_rec% end_second(grid%id) , &
model_config_rec%interval_seconds , &
model_config_rec%real_data_init_type , &
start_date_char , end_date_char , time_loop_max )
! Override stop time with value computed above.
CALL domain_clock_set
( grid, stop_timestr=end_date_char )
! TBH: for now, turn off stop time and let it run data-driven
CALL WRFU_ClockStopTimeDisable( grid%domain_clock, rc=rc )
CALL wrf_check_error
( WRFU_SUCCESS, rc, &
'WRFU_ClockStopTimeDisable(grid%domain_clock) FAILED', &
__FILE__ , &
__LINE__ )
CALL domain_clockprint
( 150, grid, &
'DEBUG med_sidata_input: clock after stopTime set,' )
! Here we define the initial time to process, for later use by the code.
current_date_char = start_date_char
start_date = start_date_char // '.0000'
current_date = start_date
CALL nl_set_bdyfrq ( grid%id , REAL(model_config_rec%interval_seconds) )
!!!!!!! Loop over each time period to process.
CALL cpu_time ( t1 )
DO loop = 1 , time_loop_max
internal_time_loop = loop
IF ( ( grid%id .GT. 1 ) .AND. ( loop .GT. 1 ) .AND. &
( model_config_rec%grid_fdda(grid%id) .EQ. 0 ) .AND. &
( model_config_rec%sst_update .EQ. 0 ) ) EXIT
print *,' '
print *,'-----------------------------------------------------------------------------'
print *,' '
print '(A,I2,A,A,A,I4,A,I4)' , &
' Domain ',grid%id,': Current date being processed: ',current_date, ', which is loop #',loop,' out of ',time_loop_max
! After current_date has been set, fill in the julgmt stuff.
CALL geth_julgmt
( config_flags%julyr , config_flags%julday , config_flags%gmt )
print *,'configflags%julyr, %julday, %gmt:',config_flags%julyr, config_flags%julday, config_flags%gmt
! Now that the specific Julian info is available, save these in the model config record.
CALL nl_set_gmt (grid%id, config_flags%gmt)
CALL nl_set_julyr (grid%id, config_flags%julyr)
CALL nl_set_julday (grid%id, config_flags%julday)
! Open the input file for real. This is either the "new" one or the "old" one. The "new" one could have
! a suffix for the type of the data format. Check to see if either is around.
CALL cpu_time ( t3 )
WRITE ( wrf_err_message , FMT='(A,A)' )'med_sidata_input: calling open_r_dataset for ', &
TRIM(config_flags%auxinput1_inname)
CALL wrf_debug
( 100 , wrf_err_message )
IF (config_flags%auxinput1_inname(1:10) .eq. 'real_input') THEN
using_binary_wrfsi=.true.
ENDIF
CALL nl_get_io_form_auxinput1( 1, io_form_auxinput1 )
SELECT CASE ( use_package(io_form_auxinput1) )
#ifdef NETCDF
CASE ( IO_NETCDF )
IF ( config_flags%auxinput1_inname(1:8) .NE. 'wrf_real' ) THEN
CALL construct_filename4a
( si_inpname , config_flags%auxinput1_inname , grid%id , 2 , &
current_date_char , config_flags%io_form_auxinput1 )
ELSE
CALL construct_filename2a
( si_inpname , config_flags%auxinput1_inname , grid%id , 2 , &
current_date_char )
END IF
CALL open_r_dataset
( idsi, TRIM(si_inpname) , grid , config_flags , "DATASET=AUXINPUT1", ierr )
IF ( ierr .NE. 0 ) THEN
CALL wrf_error_fatal
( 'error opening ' // TRIM(si_inpname) // &
' for input; bad date in namelist or file not in directory' )
END IF
! Input data.
CALL wrf_debug ( 100 , 'med_sidata_input: calling input_auxinput1' )
CALL input_auxinput1 ( idsi , grid , config_flags , ierr )
CALL cpu_time ( t4 )
WRITE ( wrf_err_message , FMT='(A,I10,A)' ) 'Timing for input ',NINT(t4-t3) ,' s.'
CALL wrf_debug
( 0, wrf_err_message )
! Possible optional SI input. This sets flags used by init_domain.
CALL cpu_time ( t3 )
IF ( loop .EQ. 1 ) THEN
already_been_here = .FALSE.
CALL wrf_debug ( 100 , 'med_sidata_input: calling init_module_optional_input' )
CALL init_module_optional_input
( grid , config_flags )
END IF
CALL wrf_debug ( 100 , 'med_sidata_input: calling optional_input' )
CALL optional_input
( grid , idsi , config_flags )
! Close this file that is output from the SI and input to this pre-proc.
CALL wrf_debug
( 100 , 'med_sidata_input: back from init_domain' )
CALL close_dataset
( idsi , config_flags , "DATASET=AUXINPUT1" )
#endif
#ifdef INTIO
CASE ( IO_INTIO )
! ! Possible optional SI input. This sets flags used by init_domain.
!
IF ( loop .EQ. 1 ) THEN
CALL wrf_debug (100, 'med_sidata_input: call init_module_optional_input' )
CALL init_module_optional_input
( grid , config_flags )
END IF
IF (using_binary_wrfsi) THEN
current_date_char(11:11)='_'
! CALL read_si ( grid, current_date_char )
CALL wrf_error_fatal
("not supporting binary WRFSI in this code")
current_date_char(11:11)='T'
ELSE
write(message,*) 'binary WPS branch'
CALL wrf_message
(message)
current_date_char(11:11)='_'
CALL construct_filename4a
( si_inpname , config_flags%auxinput1_inname , grid%id , 2 , current_date_char , &
config_flags%io_form_auxinput1 )
CALL read_wps
( grid, trim(si_inpname), current_date_char, config_flags%num_metgrid_levels )
ENDIF
#endif
CASE DEFAULT
CALL wrf_error_fatal
('real: not valid io_form_auxinput1')
END SELECT
CALL wrf_debug ( 100 , 'med_sidata_input: calling init_domain' )
grid%input_from_file = .true.
CALL init_domain
( grid )
CALL cpu_time ( t4 )
WRITE ( wrf_err_message , FMT='(A,I10,A)' ) 'Timing for processing ',NINT(t4-t3) ,' s.'
CALL wrf_debug
( 0, wrf_err_message )
CALL model_to_grid_config_rec
( grid%id , model_config_rec , config_flags )
#ifdef WRF_CHEM
IF ( loop == 1 ) THEN
IF( grid%chem_opt > 0 ) then
! Read the chemistry data from a previous wrf forecast (wrfout file)
IF(grid%chem_in_opt == 1 ) THEN
message = 'INITIALIZING CHEMISTRY WITH OLD SIMULATION'
CALL wrf_message
( message )
CALL med_read_wrf_chem_input
( grid , config_flags)
IF(grid%emiss_opt == ECPTEC .or. grid%emiss_opt == GOCART_ECPTEC &
.or. grid%biomass_burn_opt == BIOMASSB) THEN
message = 'READING EMISSIONS DATA OPT 3'
CALL wrf_message
( message )
CALL med_read_wrf_chem_emissopt3
( grid , config_flags)
END IF
IF(grid%bio_emiss_opt == 2 ) THEN
message = 'READING BEIS3.14 EMISSIONS DATA'
CALL wrf_message
( message )
CALL med_read_wrf_chem_bioemiss
( grid , config_flags)
else IF(grid%bio_emiss_opt == 3 ) THEN !shc
message = 'READING MEGAN 2 EMISSIONS DATA'
CALL wrf_message
( message )
CALL med_read_wrf_chem_bioemiss
( grid , config_flags)
END IF
IF(grid%dust_opt == 1 .or. grid%dmsemis_opt == 1 .or. grid%chem_opt == 300) THEN !shc
message = 'READING GOCART BG AND/OR DUST and DMS REF FIELDS'
CALL wrf_message
( message )
CALL med_read_wrf_chem_gocart_bg
( grid , config_flags)
END IF
ELSEIF(grid%chem_in_opt == 0)then
! Generate chemistry data from a idealized vertical profile
message = 'STARTING WITH BACKGROUND CHEMISTRY '
CALL wrf_message
( message )
CALL input_chem_profile ( grid )
IF(grid%bio_emiss_opt == 2 ) THEN
message = 'READING BEIS3.14 EMISSIONS DATA'
CALL wrf_message
( message )
CALL med_read_wrf_chem_bioemiss
( grid , config_flags)
else IF(grid%bio_emiss_opt == 3 ) THEN !shc
message = 'READING MEGAN 2 EMISSIONS DATA'
CALL wrf_message
( message )
CALL med_read_wrf_chem_bioemiss
( grid , config_flags)
END IF
IF(grid%emiss_opt == ECPTEC .or. grid%emiss_opt == GOCART_ECPTEC &
.or. grid%biomass_burn_opt == BIOMASSB) THEN
message = 'READING EMISSIONS DATA OPT 3'
CALL wrf_message
( message )
! CALL med_read_bin_chem_emissopt3 ( grid , config_flags)
CALL med_read_wrf_chem_emissopt3
( grid , config_flags)
END IF
IF(grid%dust_opt == 1 .or. grid%dmsemis_opt == 1 .or. grid%chem_opt == 300) THEN !shc
message = 'READING GOCART BG AND/OR DUST and DMS REF FIELDS'
CALL wrf_message
( message )
CALL med_read_wrf_chem_gocart_bg
( grid , config_flags)
END IF
ELSE
message = 'RUNNING WITHOUT CHEMISTRY INITIALIZATION'
CALL wrf_message
( message )
END IF
END IF
END IF
#endif
CALL cpu_time ( t3 )
CALL assemble_output
( grid , config_flags , loop , time_loop_max )
CALL cpu_time ( t4 )
WRITE ( wrf_err_message , FMT='(A,I10,A)' ) 'Timing for output ',NINT(t4-t3) ,' s.'
CALL wrf_debug
( 0, wrf_err_message )
CALL cpu_time ( t2 )
WRITE ( wrf_err_message , FMT='(A,I4,A,I10,A)' ) 'Timing for loop # ',loop,' = ',NINT(t2-t1) ,' s.'
CALL wrf_debug
( 0, wrf_err_message )
! If this is not the last time, we define the next time that we are going to process.
IF ( loop .NE. time_loop_max ) THEN
CALL geth_newdate
( current_date_char , start_date_char , loop * model_config_rec%interval_seconds )
current_date = current_date_char // '.0000'
CALL domain_clockprint
( 150, grid, &
'DEBUG med_sidata_input: clock before current_date set,' )
WRITE (wrf_err_message,*) &
'DEBUG med_sidata_input: before currTime set, current_date = ',TRIM(current_date)
CALL wrf_debug
( 150 , wrf_err_message )
CALL domain_clock_set
( grid, current_date(1:19) )
CALL domain_clockprint
( 150, grid, &
'DEBUG med_sidata_input: clock after current_date set,' )
END IF
CALL cpu_time ( t1 )
END DO
END SUBROUTINE med_sidata_input
SUBROUTINE compute_si_start_and_end ( & 3,10
start_year , start_month , start_day , start_hour , start_minute , start_second , &
end_year , end_month , end_day , end_hour , end_minute , end_second , &
interval_seconds , real_data_init_type , &
start_date_char , end_date_char , time_loop_max )
USE module_date_time
IMPLICIT NONE
INTEGER :: start_year , start_month , start_day , start_hour , start_minute , start_second
INTEGER :: end_year , end_month , end_day , end_hour , end_minute , end_second
INTEGER :: interval_seconds , real_data_init_type
INTEGER :: time_loop_max , time_loop
CHARACTER(LEN=19) :: current_date_char , start_date_char , end_date_char , next_date_char
#ifdef PLANET
WRITE ( start_date_char , FMT = '(I4.4,"-",I5.5,"_",I2.2,":",I2.2,":",I2.2)' ) &
start_year,start_day,start_hour,start_minute,start_second
WRITE ( end_date_char , FMT = '(I4.4,"-",I5.5,"_",I2.2,":",I2.2,":",I2.2)' ) &
end_year, end_day, end_hour, end_minute, end_second
#else
WRITE ( start_date_char , FMT = '(I4.4,"-",I2.2,"-",I2.2,"_",I2.2,":",I2.2,":",I2.2)' ) &
start_year,start_month,start_day,start_hour,start_minute,start_second
WRITE ( end_date_char , FMT = '(I4.4,"-",I2.2,"-",I2.2,"_",I2.2,":",I2.2,":",I2.2)' ) &
end_year, end_month, end_day, end_hour, end_minute, end_second
#endif
IF ( end_date_char .LT. start_date_char ) THEN
CALL wrf_error_fatal
( 'Ending date in namelist ' // end_date_char // ' prior to beginning date ' // start_date_char )
END IF
! start_date = start_date_char // '.0000'
! Figure out our loop count for the processing times.
time_loop = 1
PRINT '(A,I4,A,A,A)','Time period #',time_loop,' to process = ',start_date_char,'.'
current_date_char = start_date_char
loop_count : DO
CALL geth_newdate
( next_date_char , current_date_char , interval_seconds )
IF ( next_date_char .LT. end_date_char ) THEN
time_loop = time_loop + 1
PRINT '(A,I4,A,A,A)','Time period #',time_loop,' to process = ',next_date_char,'.'
current_date_char = next_date_char
ELSE IF ( next_date_char .EQ. end_date_char ) THEN
time_loop = time_loop + 1
PRINT '(A,I4,A,A,A)','Time period #',time_loop,' to process = ',next_date_char,'.'
PRINT '(A,I4,A)','Total analysis times to input = ',time_loop,'.'
time_loop_max = time_loop
EXIT loop_count
ELSE IF ( next_date_char .GT. end_date_char ) THEN
PRINT '(A,I4,A)','Total analysis times to input = ',time_loop,'.'
time_loop_max = time_loop
IF ( ( time_loop_max .EQ. 1 ) .AND. ( start_date_char .NE. end_date_char ) ) THEN
PRINT *,'You might have set the end time in the namelist.input for the model'
PRINT *,'Regional domains require more than one time-period to process, for BC generation'
CALL wrf_error_fatal
( "Make the end time at least one 'interval_seconds' beyond the start time" )
END IF
EXIT loop_count
END IF
END DO loop_count
END SUBROUTINE compute_si_start_and_end
SUBROUTINE assemble_output ( grid , config_flags , loop , time_loop_max ) 4,234
USE module_big_step_utilities_em
USE module_domain
USE module_io_domain
USE module_configure
USE module_date_time
USE module_bc
IMPLICIT NONE
TYPE(domain) :: grid
TYPE (grid_config_rec_type) :: config_flags
INTEGER , INTENT(IN) :: loop , time_loop_max
INTEGER :: ids , ide , jds , jde , kds , kde
INTEGER :: ims , ime , jms , jme , kms , kme
INTEGER :: ips , ipe , jps , jpe , kps , kpe
INTEGER :: ijds , ijde , spec_bdy_width
INTEGER :: i , j , k , idts
INTEGER :: id1 , interval_seconds , ierr, rc, sst_update, grid_fdda
INTEGER , SAVE :: id, id2, id4
CHARACTER (LEN=80) :: inpname , bdyname
CHARACTER(LEN= 4) :: loop_char
character *19 :: temp19
character *24 :: temp24 , temp24b
REAL , DIMENSION(:,:,:) , ALLOCATABLE , SAVE :: ubdy3dtemp1 , vbdy3dtemp1 , tbdy3dtemp1 , pbdy3dtemp1 , qbdy3dtemp1
REAL , DIMENSION(:,:,:) , ALLOCATABLE , SAVE :: mbdy2dtemp1
REAL , DIMENSION(:,:,:) , ALLOCATABLE , SAVE :: ubdy3dtemp2 , vbdy3dtemp2 , tbdy3dtemp2 , pbdy3dtemp2 , qbdy3dtemp2
REAL , DIMENSION(:,:,:) , ALLOCATABLE , SAVE :: mbdy2dtemp2
real::t1,t2
! Various sizes that we need to be concerned about.
ids = grid%sd31
ide = grid%ed31
kds = grid%sd32
kde = grid%ed32
jds = grid%sd33
jde = grid%ed33
ims = grid%sm31
ime = grid%em31
kms = grid%sm32
kme = grid%em32
jms = grid%sm33
jme = grid%em33
ips = grid%sp31
ipe = grid%ep31
kps = grid%sp32
kpe = grid%ep32
jps = grid%sp33
jpe = grid%ep33
ijds = MIN ( ids , jds )
ijde = MAX ( ide , jde )
! Boundary width, scalar value.
spec_bdy_width = model_config_rec%spec_bdy_width
interval_seconds = model_config_rec%interval_seconds
sst_update = model_config_rec%sst_update
grid_fdda = model_config_rec%grid_fdda(grid%id)
IF ( loop .EQ. 1 ) THEN
IF ( ( time_loop_max .EQ. 1 ) .OR. ( config_flags%polar ) ) THEN
! No need to allocate space since we do not need the lateral boundary data yet
! or at all (in case of the polar flag).
ELSE
! This is the space needed to save the current 3d data for use in computing
! the lateral boundary tendencies.
IF ( ALLOCATED ( ubdy3dtemp1 ) ) DEALLOCATE ( ubdy3dtemp1 )
IF ( ALLOCATED ( vbdy3dtemp1 ) ) DEALLOCATE ( vbdy3dtemp1 )
IF ( ALLOCATED ( tbdy3dtemp1 ) ) DEALLOCATE ( tbdy3dtemp1 )
IF ( ALLOCATED ( pbdy3dtemp1 ) ) DEALLOCATE ( pbdy3dtemp1 )
IF ( ALLOCATED ( qbdy3dtemp1 ) ) DEALLOCATE ( qbdy3dtemp1 )
IF ( ALLOCATED ( mbdy2dtemp1 ) ) DEALLOCATE ( mbdy2dtemp1 )
IF ( ALLOCATED ( ubdy3dtemp2 ) ) DEALLOCATE ( ubdy3dtemp2 )
IF ( ALLOCATED ( vbdy3dtemp2 ) ) DEALLOCATE ( vbdy3dtemp2 )
IF ( ALLOCATED ( tbdy3dtemp2 ) ) DEALLOCATE ( tbdy3dtemp2 )
IF ( ALLOCATED ( pbdy3dtemp2 ) ) DEALLOCATE ( pbdy3dtemp2 )
IF ( ALLOCATED ( qbdy3dtemp2 ) ) DEALLOCATE ( qbdy3dtemp2 )
IF ( ALLOCATED ( mbdy2dtemp2 ) ) DEALLOCATE ( mbdy2dtemp2 )
ALLOCATE ( ubdy3dtemp1(ims:ime,kms:kme,jms:jme) )
ALLOCATE ( vbdy3dtemp1(ims:ime,kms:kme,jms:jme) )
ALLOCATE ( tbdy3dtemp1(ims:ime,kms:kme,jms:jme) )
ALLOCATE ( pbdy3dtemp1(ims:ime,kms:kme,jms:jme) )
ALLOCATE ( qbdy3dtemp1(ims:ime,kms:kme,jms:jme) )
ALLOCATE ( mbdy2dtemp1(ims:ime,1:1, jms:jme) )
ALLOCATE ( ubdy3dtemp2(ims:ime,kms:kme,jms:jme) )
ALLOCATE ( vbdy3dtemp2(ims:ime,kms:kme,jms:jme) )
ALLOCATE ( tbdy3dtemp2(ims:ime,kms:kme,jms:jme) )
ALLOCATE ( pbdy3dtemp2(ims:ime,kms:kme,jms:jme) )
ALLOCATE ( qbdy3dtemp2(ims:ime,kms:kme,jms:jme) )
ALLOCATE ( mbdy2dtemp2(ims:ime,1:1, jms:jme) )
END IF
! Open the wrfinput file. From this program, this is an *output* file.
CALL construct_filename1
( inpname , 'wrfinput' , grid%id , 2 )
CALL open_w_dataset
( id1, TRIM(inpname) , grid , config_flags , output_input , "DATASET=INPUT", ierr )
IF ( ierr .NE. 0 ) THEN
CALL wrf_error_fatal
( 'real: error opening wrfinput for writing' )
END IF
CALL output_input ( id1, grid , config_flags , ierr )
CALL close_dataset
( id1 , config_flags , "DATASET=INPUT" )
IF ( time_loop_max .NE. 1 ) THEN
IF(sst_update .EQ. 1)THEN
CALL construct_filename1
( inpname , 'wrflowinp' , grid%id , 2 )
CALL open_w_dataset
( id4, TRIM(inpname) , grid , config_flags , output_auxinput4 , "DATASET=AUXINPUT4", ierr )
IF ( ierr .NE. 0 ) THEN
CALL wrf_error_fatal
( 'real: error opening wrflowinp for writing' )
END IF
CALL output_auxinput4 ( id4, grid , config_flags , ierr )
END IF
END IF
IF ( ( time_loop_max .EQ. 1 ) .OR. ( config_flags%polar ) ) THEN
! No need to couple data since no lateral BCs required.
ELSE
! We need to save the 3d data to compute a difference during the next loop. Couple the
! 3d fields with total mu (mub + mu_2) and the stagger-specific map scale factor.
! u, theta, h, scalars coupled with my; v coupled with mx
CALL couple
( grid%mu_2 , grid%mub , ubdy3dtemp1 , grid%u_2 , 'u' , grid%msfuy , &
ids, ide, jds, jde, kds, kde, ims, ime, jms, jme, kms, kme, ips, ipe, jps, jpe, kps, kpe )
CALL couple
( grid%mu_2 , grid%mub , vbdy3dtemp1 , grid%v_2 , 'v' , grid%msfvx , &
ids, ide, jds, jde, kds, kde, ims, ime, jms, jme, kms, kme, ips, ipe, jps, jpe, kps, kpe )
CALL couple
( grid%mu_2 , grid%mub , tbdy3dtemp1 , grid%t_2 , 't' , grid%msfty , &
ids, ide, jds, jde, kds, kde, ims, ime, jms, jme, kms, kme, ips, ipe, jps, jpe, kps, kpe )
CALL couple
( grid%mu_2 , grid%mub , pbdy3dtemp1 , grid%ph_2 , 'h' , grid%msfty , &
ids, ide, jds, jde, kds, kde, ims, ime, jms, jme, kms, kme, ips, ipe, jps, jpe, kps, kpe )
CALL couple
( grid%mu_2 , grid%mub , qbdy3dtemp1 , grid%moist(:,:,:,P_QV) , 't' , grid%msfty , &
ids, ide, jds, jde, kds, kde, ims, ime, jms, jme, kms, kme, ips, ipe, jps, jpe, kps, kpe )
DO j = jps , MIN(jde-1,jpe)
DO i = ips , MIN(ide-1,ipe)
mbdy2dtemp1(i,1,j) = grid%mu_2(i,j)
END DO
END DO
END IF
IF(grid_fdda .GE. 1)THEN
DO j = jps , jpe
DO k = kps , kpe
DO i = ips , ipe
grid%fdda3d(i,k,j,p_u_ndg_old) = grid%u_2(i,k,j)
grid%fdda3d(i,k,j,p_v_ndg_old) = grid%v_2(i,k,j)
grid%fdda3d(i,k,j,p_t_ndg_old) = grid%t_2(i,k,j)
grid%fdda3d(i,k,j,p_q_ndg_old) = grid%moist(i,k,j,P_QV)
grid%fdda3d(i,k,j,p_ph_ndg_old) = grid%ph_2(i,k,j)
END DO
END DO
END DO
DO j = jps , jpe
DO i = ips , ipe
grid%fdda2d(i,1,j,p_mu_ndg_old) = grid%mu_2(i,j)
! grid%fdda2d(i,1,j,p_t2_ndg_old) = grid%t2(i,j)
! grid%fdda2d(i,1,j,p_q2_ndg_old) = grid%q2(i,j)
! grid%fdda2d(i,1,j,p_sn_ndg_old) = grid%snow(i,j)
END DO
END DO
END IF
IF ( ( time_loop_max .EQ. 1 ) .OR. ( config_flags%polar ) ) THEN
! No need to build boundary arrays, since no lateral BCs are being generated.
ELSE
! There are 2 components to the lateral boundaries. First, there is the starting
! point of this time period - just the outer few rows and columns.
CALL stuff_bdy
( ubdy3dtemp1 , grid%u_bxs, grid%u_bxe, grid%u_bys, grid%u_bye, &
'U' , spec_bdy_width , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe )
CALL stuff_bdy
( vbdy3dtemp1 , grid%v_bxs, grid%v_bxe, grid%v_bys, grid%v_bye, &
'V' , spec_bdy_width , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe )
CALL stuff_bdy
( tbdy3dtemp1 , grid%t_bxs, grid%t_bxe, grid%t_bys, grid%t_bye, &
'T' , spec_bdy_width , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe )
CALL stuff_bdy
( pbdy3dtemp1 , grid%ph_bxs, grid%ph_bxe, grid%ph_bys, grid%ph_bye, &
'W' , spec_bdy_width , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe )
CALL stuff_bdy
( qbdy3dtemp1 , grid%moist_bxs(:,:,:,P_QV), grid%moist_bxe(:,:,:,P_QV), &
grid%moist_bys(:,:,:,P_QV), grid%moist_bye(:,:,:,P_QV), &
'T' , spec_bdy_width , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe )
CALL stuff_bdy
( mbdy2dtemp1 , grid%mu_bxs, grid%mu_bxe, grid%mu_bys, grid%mu_bye, &
'M' , spec_bdy_width , &
ids , ide , jds , jde , 1 , 1 , &
ims , ime , jms , jme , 1 , 1 , &
ips , ipe , jps , jpe , 1 , 1 )
END IF
ELSE IF ( loop .GT. 1 ) THEN
IF(sst_update .EQ. 1)THEN
CALL output_auxinput4 ( id4, grid , config_flags , ierr )
END IF
! Open the boundary and the fdda file.
IF ( loop .eq. 2 ) THEN
IF ( (grid%id .eq. 1) .and. ( .NOT. config_flags%polar ) ) THEN
CALL construct_filename1
( bdyname , 'wrfbdy' , grid%id , 2 )
CALL open_w_dataset
( id, TRIM(bdyname) , grid , config_flags , output_boundary , "DATASET=BOUNDARY", ierr )
IF ( ierr .NE. 0 ) THEN
CALL wrf_error_fatal
( 'real: error opening wrfbdy for writing' )
END IF
END IF
IF(grid_fdda .GE. 1)THEN
CALL construct_filename1
( inpname , 'wrffdda' , grid%id , 2 )
CALL open_w_dataset
( id2, TRIM(inpname) , grid , config_flags , output_auxinput10 , "DATASET=AUXINPUT10", ierr )
IF ( ierr .NE. 0 ) THEN
CALL wrf_error_fatal
( 'real: error opening wrffdda for writing' )
END IF
END IF
ELSE
IF ( .NOT. domain_clockisstoptime(grid) ) THEN
CALL domain_clockadvance
( grid )
CALL domain_clockprint
( 150, grid, &
'DEBUG assemble_output: clock after ClockAdvance,' )
END IF
END IF
IF ( config_flags%polar ) THEN
! No need to couple fields, since no lateral BCs are required.
ELSE
! Couple this time period's data with total mu, and save it in the *bdy3dtemp2 arrays.
! u, theta, h, scalars coupled with my; v coupled with mx
CALL couple
( grid%mu_2 , grid%mub , ubdy3dtemp2 , grid%u_2 , 'u' , grid%msfuy , &
ids, ide, jds, jde, kds, kde, ims, ime, jms, jme, kms, kme, ips, ipe, jps, jpe, kps, kpe )
CALL couple
( grid%mu_2 , grid%mub , vbdy3dtemp2 , grid%v_2 , 'v' , grid%msfvx , &
ids, ide, jds, jde, kds, kde, ims, ime, jms, jme, kms, kme, ips, ipe, jps, jpe, kps, kpe )
CALL couple
( grid%mu_2 , grid%mub , tbdy3dtemp2 , grid%t_2 , 't' , grid%msfty , &
ids, ide, jds, jde, kds, kde, ims, ime, jms, jme, kms, kme, ips, ipe, jps, jpe, kps, kpe )
CALL couple
( grid%mu_2 , grid%mub , pbdy3dtemp2 , grid%ph_2 , 'h' , grid%msfty , &
ids, ide, jds, jde, kds, kde, ims, ime, jms, jme, kms, kme, ips, ipe, jps, jpe, kps, kpe )
CALL couple
( grid%mu_2 , grid%mub , qbdy3dtemp2 , grid%moist(:,:,:,P_QV) , 't' , grid%msfty , &
ids, ide, jds, jde, kds, kde, ims, ime, jms, jme, kms, kme, ips, ipe, jps, jpe, kps, kpe )
DO j = jps , jpe
DO i = ips , ipe
mbdy2dtemp2(i,1,j) = grid%mu_2(i,j)
END DO
END DO
END IF
IF(grid_fdda .GE. 1)THEN
DO j = jps , jpe
DO k = kps , kpe
DO i = ips , ipe
grid%fdda3d(i,k,j,p_u_ndg_new) = grid%u_2(i,k,j)
grid%fdda3d(i,k,j,p_v_ndg_new) = grid%v_2(i,k,j)
grid%fdda3d(i,k,j,p_t_ndg_new) = grid%t_2(i,k,j)
grid%fdda3d(i,k,j,p_q_ndg_new) = grid%moist(i,k,j,P_QV)
grid%fdda3d(i,k,j,p_ph_ndg_new) = grid%ph_2(i,k,j)
END DO
END DO
END DO
DO j = jps , jpe
DO i = ips , ipe
grid%fdda2d(i,1,j,p_mu_ndg_new) = grid%mu_2(i,j)
! grid%fdda2d(i,1,j,p_t2_ndg_new) = grid%t2(i,j)
! grid%fdda2d(i,1,j,p_q2_ndg_new) = grid%q2(i,j)
! grid%fdda2d(i,1,j,p_sn_ndg_new) = grid%snow(i,j)
END DO
END DO
END IF
IF ( config_flags%polar ) THEN
! No need to build boundary arrays, since no lateral BCs are being generated.
ELSE
! During all of the loops after the first loop, we first compute the boundary
! tendencies with the current data values (*bdy3dtemp2 arrays) and the previously
! saved information stored in the *bdy3dtemp1 arrays.
CALL stuff_bdytend
( ubdy3dtemp2 , ubdy3dtemp1 , REAL(interval_seconds) , &
grid%u_btxs, grid%u_btxe, &
grid%u_btys, grid%u_btye, &
'U' , &
spec_bdy_width , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe )
CALL stuff_bdytend
( vbdy3dtemp2 , vbdy3dtemp1 , REAL(interval_seconds) , &
grid%v_btxs, grid%v_btxe, &
grid%v_btys, grid%v_btye, &
'V' , &
spec_bdy_width , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe )
CALL stuff_bdytend
( tbdy3dtemp2 , tbdy3dtemp1 , REAL(interval_seconds) , &
grid%t_btxs, grid%t_btxe, &
grid%t_btys, grid%t_btye, &
'T' , &
spec_bdy_width , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe )
CALL stuff_bdytend
( pbdy3dtemp2 , pbdy3dtemp1 , REAL(interval_seconds) , &
grid%ph_btxs, grid%ph_btxe, &
grid%ph_btys, grid%ph_btye, &
'W' , &
spec_bdy_width , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe )
CALL stuff_bdytend
( qbdy3dtemp2 , qbdy3dtemp1 , REAL(interval_seconds) , &
grid%moist_btxs(:,:,:,P_QV), grid%moist_btxe(:,:,:,P_QV), &
grid%moist_btys(:,:,:,P_QV), grid%moist_btye(:,:,:,P_QV), &
'T' , &
spec_bdy_width , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe )
CALL stuff_bdytend
( mbdy2dtemp2 , mbdy2dtemp1 , REAL(interval_seconds) , &
grid%mu_btxs, grid%mu_btxe, &
grid%mu_btys, grid%mu_btye, &
'M' , &
spec_bdy_width , &
ids , ide , jds , jde , 1 , 1 , &
ims , ime , jms , jme , 1 , 1 , &
ips , ipe , jps , jpe , 1 , 1 )
END IF
! Both pieces of the boundary data are now available to be written (initial time and tendency).
! This looks ugly, these date shifting things. What's it for? We want the "Times" variable
! in the lateral BDY file to have the valid times of when the initial fields are written.
! That's what the loop-2 thingy is for with the start date. We increment the start_date so
! that the starting time in the attributes is the second time period. Why you may ask. I
! agree, why indeed.
CALL domain_clockprint
( 150, grid, &
'DEBUG assemble_output: clock before 1st current_date set,' )
WRITE (wrf_err_message,*) &
'DEBUG assemble_output: before 1st currTime set, current_date = ',TRIM(current_date)
CALL wrf_debug
( 150 , wrf_err_message )
CALL domain_clock_set
( grid, current_date(1:19) )
CALL domain_clockprint
( 150, grid, &
'DEBUG assemble_output: clock after 1st current_date set,' )
temp24= current_date
temp24b=start_date
start_date = current_date
CALL geth_newdate
( temp19 , temp24b(1:19) , (loop-2) * model_config_rec%interval_seconds )
current_date = temp19 // '.0000'
CALL domain_clockprint
( 150, grid, &
'DEBUG assemble_output: clock before 2nd current_date set,' )
WRITE (wrf_err_message,*) &
'DEBUG assemble_output: before 2nd currTime set, current_date = ',TRIM(current_date)
CALL wrf_debug
( 150 , wrf_err_message )
CALL domain_clock_set
( grid, current_date(1:19) )
CALL domain_clockprint
( 150, grid, &
'DEBUG assemble_output: clock after 2nd current_date set,' )
IF ( config_flags%polar ) THEN
! No need to ouput boundary data for polar cases.
ELSE
! Output boundary file.
IF(grid%id .EQ. 1)THEN
print *,'LBC valid between these times ',current_date, ' ',start_date
CALL output_boundary
( id, grid , config_flags , ierr )
END IF
END IF
! Output gridded/analysis FDDA file.
IF(grid_fdda .GE. 1) THEN
CALL output_auxinput10 ( id2, grid , config_flags , ierr )
END IF
current_date = temp24
start_date = temp24b
CALL domain_clockprint
( 150, grid, &
'DEBUG assemble_output: clock before 3rd current_date set,' )
WRITE (wrf_err_message,*) &
'DEBUG assemble_output: before 3rd currTime set, current_date = ',TRIM(current_date)
CALL wrf_debug
( 150 , wrf_err_message )
CALL domain_clock_set
( grid, current_date(1:19) )
CALL domain_clockprint
( 150, grid, &
'DEBUG assemble_output: clock after 3rd current_date set,' )
! OK, for all of the loops, we output the initialzation data, which would allow us to
! start the model at any of the available analysis time periods.
IF ( config_flags%all_ic_times ) THEN
CALL construct_filename2a
( inpname , 'wrfinput_d<domain>.<date>' , grid%id , 2 , TRIM(current_date) )
CALL open_w_dataset
( id1, inpname , grid , config_flags , output_input , "DATASET=INPUT", ierr )
IF ( ierr .NE. 0 ) THEN
CALL wrf_error_fatal
( 'real: error opening' // inpname // ' for writing' )
END IF
CALL output_input ( id1, grid , config_flags , ierr )
CALL close_dataset
( id1 , config_flags , "DATASET=INPUT" )
END IF
! Is this or is this not the last time time? We can remove some unnecessary
! stores if it is not.
IF ( loop .LT. time_loop_max ) THEN
IF ( config_flags%polar ) THEN
! No need to swap old for new for the boundary data, it is not required.
ELSE
! We need to save the 3d data to compute a difference during the next loop. Couple the
! 3d fields with total mu (mub + mu_2) and the stagger-specific map scale factor.
! We load up the boundary data again for use in the next loop.
DO j = jps , jpe
DO k = kps , kpe
DO i = ips , ipe
ubdy3dtemp1(i,k,j) = ubdy3dtemp2(i,k,j)
vbdy3dtemp1(i,k,j) = vbdy3dtemp2(i,k,j)
tbdy3dtemp1(i,k,j) = tbdy3dtemp2(i,k,j)
pbdy3dtemp1(i,k,j) = pbdy3dtemp2(i,k,j)
qbdy3dtemp1(i,k,j) = qbdy3dtemp2(i,k,j)
END DO
END DO
END DO
DO j = jps , jpe
DO i = ips , ipe
mbdy2dtemp1(i,1,j) = mbdy2dtemp2(i,1,j)
END DO
END DO
END IF
IF(grid_fdda .GE. 1)THEN
DO j = jps , jpe
DO k = kps , kpe
DO i = ips , ipe
grid%fdda3d(i,k,j,p_u_ndg_old) = grid%fdda3d(i,k,j,p_u_ndg_new)
grid%fdda3d(i,k,j,p_v_ndg_old) = grid%fdda3d(i,k,j,p_v_ndg_new)
grid%fdda3d(i,k,j,p_t_ndg_old) = grid%fdda3d(i,k,j,p_t_ndg_new)
grid%fdda3d(i,k,j,p_q_ndg_old) = grid%fdda3d(i,k,j,p_q_ndg_new)
grid%fdda3d(i,k,j,p_ph_ndg_old) = grid%fdda3d(i,k,j,p_ph_ndg_new)
END DO
END DO
END DO
DO j = jps , jpe
DO i = ips , ipe
grid%fdda2d(i,1,j,p_mu_ndg_old) = grid%fdda2d(i,1,j,p_mu_ndg_new)
! grid%fdda2d(i,1,j,p_t2_ndg_old) = grid%fdda2d(i,1,j,p_t2_ndg_new)
! grid%fdda2d(i,1,j,p_q2_ndg_old) = grid%fdda2d(i,1,j,p_q2_ndg_new)
! grid%fdda2d(i,1,j,p_sn_ndg_old) = grid%fdda2d(i,1,j,p_sn_ndg_new)
END DO
END DO
END IF
IF ( config_flags%polar ) THEN
! No need to build boundary arrays, since no lateral BCs are being generated.
ELSE
! There are 2 components to the lateral boundaries. First, there is the starting
! point of this time period - just the outer few rows and columns.
CALL stuff_bdy
( ubdy3dtemp1 , grid%u_bxs, grid%u_bxe, grid%u_bys, grid%u_bye, &
'U' , spec_bdy_width , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe )
CALL stuff_bdy
( vbdy3dtemp1 , grid%v_bxs, grid%v_bxe, grid%v_bys, grid%v_bye, &
'V' , spec_bdy_width , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe )
CALL stuff_bdy
( tbdy3dtemp1 , grid%t_bxs, grid%t_bxe, grid%t_bys, grid%t_bye, &
'T' , spec_bdy_width , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe )
CALL stuff_bdy
( pbdy3dtemp1 , grid%ph_bxs, grid%ph_bxe, grid%ph_bys, grid%ph_bye, &
'W' , spec_bdy_width , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe )
CALL stuff_bdy
( qbdy3dtemp1 , grid%moist_bxs(:,:,:,P_QV), grid%moist_bxe(:,:,:,P_QV), &
grid%moist_bys(:,:,:,P_QV), grid%moist_bye(:,:,:,P_QV), &
'T' , spec_bdy_width , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme , &
ips , ipe , jps , jpe , kps , kpe )
CALL stuff_bdy
( mbdy2dtemp1 , grid%mu_bxs, grid%mu_bxe, grid%mu_bys, grid%mu_bye, &
'M' , spec_bdy_width , &
ids , ide , jds , jde , 1 , 1 , &
ims , ime , jms , jme , 1 , 1 , &
ips , ipe , jps , jpe , 1 , 1 )
END IF
ELSE IF ( loop .EQ. time_loop_max ) THEN
! If this is the last time through here, we need to close the files.
IF ( config_flags%polar ) THEN
! No need to close the boundary file, it was never used.
ELSE
IF(grid%id .EQ. 1) THEN
CALL close_dataset
( id , config_flags , "DATASET=BOUNDARY" )
END IF
END IF
IF(grid_fdda .GE. 1) THEN
CALL close_dataset
( id2 , config_flags , "DATASET=AUXINPUT10" )
END IF
IF(sst_update .EQ. 1)THEN
CALL close_dataset
( id4 , config_flags , "DATASET=AUXINPUT4" )
END IF
END IF
END IF
END SUBROUTINE assemble_output